![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcnvsn | Structured version Visualization version GIF version |
Description: The converse singleton of an ordered pair is a function. This is equivalent to funsn 6234 via cnvsn 5916, but stating it this way allows us to skip the sethood assumptions on 𝐴 and 𝐵. (Contributed by NM, 30-Apr-2015.) |
Ref | Expression |
---|---|
funcnvsn | ⊢ Fun ◡{〈𝐴, 𝐵〉} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 5801 | . 2 ⊢ Rel ◡{〈𝐴, 𝐵〉} | |
2 | moeq 3606 | . . . 4 ⊢ ∃*𝑦 𝑦 = 𝐴 | |
3 | vex 3412 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
4 | vex 3412 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
5 | 3, 4 | brcnv 5596 | . . . . . . 7 ⊢ (𝑥◡{〈𝐴, 𝐵〉}𝑦 ↔ 𝑦{〈𝐴, 𝐵〉}𝑥) |
6 | df-br 4924 | . . . . . . 7 ⊢ (𝑦{〈𝐴, 𝐵〉}𝑥 ↔ 〈𝑦, 𝑥〉 ∈ {〈𝐴, 𝐵〉}) | |
7 | 5, 6 | bitri 267 | . . . . . 6 ⊢ (𝑥◡{〈𝐴, 𝐵〉}𝑦 ↔ 〈𝑦, 𝑥〉 ∈ {〈𝐴, 𝐵〉}) |
8 | elsni 4452 | . . . . . . 7 ⊢ (〈𝑦, 𝑥〉 ∈ {〈𝐴, 𝐵〉} → 〈𝑦, 𝑥〉 = 〈𝐴, 𝐵〉) | |
9 | 4, 3 | opth1 5217 | . . . . . . 7 ⊢ (〈𝑦, 𝑥〉 = 〈𝐴, 𝐵〉 → 𝑦 = 𝐴) |
10 | 8, 9 | syl 17 | . . . . . 6 ⊢ (〈𝑦, 𝑥〉 ∈ {〈𝐴, 𝐵〉} → 𝑦 = 𝐴) |
11 | 7, 10 | sylbi 209 | . . . . 5 ⊢ (𝑥◡{〈𝐴, 𝐵〉}𝑦 → 𝑦 = 𝐴) |
12 | 11 | moimi 2550 | . . . 4 ⊢ (∃*𝑦 𝑦 = 𝐴 → ∃*𝑦 𝑥◡{〈𝐴, 𝐵〉}𝑦) |
13 | 2, 12 | ax-mp 5 | . . 3 ⊢ ∃*𝑦 𝑥◡{〈𝐴, 𝐵〉}𝑦 |
14 | 13 | ax-gen 1758 | . 2 ⊢ ∀𝑥∃*𝑦 𝑥◡{〈𝐴, 𝐵〉}𝑦 |
15 | dffun6 6197 | . 2 ⊢ (Fun ◡{〈𝐴, 𝐵〉} ↔ (Rel ◡{〈𝐴, 𝐵〉} ∧ ∀𝑥∃*𝑦 𝑥◡{〈𝐴, 𝐵〉}𝑦)) | |
16 | 1, 14, 15 | mpbir2an 698 | 1 ⊢ Fun ◡{〈𝐴, 𝐵〉} |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1505 = wceq 1507 ∈ wcel 2048 ∃*wmo 2542 {csn 4435 〈cop 4441 class class class wbr 4923 ◡ccnv 5399 Rel wrel 5405 Fun wfun 6176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-sep 5054 ax-nul 5061 ax-pr 5180 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ral 3087 df-rab 3091 df-v 3411 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-br 4924 df-opab 4986 df-id 5305 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-fun 6184 |
This theorem is referenced by: funsng 6232 funcnvpr 6243 funcnvtp 6244 funcnvs1 14126 0spth 27645 |
Copyright terms: Public domain | W3C validator |