| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fusgrvtxfi | Structured version Visualization version GIF version | ||
| Description: A finite simple graph has a finite set of vertices. (Contributed by AV, 16-Dec-2020.) |
| Ref | Expression |
|---|---|
| isfusgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| fusgrvtxfi | ⊢ (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfusgr.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | isfusgr 29298 | . 2 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
| 3 | 2 | simprbi 496 | 1 ⊢ (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 Fincfn 8895 Vtxcvtx 28976 USGraphcusgr 29129 FinUSGraphcfusgr 29296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-fusgr 29297 |
| This theorem is referenced by: fusgrfupgrfs 29311 nbfusgrlevtxm1 29357 nbfusgrlevtxm2 29358 nbusgrvtxm1 29359 uvtxnm1nbgr 29384 cusgrm1rusgr 29563 wlksnfi 29887 fusgrhashclwwlkn 30058 clwwlkndivn 30059 fusgreghash2wsp 30317 numclwwlk3lem2 30363 numclwwlk4 30365 |
| Copyright terms: Public domain | W3C validator |