MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fusgrvtxfi Structured version   Visualization version   GIF version

Theorem fusgrvtxfi 29253
Description: A finite simple graph has a finite set of vertices. (Contributed by AV, 16-Dec-2020.)
Hypothesis
Ref Expression
isfusgr.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
fusgrvtxfi (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin)

Proof of Theorem fusgrvtxfi
StepHypRef Expression
1 isfusgr.v . . 3 𝑉 = (Vtx‘𝐺)
21isfusgr 29252 . 2 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
32simprbi 496 1 (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6514  Fincfn 8921  Vtxcvtx 28930  USGraphcusgr 29083  FinUSGraphcfusgr 29250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-fusgr 29251
This theorem is referenced by:  fusgrfupgrfs  29265  nbfusgrlevtxm1  29311  nbfusgrlevtxm2  29312  nbusgrvtxm1  29313  uvtxnm1nbgr  29338  cusgrm1rusgr  29517  wlksnfi  29844  fusgrhashclwwlkn  30015  clwwlkndivn  30016  fusgreghash2wsp  30274  numclwwlk3lem2  30320  numclwwlk4  30322
  Copyright terms: Public domain W3C validator