MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrm1rusgr Structured version   Visualization version   GIF version

Theorem cusgrm1rusgr 29618
Description: A finite simple graph with n vertices is complete iff it is (n-1)-regular. Hint: If the definition of RegGraph was allowed for 𝑘 ∈ ℤ, then the assumption 𝑉 ≠ ∅ could be removed. (Contributed by Alexander van der Vekens, 14-Jul-2018.) (Revised by AV, 26-Dec-2020.)
Hypothesis
Ref Expression
cusgrrusgr.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
cusgrm1rusgr ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (𝐺 ∈ ComplUSGraph ↔ 𝐺 RegUSGraph ((♯‘𝑉) − 1)))

Proof of Theorem cusgrm1rusgr
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ 𝐺 ∈ ComplUSGraph) → 𝐺 ∈ ComplUSGraph)
2 cusgrrusgr.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
32fusgrvtxfi 29354 . . . . . 6 (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin)
43adantr 480 . . . . 5 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → 𝑉 ∈ Fin)
54adantr 480 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ 𝐺 ∈ ComplUSGraph) → 𝑉 ∈ Fin)
6 simpr 484 . . . . 5 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → 𝑉 ≠ ∅)
76adantr 480 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ 𝐺 ∈ ComplUSGraph) → 𝑉 ≠ ∅)
82cusgrrusgr 29617 . . . 4 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝐺 RegUSGraph ((♯‘𝑉) − 1))
91, 5, 7, 8syl3anc 1371 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ 𝐺 ∈ ComplUSGraph) → 𝐺 RegUSGraph ((♯‘𝑉) − 1))
109ex 412 . 2 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (𝐺 ∈ ComplUSGraph → 𝐺 RegUSGraph ((♯‘𝑉) − 1)))
11 eqid 2740 . . . . 5 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
122, 11rusgrprop0 29603 . . . 4 (𝐺 RegUSGraph ((♯‘𝑉) − 1) → (𝐺 ∈ USGraph ∧ ((♯‘𝑉) − 1) ∈ ℕ0* ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)))
1312simp3d 1144 . . 3 (𝐺 RegUSGraph ((♯‘𝑉) − 1) → ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1))
142vdiscusgr 29567 . . . 4 (𝐺 ∈ FinUSGraph → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1) → 𝐺 ∈ ComplUSGraph))
1514adantr 480 . . 3 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1) → 𝐺 ∈ ComplUSGraph))
1613, 15syl5 34 . 2 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (𝐺 RegUSGraph ((♯‘𝑉) − 1) → 𝐺 ∈ ComplUSGraph))
1710, 16impbid 212 1 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (𝐺 ∈ ComplUSGraph ↔ 𝐺 RegUSGraph ((♯‘𝑉) − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  c0 4352   class class class wbr 5166  cfv 6573  (class class class)co 7448  Fincfn 9003  1c1 11185  cmin 11520  0*cxnn0 12625  chash 14379  Vtxcvtx 29031  USGraphcusgr 29184  FinUSGraphcfusgr 29351  ComplUSGraphccusgr 29445  VtxDegcvtxdg 29501   RegUSGraph crusgr 29592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-xadd 13176  df-fz 13568  df-hash 14380  df-edg 29083  df-uhgr 29093  df-ushgr 29094  df-upgr 29117  df-umgr 29118  df-uspgr 29185  df-usgr 29186  df-fusgr 29352  df-nbgr 29368  df-uvtx 29421  df-cplgr 29446  df-cusgr 29447  df-vtxdg 29502  df-rgr 29593  df-rusgr 29594
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator