![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cusgrm1rusgr | Structured version Visualization version GIF version |
Description: A finite simple graph with n vertices is complete iff it is (n-1)-regular. Hint: If the definition of RegGraph was allowed for 𝑘 ∈ ℤ, then the assumption 𝑉 ≠ ∅ could be removed. (Contributed by Alexander van der Vekens, 14-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
Ref | Expression |
---|---|
cusgrrusgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
cusgrm1rusgr | ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (𝐺 ∈ ComplUSGraph ↔ 𝐺RegUSGraph((♯‘𝑉) − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 479 | . . . 4 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ 𝐺 ∈ ComplUSGraph) → 𝐺 ∈ ComplUSGraph) | |
2 | cusgrrusgr.v | . . . . . . 7 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | 2 | fusgrvtxfi 26683 | . . . . . 6 ⊢ (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin) |
4 | 3 | adantr 474 | . . . . 5 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → 𝑉 ∈ Fin) |
5 | 4 | adantr 474 | . . . 4 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ 𝐺 ∈ ComplUSGraph) → 𝑉 ∈ Fin) |
6 | simpr 479 | . . . . 5 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → 𝑉 ≠ ∅) | |
7 | 6 | adantr 474 | . . . 4 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ 𝐺 ∈ ComplUSGraph) → 𝑉 ≠ ∅) |
8 | 2 | cusgrrusgr 26946 | . . . 4 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝐺RegUSGraph((♯‘𝑉) − 1)) |
9 | 1, 5, 7, 8 | syl3anc 1439 | . . 3 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ 𝐺 ∈ ComplUSGraph) → 𝐺RegUSGraph((♯‘𝑉) − 1)) |
10 | 9 | ex 403 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (𝐺 ∈ ComplUSGraph → 𝐺RegUSGraph((♯‘𝑉) − 1))) |
11 | eqid 2778 | . . . . 5 ⊢ (VtxDeg‘𝐺) = (VtxDeg‘𝐺) | |
12 | 2, 11 | rusgrprop0 26932 | . . . 4 ⊢ (𝐺RegUSGraph((♯‘𝑉) − 1) → (𝐺 ∈ USGraph ∧ ((♯‘𝑉) − 1) ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1))) |
13 | 12 | simp3d 1135 | . . 3 ⊢ (𝐺RegUSGraph((♯‘𝑉) − 1) → ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)) |
14 | 2 | vdiscusgr 26896 | . . . 4 ⊢ (𝐺 ∈ FinUSGraph → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1) → 𝐺 ∈ ComplUSGraph)) |
15 | 14 | adantr 474 | . . 3 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1) → 𝐺 ∈ ComplUSGraph)) |
16 | 13, 15 | syl5 34 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (𝐺RegUSGraph((♯‘𝑉) − 1) → 𝐺 ∈ ComplUSGraph)) |
17 | 10, 16 | impbid 204 | 1 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (𝐺 ∈ ComplUSGraph ↔ 𝐺RegUSGraph((♯‘𝑉) − 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ≠ wne 2969 ∀wral 3090 ∅c0 4141 class class class wbr 4888 ‘cfv 6137 (class class class)co 6924 Fincfn 8243 1c1 10275 − cmin 10608 ℕ0*cxnn0 11719 ♯chash 13441 Vtxcvtx 26361 USGraphcusgr 26515 FinUSGraphcfusgr 26680 ComplUSGraphccusgr 26775 VtxDegcvtxdg 26830 RegUSGraphcrusgr 26921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-2o 7846 df-oadd 7849 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-card 9100 df-cda 9327 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-nn 11380 df-2 11443 df-n0 11648 df-xnn0 11720 df-z 11734 df-uz 11998 df-xadd 12263 df-fz 12649 df-hash 13442 df-edg 26413 df-uhgr 26423 df-ushgr 26424 df-upgr 26447 df-umgr 26448 df-uspgr 26516 df-usgr 26517 df-fusgr 26681 df-nbgr 26697 df-uvtx 26751 df-cplgr 26776 df-cusgr 26777 df-vtxdg 26831 df-rgr 26922 df-rusgr 26923 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |