![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fusgrvtxfi | Structured version Visualization version GIF version |
Description: A finite simple graph has a finite set of vertices. (Contributed by AV, 16-Dec-2020.) |
Ref | Expression |
---|---|
isfusgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
fusgrvtxfi | ⊢ (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfusgr.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | isfusgr 29353 | . 2 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
3 | 2 | simprbi 496 | 1 ⊢ (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 Fincfn 9003 Vtxcvtx 29031 USGraphcusgr 29184 FinUSGraphcfusgr 29351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-fusgr 29352 |
This theorem is referenced by: fusgrfupgrfs 29366 nbfusgrlevtxm1 29412 nbfusgrlevtxm2 29413 nbusgrvtxm1 29414 uvtxnm1nbgr 29439 cusgrm1rusgr 29618 wlksnfi 29940 fusgrhashclwwlkn 30111 clwwlkndivn 30112 fusgreghash2wsp 30370 numclwwlk3lem2 30416 numclwwlk4 30418 |
Copyright terms: Public domain | W3C validator |