MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlkndivn Structured version   Visualization version   GIF version

Theorem clwwlkndivn 28135
Description: The size of the set of closed walks (defined as words) of length 𝑁 is divisible by 𝑁 if 𝑁 is a prime number. (Contributed by Alexander van der Vekens, 17-Jun-2018.) (Revised by AV, 2-May-2021.)
Assertion
Ref Expression
clwwlkndivn ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝑁 ∥ (♯‘(𝑁 ClWWalksN 𝐺)))

Proof of Theorem clwwlkndivn
Dummy variables 𝑛 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
21fusgrvtxfi 27379 . . . . . 6 (𝐺 ∈ FinUSGraph → (Vtx‘𝐺) ∈ Fin)
32adantr 484 . . . . 5 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (Vtx‘𝐺) ∈ Fin)
4 eqid 2734 . . . . . 6 (𝑁 ClWWalksN 𝐺) = (𝑁 ClWWalksN 𝐺)
5 eqid 2734 . . . . . 6 {⟨𝑡, 𝑢⟩ ∣ (𝑡 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑢 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))} = {⟨𝑡, 𝑢⟩ ∣ (𝑡 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑢 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
64, 5qerclwwlknfi 28128 . . . . 5 ((Vtx‘𝐺) ∈ Fin → ((𝑁 ClWWalksN 𝐺) / {⟨𝑡, 𝑢⟩ ∣ (𝑡 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑢 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}) ∈ Fin)
7 hashcl 13906 . . . . 5 (((𝑁 ClWWalksN 𝐺) / {⟨𝑡, 𝑢⟩ ∣ (𝑡 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑢 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}) ∈ Fin → (♯‘((𝑁 ClWWalksN 𝐺) / {⟨𝑡, 𝑢⟩ ∣ (𝑡 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑢 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))})) ∈ ℕ0)
83, 6, 73syl 18 . . . 4 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (♯‘((𝑁 ClWWalksN 𝐺) / {⟨𝑡, 𝑢⟩ ∣ (𝑡 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑢 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))})) ∈ ℕ0)
98nn0zd 12263 . . 3 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (♯‘((𝑁 ClWWalksN 𝐺) / {⟨𝑡, 𝑢⟩ ∣ (𝑡 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑢 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))})) ∈ ℤ)
10 prmz 16213 . . . 4 (𝑁 ∈ ℙ → 𝑁 ∈ ℤ)
1110adantl 485 . . 3 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℤ)
12 dvdsmul2 15821 . . 3 (((♯‘((𝑁 ClWWalksN 𝐺) / {⟨𝑡, 𝑢⟩ ∣ (𝑡 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑢 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))})) ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∥ ((♯‘((𝑁 ClWWalksN 𝐺) / {⟨𝑡, 𝑢⟩ ∣ (𝑡 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑢 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))})) · 𝑁))
139, 11, 12syl2anc 587 . 2 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝑁 ∥ ((♯‘((𝑁 ClWWalksN 𝐺) / {⟨𝑡, 𝑢⟩ ∣ (𝑡 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑢 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))})) · 𝑁))
144, 5fusgrhashclwwlkn 28134 . 2 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (♯‘(𝑁 ClWWalksN 𝐺)) = ((♯‘((𝑁 ClWWalksN 𝐺) / {⟨𝑡, 𝑢⟩ ∣ (𝑡 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑢 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))})) · 𝑁))
1513, 14breqtrrd 5071 1 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝑁 ∥ (♯‘(𝑁 ClWWalksN 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  wrex 3055   class class class wbr 5043  {copab 5105  cfv 6369  (class class class)co 7202   / cqs 8379  Fincfn 8615  0cc0 10712   · cmul 10717  0cn0 12073  cz 12159  ...cfz 13078  chash 13879   cyclShift ccsh 14336  cdvds 15796  cprime 16209  Vtxcvtx 27059  FinUSGraphcfusgr 27376   ClWWalksN cclwwlkn 28079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-inf2 9245  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-disj 5009  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-se 5499  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-2o 8192  df-oadd 8195  df-er 8380  df-ec 8382  df-qs 8386  df-map 8499  df-pm 8500  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-sup 9047  df-inf 9048  df-oi 9115  df-dju 9500  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-n0 12074  df-xnn0 12146  df-z 12160  df-uz 12422  df-rp 12570  df-ico 12924  df-fz 13079  df-fzo 13222  df-fl 13350  df-mod 13426  df-seq 13558  df-exp 13619  df-hash 13880  df-word 14053  df-lsw 14101  df-concat 14109  df-substr 14189  df-pfx 14219  df-reps 14317  df-csh 14337  df-cj 14645  df-re 14646  df-im 14647  df-sqrt 14781  df-abs 14782  df-clim 15032  df-sum 15233  df-dvds 15797  df-gcd 16035  df-prm 16210  df-phi 16300  df-edg 27111  df-umgr 27146  df-usgr 27214  df-fusgr 27377  df-clwwlk 28037  df-clwwlkn 28080
This theorem is referenced by:  clwlksndivn  28141  numclwwlk8  28447
  Copyright terms: Public domain W3C validator