MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnvsn Structured version   Visualization version   GIF version

Theorem funcnvsn 6569
Description: The converse singleton of an ordered pair is a function. This is equivalent to funsn 6572 via cnvsn 6202, but stating it this way allows to skip the sethood assumptions on 𝐴 and 𝐵. (Contributed by NM, 30-Apr-2015.)
Assertion
Ref Expression
funcnvsn Fun {⟨𝐴, 𝐵⟩}

Proof of Theorem funcnvsn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 6078 . 2 Rel {⟨𝐴, 𝐵⟩}
2 moeq 3681 . . . 4 ∃*𝑦 𝑦 = 𝐴
3 vex 3454 . . . . . . . 8 𝑥 ∈ V
4 vex 3454 . . . . . . . 8 𝑦 ∈ V
53, 4brcnv 5849 . . . . . . 7 (𝑥{⟨𝐴, 𝐵⟩}𝑦𝑦{⟨𝐴, 𝐵⟩}𝑥)
6 df-br 5111 . . . . . . 7 (𝑦{⟨𝐴, 𝐵⟩}𝑥 ↔ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩})
75, 6bitri 275 . . . . . 6 (𝑥{⟨𝐴, 𝐵⟩}𝑦 ↔ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩})
8 elsni 4609 . . . . . . 7 (⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩} → ⟨𝑦, 𝑥⟩ = ⟨𝐴, 𝐵⟩)
94, 3opth1 5438 . . . . . . 7 (⟨𝑦, 𝑥⟩ = ⟨𝐴, 𝐵⟩ → 𝑦 = 𝐴)
108, 9syl 17 . . . . . 6 (⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩} → 𝑦 = 𝐴)
117, 10sylbi 217 . . . . 5 (𝑥{⟨𝐴, 𝐵⟩}𝑦𝑦 = 𝐴)
1211moimi 2539 . . . 4 (∃*𝑦 𝑦 = 𝐴 → ∃*𝑦 𝑥{⟨𝐴, 𝐵⟩}𝑦)
132, 12ax-mp 5 . . 3 ∃*𝑦 𝑥{⟨𝐴, 𝐵⟩}𝑦
1413ax-gen 1795 . 2 𝑥∃*𝑦 𝑥{⟨𝐴, 𝐵⟩}𝑦
15 dffun6 6527 . 2 (Fun {⟨𝐴, 𝐵⟩} ↔ (Rel {⟨𝐴, 𝐵⟩} ∧ ∀𝑥∃*𝑦 𝑥{⟨𝐴, 𝐵⟩}𝑦))
161, 14, 15mpbir2an 711 1 Fun {⟨𝐴, 𝐵⟩}
Colors of variables: wff setvar class
Syntax hints:  wal 1538   = wceq 1540  wcel 2109  ∃*wmo 2532  {csn 4592  cop 4598   class class class wbr 5110  ccnv 5640  Rel wrel 5646  Fun wfun 6508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2534  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-fun 6516
This theorem is referenced by:  funsng  6570  funcnvpr  6581  funcnvtp  6582  funcnvs1  14885  0spth  30062  funen1cnv  35085
  Copyright terms: Public domain W3C validator