| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cusgrm1rusgr | Structured version Visualization version GIF version | ||
| Description: A finite simple graph with n vertices is complete iff it is (n-1)-regular. Hint: If the definition of RegGraph was allowed for 𝑘 ∈ ℤ, then the assumption 𝑉 ≠ ∅ could be removed. (Contributed by Alexander van der Vekens, 14-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
| Ref | Expression |
|---|---|
| cusgrrusgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| cusgrm1rusgr | ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (𝐺 ∈ ComplUSGraph ↔ 𝐺 RegUSGraph ((♯‘𝑉) − 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . 4 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ 𝐺 ∈ ComplUSGraph) → 𝐺 ∈ ComplUSGraph) | |
| 2 | cusgrrusgr.v | . . . . . . 7 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | 2 | fusgrvtxfi 29308 | . . . . . 6 ⊢ (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin) |
| 4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → 𝑉 ∈ Fin) |
| 5 | 4 | adantr 480 | . . . 4 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ 𝐺 ∈ ComplUSGraph) → 𝑉 ∈ Fin) |
| 6 | simpr 484 | . . . . 5 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → 𝑉 ≠ ∅) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ 𝐺 ∈ ComplUSGraph) → 𝑉 ≠ ∅) |
| 8 | 2 | cusgrrusgr 29571 | . . . 4 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝐺 RegUSGraph ((♯‘𝑉) − 1)) |
| 9 | 1, 5, 7, 8 | syl3anc 1373 | . . 3 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ 𝐺 ∈ ComplUSGraph) → 𝐺 RegUSGraph ((♯‘𝑉) − 1)) |
| 10 | 9 | ex 412 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (𝐺 ∈ ComplUSGraph → 𝐺 RegUSGraph ((♯‘𝑉) − 1))) |
| 11 | eqid 2733 | . . . . 5 ⊢ (VtxDeg‘𝐺) = (VtxDeg‘𝐺) | |
| 12 | 2, 11 | rusgrprop0 29557 | . . . 4 ⊢ (𝐺 RegUSGraph ((♯‘𝑉) − 1) → (𝐺 ∈ USGraph ∧ ((♯‘𝑉) − 1) ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1))) |
| 13 | 12 | simp3d 1144 | . . 3 ⊢ (𝐺 RegUSGraph ((♯‘𝑉) − 1) → ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)) |
| 14 | 2 | vdiscusgr 29521 | . . . 4 ⊢ (𝐺 ∈ FinUSGraph → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1) → 𝐺 ∈ ComplUSGraph)) |
| 15 | 14 | adantr 480 | . . 3 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1) → 𝐺 ∈ ComplUSGraph)) |
| 16 | 13, 15 | syl5 34 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (𝐺 RegUSGraph ((♯‘𝑉) − 1) → 𝐺 ∈ ComplUSGraph)) |
| 17 | 10, 16 | impbid 212 | 1 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (𝐺 ∈ ComplUSGraph ↔ 𝐺 RegUSGraph ((♯‘𝑉) − 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2930 ∀wral 3049 ∅c0 4284 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 Fincfn 8878 1c1 11017 − cmin 11354 ℕ0*cxnn0 12464 ♯chash 14247 Vtxcvtx 28985 USGraphcusgr 29138 FinUSGraphcfusgr 29305 ComplUSGraphccusgr 29399 VtxDegcvtxdg 29455 RegUSGraph crusgr 29546 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-oadd 8398 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-dju 9804 df-card 9842 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-2 12198 df-n0 12392 df-xnn0 12465 df-z 12479 df-uz 12743 df-xadd 13022 df-fz 13418 df-hash 14248 df-edg 29037 df-uhgr 29047 df-ushgr 29048 df-upgr 29071 df-umgr 29072 df-uspgr 29139 df-usgr 29140 df-fusgr 29306 df-nbgr 29322 df-uvtx 29375 df-cplgr 29400 df-cusgr 29401 df-vtxdg 29456 df-rgr 29547 df-rusgr 29548 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |