| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fusgrvtxfi | Structured version Visualization version GIF version | ||
| Description: A finite simple graph has a finite set of vertices. (Contributed by AV, 16-Dec-2020.) |
| Ref | Expression |
|---|---|
| isfusgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| fusgrvtxfi | ⊢ (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfusgr.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | isfusgr 29263 | . 2 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
| 3 | 2 | simprbi 496 | 1 ⊢ (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6482 Fincfn 8872 Vtxcvtx 28941 USGraphcusgr 29094 FinUSGraphcfusgr 29261 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-fusgr 29262 |
| This theorem is referenced by: fusgrfupgrfs 29276 nbfusgrlevtxm1 29322 nbfusgrlevtxm2 29323 nbusgrvtxm1 29324 uvtxnm1nbgr 29349 cusgrm1rusgr 29528 wlksnfi 29852 fusgrhashclwwlkn 30023 clwwlkndivn 30024 fusgreghash2wsp 30282 numclwwlk3lem2 30328 numclwwlk4 30330 |
| Copyright terms: Public domain | W3C validator |