| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cusgrm1rusgr | Structured version Visualization version GIF version | ||
| Description: A finite simple graph with n vertices is complete iff it is (n-1)-regular. Hint: If the definition of RegGraph was allowed for 𝑘 ∈ ℤ, then the assumption 𝑉 ≠ ∅ could be removed. (Contributed by Alexander van der Vekens, 14-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
| Ref | Expression |
|---|---|
| cusgrrusgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| cusgrm1rusgr | ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (𝐺 ∈ ComplUSGraph ↔ 𝐺 RegUSGraph ((♯‘𝑉) − 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . 4 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ 𝐺 ∈ ComplUSGraph) → 𝐺 ∈ ComplUSGraph) | |
| 2 | cusgrrusgr.v | . . . . . . 7 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | 2 | fusgrvtxfi 29290 | . . . . . 6 ⊢ (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin) |
| 4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → 𝑉 ∈ Fin) |
| 5 | 4 | adantr 480 | . . . 4 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ 𝐺 ∈ ComplUSGraph) → 𝑉 ∈ Fin) |
| 6 | simpr 484 | . . . . 5 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → 𝑉 ≠ ∅) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ 𝐺 ∈ ComplUSGraph) → 𝑉 ≠ ∅) |
| 8 | 2 | cusgrrusgr 29553 | . . . 4 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝐺 RegUSGraph ((♯‘𝑉) − 1)) |
| 9 | 1, 5, 7, 8 | syl3anc 1373 | . . 3 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ 𝐺 ∈ ComplUSGraph) → 𝐺 RegUSGraph ((♯‘𝑉) − 1)) |
| 10 | 9 | ex 412 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (𝐺 ∈ ComplUSGraph → 𝐺 RegUSGraph ((♯‘𝑉) − 1))) |
| 11 | eqid 2730 | . . . . 5 ⊢ (VtxDeg‘𝐺) = (VtxDeg‘𝐺) | |
| 12 | 2, 11 | rusgrprop0 29539 | . . . 4 ⊢ (𝐺 RegUSGraph ((♯‘𝑉) − 1) → (𝐺 ∈ USGraph ∧ ((♯‘𝑉) − 1) ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1))) |
| 13 | 12 | simp3d 1144 | . . 3 ⊢ (𝐺 RegUSGraph ((♯‘𝑉) − 1) → ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)) |
| 14 | 2 | vdiscusgr 29503 | . . . 4 ⊢ (𝐺 ∈ FinUSGraph → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1) → 𝐺 ∈ ComplUSGraph)) |
| 15 | 14 | adantr 480 | . . 3 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1) → 𝐺 ∈ ComplUSGraph)) |
| 16 | 13, 15 | syl5 34 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (𝐺 RegUSGraph ((♯‘𝑉) − 1) → 𝐺 ∈ ComplUSGraph)) |
| 17 | 10, 16 | impbid 212 | 1 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (𝐺 ∈ ComplUSGraph ↔ 𝐺 RegUSGraph ((♯‘𝑉) − 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ≠ wne 2926 ∀wral 3045 ∅c0 4281 class class class wbr 5089 ‘cfv 6477 (class class class)co 7341 Fincfn 8864 1c1 10999 − cmin 11336 ℕ0*cxnn0 12446 ♯chash 14229 Vtxcvtx 28967 USGraphcusgr 29120 FinUSGraphcfusgr 29287 ComplUSGraphccusgr 29381 VtxDegcvtxdg 29437 RegUSGraph crusgr 29528 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-dju 9786 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-n0 12374 df-xnn0 12447 df-z 12461 df-uz 12725 df-xadd 13004 df-fz 13400 df-hash 14230 df-edg 29019 df-uhgr 29029 df-ushgr 29030 df-upgr 29053 df-umgr 29054 df-uspgr 29121 df-usgr 29122 df-fusgr 29288 df-nbgr 29304 df-uvtx 29357 df-cplgr 29382 df-cusgr 29383 df-vtxdg 29438 df-rgr 29529 df-rusgr 29530 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |