MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fusgrvtxfi Structured version   Visualization version   GIF version

Theorem fusgrvtxfi 29297
Description: A finite simple graph has a finite set of vertices. (Contributed by AV, 16-Dec-2020.)
Hypothesis
Ref Expression
isfusgr.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
fusgrvtxfi (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin)

Proof of Theorem fusgrvtxfi
StepHypRef Expression
1 isfusgr.v . . 3 𝑉 = (Vtx‘𝐺)
21isfusgr 29296 . 2 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
32simprbi 496 1 (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cfv 6481  Fincfn 8869  Vtxcvtx 28974  USGraphcusgr 29127  FinUSGraphcfusgr 29294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-iota 6437  df-fv 6489  df-fusgr 29295
This theorem is referenced by:  fusgrfupgrfs  29309  nbfusgrlevtxm1  29355  nbfusgrlevtxm2  29356  nbusgrvtxm1  29357  uvtxnm1nbgr  29382  cusgrm1rusgr  29561  wlksnfi  29885  fusgrhashclwwlkn  30059  clwwlkndivn  30060  fusgreghash2wsp  30318  numclwwlk3lem2  30364  numclwwlk4  30366
  Copyright terms: Public domain W3C validator