Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrm1rusgr Structured version   Visualization version   GIF version

Theorem cusgrm1rusgr 27370
 Description: A finite simple graph with n vertices is complete iff it is (n-1)-regular. Hint: If the definition of RegGraph was allowed for 𝑘 ∈ ℤ, then the assumption 𝑉 ≠ ∅ could be removed. (Contributed by Alexander van der Vekens, 14-Jul-2018.) (Revised by AV, 26-Dec-2020.)
Hypothesis
Ref Expression
cusgrrusgr.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
cusgrm1rusgr ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (𝐺 ∈ ComplUSGraph ↔ 𝐺 RegUSGraph ((♯‘𝑉) − 1)))

Proof of Theorem cusgrm1rusgr
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simpr 488 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ 𝐺 ∈ ComplUSGraph) → 𝐺 ∈ ComplUSGraph)
2 cusgrrusgr.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
32fusgrvtxfi 27107 . . . . . 6 (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin)
43adantr 484 . . . . 5 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → 𝑉 ∈ Fin)
54adantr 484 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ 𝐺 ∈ ComplUSGraph) → 𝑉 ∈ Fin)
6 simpr 488 . . . . 5 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → 𝑉 ≠ ∅)
76adantr 484 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ 𝐺 ∈ ComplUSGraph) → 𝑉 ≠ ∅)
82cusgrrusgr 27369 . . . 4 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝐺 RegUSGraph ((♯‘𝑉) − 1))
91, 5, 7, 8syl3anc 1368 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ 𝐺 ∈ ComplUSGraph) → 𝐺 RegUSGraph ((♯‘𝑉) − 1))
109ex 416 . 2 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (𝐺 ∈ ComplUSGraph → 𝐺 RegUSGraph ((♯‘𝑉) − 1)))
11 eqid 2822 . . . . 5 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
122, 11rusgrprop0 27355 . . . 4 (𝐺 RegUSGraph ((♯‘𝑉) − 1) → (𝐺 ∈ USGraph ∧ ((♯‘𝑉) − 1) ∈ ℕ0* ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)))
1312simp3d 1141 . . 3 (𝐺 RegUSGraph ((♯‘𝑉) − 1) → ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1))
142vdiscusgr 27319 . . . 4 (𝐺 ∈ FinUSGraph → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1) → 𝐺 ∈ ComplUSGraph))
1514adantr 484 . . 3 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1) → 𝐺 ∈ ComplUSGraph))
1613, 15syl5 34 . 2 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (𝐺 RegUSGraph ((♯‘𝑉) − 1) → 𝐺 ∈ ComplUSGraph))
1710, 16impbid 215 1 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (𝐺 ∈ ComplUSGraph ↔ 𝐺 RegUSGraph ((♯‘𝑉) − 1)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2114   ≠ wne 3011  ∀wral 3130  ∅c0 4265   class class class wbr 5042  ‘cfv 6334  (class class class)co 7140  Fincfn 8496  1c1 10527   − cmin 10859  ℕ0*cxnn0 11955  ♯chash 13686  Vtxcvtx 26787  USGraphcusgr 26940  FinUSGraphcfusgr 27104  ComplUSGraphccusgr 27198  VtxDegcvtxdg 27253   RegUSGraph crusgr 27344 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-dju 9318  df-card 9356  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-xadd 12496  df-fz 12886  df-hash 13687  df-edg 26839  df-uhgr 26849  df-ushgr 26850  df-upgr 26873  df-umgr 26874  df-uspgr 26941  df-usgr 26942  df-fusgr 27105  df-nbgr 27121  df-uvtx 27174  df-cplgr 27199  df-cusgr 27200  df-vtxdg 27254  df-rgr 27345  df-rusgr 27346 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator