MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnvsn Structured version   Visualization version   GIF version

Theorem funcnvsn 6147
Description: The converse singleton of an ordered pair is a function. This is equivalent to funsn 6150 via cnvsn 5828, but stating it this way allows us to skip the sethood assumptions on 𝐴 and 𝐵. (Contributed by NM, 30-Apr-2015.)
Assertion
Ref Expression
funcnvsn Fun {⟨𝐴, 𝐵⟩}

Proof of Theorem funcnvsn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5710 . 2 Rel {⟨𝐴, 𝐵⟩}
2 moeq 3577 . . . 4 ∃*𝑦 𝑦 = 𝐴
3 vex 3393 . . . . . . . 8 𝑥 ∈ V
4 vex 3393 . . . . . . . 8 𝑦 ∈ V
53, 4brcnv 5503 . . . . . . 7 (𝑥{⟨𝐴, 𝐵⟩}𝑦𝑦{⟨𝐴, 𝐵⟩}𝑥)
6 df-br 4841 . . . . . . 7 (𝑦{⟨𝐴, 𝐵⟩}𝑥 ↔ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩})
75, 6bitri 266 . . . . . 6 (𝑥{⟨𝐴, 𝐵⟩}𝑦 ↔ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩})
8 elsni 4384 . . . . . . 7 (⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩} → ⟨𝑦, 𝑥⟩ = ⟨𝐴, 𝐵⟩)
94, 3opth1 5130 . . . . . . 7 (⟨𝑦, 𝑥⟩ = ⟨𝐴, 𝐵⟩ → 𝑦 = 𝐴)
108, 9syl 17 . . . . . 6 (⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩} → 𝑦 = 𝐴)
117, 10sylbi 208 . . . . 5 (𝑥{⟨𝐴, 𝐵⟩}𝑦𝑦 = 𝐴)
1211moimi 2683 . . . 4 (∃*𝑦 𝑦 = 𝐴 → ∃*𝑦 𝑥{⟨𝐴, 𝐵⟩}𝑦)
132, 12ax-mp 5 . . 3 ∃*𝑦 𝑥{⟨𝐴, 𝐵⟩}𝑦
1413ax-gen 1880 . 2 𝑥∃*𝑦 𝑥{⟨𝐴, 𝐵⟩}𝑦
15 dffun6 6113 . 2 (Fun {⟨𝐴, 𝐵⟩} ↔ (Rel {⟨𝐴, 𝐵⟩} ∧ ∀𝑥∃*𝑦 𝑥{⟨𝐴, 𝐵⟩}𝑦))
161, 14, 15mpbir2an 693 1 Fun {⟨𝐴, 𝐵⟩}
Colors of variables: wff setvar class
Syntax hints:  wal 1635   = wceq 1637  wcel 2158  ∃*wmo 2633  {csn 4367  cop 4373   class class class wbr 4840  ccnv 5307  Rel wrel 5313  Fun wfun 6092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1880  ax-4 1897  ax-5 2004  ax-6 2070  ax-7 2106  ax-9 2167  ax-10 2187  ax-11 2203  ax-12 2216  ax-13 2422  ax-ext 2784  ax-sep 4971  ax-nul 4980  ax-pr 5093
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1865  df-sb 2063  df-eu 2636  df-mo 2637  df-clab 2792  df-cleq 2798  df-clel 2801  df-nfc 2936  df-ral 3100  df-rab 3104  df-v 3392  df-dif 3769  df-un 3771  df-in 3773  df-ss 3780  df-nul 4114  df-if 4277  df-sn 4368  df-pr 4370  df-op 4374  df-br 4841  df-opab 4903  df-id 5216  df-xp 5314  df-rel 5315  df-cnv 5316  df-co 5317  df-fun 6100
This theorem is referenced by:  funsng  6148  funcnvpr  6159  funcnvtp  6160  funcnvs1  13877  strlemor1OLD  16176  0spth  27295
  Copyright terms: Public domain W3C validator