![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fusgrvtxfi | Structured version Visualization version GIF version |
Description: A finite simple graph has a finite set of vertices. (Contributed by AV, 16-Dec-2020.) |
Ref | Expression |
---|---|
isfusgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
fusgrvtxfi | ⊢ (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfusgr.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | isfusgr 29350 | . 2 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
3 | 2 | simprbi 496 | 1 ⊢ (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 Fincfn 8984 Vtxcvtx 29028 USGraphcusgr 29181 FinUSGraphcfusgr 29348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-fusgr 29349 |
This theorem is referenced by: fusgrfupgrfs 29363 nbfusgrlevtxm1 29409 nbfusgrlevtxm2 29410 nbusgrvtxm1 29411 uvtxnm1nbgr 29436 cusgrm1rusgr 29615 wlksnfi 29937 fusgrhashclwwlkn 30108 clwwlkndivn 30109 fusgreghash2wsp 30367 numclwwlk3lem2 30413 numclwwlk4 30415 |
Copyright terms: Public domain | W3C validator |