| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcnvsn | Structured version Visualization version GIF version | ||
| Description: The converse singleton of an ordered pair is a function. This is equivalent to funsn 6530 via cnvsn 6170, but stating it this way allows to skip the sethood assumptions on 𝐴 and 𝐵. (Contributed by NM, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| funcnvsn | ⊢ Fun ◡{〈𝐴, 𝐵〉} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 6050 | . 2 ⊢ Rel ◡{〈𝐴, 𝐵〉} | |
| 2 | moeq 3664 | . . . 4 ⊢ ∃*𝑦 𝑦 = 𝐴 | |
| 3 | vex 3438 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 4 | vex 3438 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
| 5 | 3, 4 | brcnv 5820 | . . . . . . 7 ⊢ (𝑥◡{〈𝐴, 𝐵〉}𝑦 ↔ 𝑦{〈𝐴, 𝐵〉}𝑥) |
| 6 | df-br 5090 | . . . . . . 7 ⊢ (𝑦{〈𝐴, 𝐵〉}𝑥 ↔ 〈𝑦, 𝑥〉 ∈ {〈𝐴, 𝐵〉}) | |
| 7 | 5, 6 | bitri 275 | . . . . . 6 ⊢ (𝑥◡{〈𝐴, 𝐵〉}𝑦 ↔ 〈𝑦, 𝑥〉 ∈ {〈𝐴, 𝐵〉}) |
| 8 | elsni 4591 | . . . . . . 7 ⊢ (〈𝑦, 𝑥〉 ∈ {〈𝐴, 𝐵〉} → 〈𝑦, 𝑥〉 = 〈𝐴, 𝐵〉) | |
| 9 | 4, 3 | opth1 5413 | . . . . . . 7 ⊢ (〈𝑦, 𝑥〉 = 〈𝐴, 𝐵〉 → 𝑦 = 𝐴) |
| 10 | 8, 9 | syl 17 | . . . . . 6 ⊢ (〈𝑦, 𝑥〉 ∈ {〈𝐴, 𝐵〉} → 𝑦 = 𝐴) |
| 11 | 7, 10 | sylbi 217 | . . . . 5 ⊢ (𝑥◡{〈𝐴, 𝐵〉}𝑦 → 𝑦 = 𝐴) |
| 12 | 11 | moimi 2539 | . . . 4 ⊢ (∃*𝑦 𝑦 = 𝐴 → ∃*𝑦 𝑥◡{〈𝐴, 𝐵〉}𝑦) |
| 13 | 2, 12 | ax-mp 5 | . . 3 ⊢ ∃*𝑦 𝑥◡{〈𝐴, 𝐵〉}𝑦 |
| 14 | 13 | ax-gen 1796 | . 2 ⊢ ∀𝑥∃*𝑦 𝑥◡{〈𝐴, 𝐵〉}𝑦 |
| 15 | dffun6 6488 | . 2 ⊢ (Fun ◡{〈𝐴, 𝐵〉} ↔ (Rel ◡{〈𝐴, 𝐵〉} ∧ ∀𝑥∃*𝑦 𝑥◡{〈𝐴, 𝐵〉}𝑦)) | |
| 16 | 1, 14, 15 | mpbir2an 711 | 1 ⊢ Fun ◡{〈𝐴, 𝐵〉} |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wal 1539 = wceq 1541 ∈ wcel 2110 ∃*wmo 2532 {csn 4574 〈cop 4580 class class class wbr 5089 ◡ccnv 5613 Rel wrel 5619 Fun wfun 6471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-fun 6479 |
| This theorem is referenced by: funsng 6528 funcnvpr 6539 funcnvtp 6540 funcnvs1 14811 0spth 30096 funen1cnv 35090 |
| Copyright terms: Public domain | W3C validator |