MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fusgrvtxfi Structured version   Visualization version   GIF version

Theorem fusgrvtxfi 27684
Description: A finite simple graph has a finite set of vertices. (Contributed by AV, 16-Dec-2020.)
Hypothesis
Ref Expression
isfusgr.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
fusgrvtxfi (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin)

Proof of Theorem fusgrvtxfi
StepHypRef Expression
1 isfusgr.v . . 3 𝑉 = (Vtx‘𝐺)
21isfusgr 27683 . 2 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
32simprbi 497 1 (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2110  cfv 6432  Fincfn 8716  Vtxcvtx 27364  USGraphcusgr 27517  FinUSGraphcfusgr 27681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-iota 6390  df-fv 6440  df-fusgr 27682
This theorem is referenced by:  fusgrfupgrfs  27696  nbfusgrlevtxm1  27742  nbfusgrlevtxm2  27743  nbusgrvtxm1  27744  uvtxnm1nbgr  27769  cusgrm1rusgr  27947  wlksnfi  28268  fusgrhashclwwlkn  28439  clwwlkndivn  28440  fusgreghash2wsp  28698  numclwwlk3lem2  28744  numclwwlk4  28746
  Copyright terms: Public domain W3C validator