Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fusgrvtxfi | Structured version Visualization version GIF version |
Description: A finite simple graph has a finite set of vertices. (Contributed by AV, 16-Dec-2020.) |
Ref | Expression |
---|---|
isfusgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
fusgrvtxfi | ⊢ (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfusgr.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | isfusgr 27685 | . 2 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
3 | 2 | simprbi 497 | 1 ⊢ (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 Fincfn 8733 Vtxcvtx 27366 USGraphcusgr 27519 FinUSGraphcfusgr 27683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-fusgr 27684 |
This theorem is referenced by: fusgrfupgrfs 27698 nbfusgrlevtxm1 27744 nbfusgrlevtxm2 27745 nbusgrvtxm1 27746 uvtxnm1nbgr 27771 cusgrm1rusgr 27949 wlksnfi 28272 fusgrhashclwwlkn 28443 clwwlkndivn 28444 fusgreghash2wsp 28702 numclwwlk3lem2 28748 numclwwlk4 28750 |
Copyright terms: Public domain | W3C validator |