| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fusgrvtxfi | Structured version Visualization version GIF version | ||
| Description: A finite simple graph has a finite set of vertices. (Contributed by AV, 16-Dec-2020.) |
| Ref | Expression |
|---|---|
| isfusgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| fusgrvtxfi | ⊢ (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfusgr.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | isfusgr 29296 | . 2 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
| 3 | 2 | simprbi 496 | 1 ⊢ (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 Fincfn 8869 Vtxcvtx 28974 USGraphcusgr 29127 FinUSGraphcfusgr 29294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-fusgr 29295 |
| This theorem is referenced by: fusgrfupgrfs 29309 nbfusgrlevtxm1 29355 nbfusgrlevtxm2 29356 nbusgrvtxm1 29357 uvtxnm1nbgr 29382 cusgrm1rusgr 29561 wlksnfi 29885 fusgrhashclwwlkn 30059 clwwlkndivn 30060 fusgreghash2wsp 30318 numclwwlk3lem2 30364 numclwwlk4 30366 |
| Copyright terms: Public domain | W3C validator |