| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcnvsn | Structured version Visualization version GIF version | ||
| Description: The converse singleton of an ordered pair is a function. This is equivalent to funsn 6594 via cnvsn 6220, but stating it this way allows to skip the sethood assumptions on 𝐴 and 𝐵. (Contributed by NM, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| funcnvsn | ⊢ Fun ◡{〈𝐴, 𝐵〉} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 6096 | . 2 ⊢ Rel ◡{〈𝐴, 𝐵〉} | |
| 2 | moeq 3695 | . . . 4 ⊢ ∃*𝑦 𝑦 = 𝐴 | |
| 3 | vex 3468 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 4 | vex 3468 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
| 5 | 3, 4 | brcnv 5867 | . . . . . . 7 ⊢ (𝑥◡{〈𝐴, 𝐵〉}𝑦 ↔ 𝑦{〈𝐴, 𝐵〉}𝑥) |
| 6 | df-br 5125 | . . . . . . 7 ⊢ (𝑦{〈𝐴, 𝐵〉}𝑥 ↔ 〈𝑦, 𝑥〉 ∈ {〈𝐴, 𝐵〉}) | |
| 7 | 5, 6 | bitri 275 | . . . . . 6 ⊢ (𝑥◡{〈𝐴, 𝐵〉}𝑦 ↔ 〈𝑦, 𝑥〉 ∈ {〈𝐴, 𝐵〉}) |
| 8 | elsni 4623 | . . . . . . 7 ⊢ (〈𝑦, 𝑥〉 ∈ {〈𝐴, 𝐵〉} → 〈𝑦, 𝑥〉 = 〈𝐴, 𝐵〉) | |
| 9 | 4, 3 | opth1 5455 | . . . . . . 7 ⊢ (〈𝑦, 𝑥〉 = 〈𝐴, 𝐵〉 → 𝑦 = 𝐴) |
| 10 | 8, 9 | syl 17 | . . . . . 6 ⊢ (〈𝑦, 𝑥〉 ∈ {〈𝐴, 𝐵〉} → 𝑦 = 𝐴) |
| 11 | 7, 10 | sylbi 217 | . . . . 5 ⊢ (𝑥◡{〈𝐴, 𝐵〉}𝑦 → 𝑦 = 𝐴) |
| 12 | 11 | moimi 2545 | . . . 4 ⊢ (∃*𝑦 𝑦 = 𝐴 → ∃*𝑦 𝑥◡{〈𝐴, 𝐵〉}𝑦) |
| 13 | 2, 12 | ax-mp 5 | . . 3 ⊢ ∃*𝑦 𝑥◡{〈𝐴, 𝐵〉}𝑦 |
| 14 | 13 | ax-gen 1795 | . 2 ⊢ ∀𝑥∃*𝑦 𝑥◡{〈𝐴, 𝐵〉}𝑦 |
| 15 | dffun6 6549 | . 2 ⊢ (Fun ◡{〈𝐴, 𝐵〉} ↔ (Rel ◡{〈𝐴, 𝐵〉} ∧ ∀𝑥∃*𝑦 𝑥◡{〈𝐴, 𝐵〉}𝑦)) | |
| 16 | 1, 14, 15 | mpbir2an 711 | 1 ⊢ Fun ◡{〈𝐴, 𝐵〉} |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wal 1538 = wceq 1540 ∈ wcel 2109 ∃*wmo 2538 {csn 4606 〈cop 4612 class class class wbr 5124 ◡ccnv 5658 Rel wrel 5664 Fun wfun 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2540 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-fun 6538 |
| This theorem is referenced by: funsng 6592 funcnvpr 6603 funcnvtp 6604 funcnvs1 14936 0spth 30112 funen1cnv 35124 |
| Copyright terms: Public domain | W3C validator |