MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbusgrvtxm1 Structured version   Visualization version   GIF version

Theorem nbusgrvtxm1 27163
Description: If the number of neighbors of a vertex in a finite simple graph is the number of vertices of the graph minus 1, each vertex except the first mentioned vertex is a neighbor of this vertex. (Contributed by Alexander van der Vekens, 14-Jul-2018.) (Revised by AV, 16-Dec-2020.)
Hypothesis
Ref Expression
hashnbusgrnn0.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
nbusgrvtxm1 ((𝐺 ∈ FinUSGraph ∧ 𝑈𝑉) → ((♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1) → ((𝑀𝑉𝑀𝑈) → 𝑀 ∈ (𝐺 NeighbVtx 𝑈))))

Proof of Theorem nbusgrvtxm1
StepHypRef Expression
1 ax-1 6 . . 3 (𝑀 ∈ (𝐺 NeighbVtx 𝑈) → ((𝑀𝑉𝑀𝑈) → 𝑀 ∈ (𝐺 NeighbVtx 𝑈)))
212a1d 26 . 2 (𝑀 ∈ (𝐺 NeighbVtx 𝑈) → ((𝐺 ∈ FinUSGraph ∧ 𝑈𝑉) → ((♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1) → ((𝑀𝑉𝑀𝑈) → 𝑀 ∈ (𝐺 NeighbVtx 𝑈)))))
3 simpr 487 . . . . . . . 8 ((¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑈𝑉)) → (𝐺 ∈ FinUSGraph ∧ 𝑈𝑉))
43adantr 483 . . . . . . 7 (((¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑈𝑉)) ∧ (𝑀𝑉𝑀𝑈)) → (𝐺 ∈ FinUSGraph ∧ 𝑈𝑉))
5 simprl 769 . . . . . . 7 (((¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑈𝑉)) ∧ (𝑀𝑉𝑀𝑈)) → 𝑀𝑉)
6 simpr 487 . . . . . . . 8 ((𝑀𝑉𝑀𝑈) → 𝑀𝑈)
76adantl 484 . . . . . . 7 (((¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑈𝑉)) ∧ (𝑀𝑉𝑀𝑈)) → 𝑀𝑈)
8 df-nel 3126 . . . . . . . . . 10 (𝑀 ∉ (𝐺 NeighbVtx 𝑈) ↔ ¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈))
98biimpri 230 . . . . . . . . 9 𝑀 ∈ (𝐺 NeighbVtx 𝑈) → 𝑀 ∉ (𝐺 NeighbVtx 𝑈))
109adantr 483 . . . . . . . 8 ((¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑈𝑉)) → 𝑀 ∉ (𝐺 NeighbVtx 𝑈))
1110adantr 483 . . . . . . 7 (((¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑈𝑉)) ∧ (𝑀𝑉𝑀𝑈)) → 𝑀 ∉ (𝐺 NeighbVtx 𝑈))
12 hashnbusgrnn0.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
1312nbfusgrlevtxm2 27162 . . . . . . 7 (((𝐺 ∈ FinUSGraph ∧ 𝑈𝑉) ∧ (𝑀𝑉𝑀𝑈𝑀 ∉ (𝐺 NeighbVtx 𝑈))) → (♯‘(𝐺 NeighbVtx 𝑈)) ≤ ((♯‘𝑉) − 2))
144, 5, 7, 11, 13syl13anc 1368 . . . . . 6 (((¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑈𝑉)) ∧ (𝑀𝑉𝑀𝑈)) → (♯‘(𝐺 NeighbVtx 𝑈)) ≤ ((♯‘𝑉) − 2))
15 breq1 5071 . . . . . . . . 9 ((♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1) → ((♯‘(𝐺 NeighbVtx 𝑈)) ≤ ((♯‘𝑉) − 2) ↔ ((♯‘𝑉) − 1) ≤ ((♯‘𝑉) − 2)))
1615adantl 484 . . . . . . . 8 ((((¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑈𝑉)) ∧ (𝑀𝑉𝑀𝑈)) ∧ (♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1)) → ((♯‘(𝐺 NeighbVtx 𝑈)) ≤ ((♯‘𝑉) − 2) ↔ ((♯‘𝑉) − 1) ≤ ((♯‘𝑉) − 2)))
1712fusgrvtxfi 27103 . . . . . . . . . . . 12 (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin)
18 hashcl 13720 . . . . . . . . . . . 12 (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℕ0)
19 nn0re 11909 . . . . . . . . . . . . 13 ((♯‘𝑉) ∈ ℕ0 → (♯‘𝑉) ∈ ℝ)
20 1red 10644 . . . . . . . . . . . . . . 15 ((♯‘𝑉) ∈ ℝ → 1 ∈ ℝ)
21 2re 11714 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
2221a1i 11 . . . . . . . . . . . . . . 15 ((♯‘𝑉) ∈ ℝ → 2 ∈ ℝ)
23 id 22 . . . . . . . . . . . . . . 15 ((♯‘𝑉) ∈ ℝ → (♯‘𝑉) ∈ ℝ)
24 1lt2 11811 . . . . . . . . . . . . . . . 16 1 < 2
2524a1i 11 . . . . . . . . . . . . . . 15 ((♯‘𝑉) ∈ ℝ → 1 < 2)
2620, 22, 23, 25ltsub2dd 11255 . . . . . . . . . . . . . 14 ((♯‘𝑉) ∈ ℝ → ((♯‘𝑉) − 2) < ((♯‘𝑉) − 1))
2723, 22resubcld 11070 . . . . . . . . . . . . . . 15 ((♯‘𝑉) ∈ ℝ → ((♯‘𝑉) − 2) ∈ ℝ)
28 peano2rem 10955 . . . . . . . . . . . . . . 15 ((♯‘𝑉) ∈ ℝ → ((♯‘𝑉) − 1) ∈ ℝ)
2927, 28ltnled 10789 . . . . . . . . . . . . . 14 ((♯‘𝑉) ∈ ℝ → (((♯‘𝑉) − 2) < ((♯‘𝑉) − 1) ↔ ¬ ((♯‘𝑉) − 1) ≤ ((♯‘𝑉) − 2)))
3026, 29mpbid 234 . . . . . . . . . . . . 13 ((♯‘𝑉) ∈ ℝ → ¬ ((♯‘𝑉) − 1) ≤ ((♯‘𝑉) − 2))
3119, 30syl 17 . . . . . . . . . . . 12 ((♯‘𝑉) ∈ ℕ0 → ¬ ((♯‘𝑉) − 1) ≤ ((♯‘𝑉) − 2))
3217, 18, 313syl 18 . . . . . . . . . . 11 (𝐺 ∈ FinUSGraph → ¬ ((♯‘𝑉) − 1) ≤ ((♯‘𝑉) − 2))
3332pm2.21d 121 . . . . . . . . . 10 (𝐺 ∈ FinUSGraph → (((♯‘𝑉) − 1) ≤ ((♯‘𝑉) − 2) → 𝑀 ∈ (𝐺 NeighbVtx 𝑈)))
3433adantr 483 . . . . . . . . 9 ((𝐺 ∈ FinUSGraph ∧ 𝑈𝑉) → (((♯‘𝑉) − 1) ≤ ((♯‘𝑉) − 2) → 𝑀 ∈ (𝐺 NeighbVtx 𝑈)))
3534ad3antlr 729 . . . . . . . 8 ((((¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑈𝑉)) ∧ (𝑀𝑉𝑀𝑈)) ∧ (♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1)) → (((♯‘𝑉) − 1) ≤ ((♯‘𝑉) − 2) → 𝑀 ∈ (𝐺 NeighbVtx 𝑈)))
3616, 35sylbid 242 . . . . . . 7 ((((¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑈𝑉)) ∧ (𝑀𝑉𝑀𝑈)) ∧ (♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1)) → ((♯‘(𝐺 NeighbVtx 𝑈)) ≤ ((♯‘𝑉) − 2) → 𝑀 ∈ (𝐺 NeighbVtx 𝑈)))
3736ex 415 . . . . . 6 (((¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑈𝑉)) ∧ (𝑀𝑉𝑀𝑈)) → ((♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1) → ((♯‘(𝐺 NeighbVtx 𝑈)) ≤ ((♯‘𝑉) − 2) → 𝑀 ∈ (𝐺 NeighbVtx 𝑈))))
3814, 37mpid 44 . . . . 5 (((¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑈𝑉)) ∧ (𝑀𝑉𝑀𝑈)) → ((♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1) → 𝑀 ∈ (𝐺 NeighbVtx 𝑈)))
3938ex 415 . . . 4 ((¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑈𝑉)) → ((𝑀𝑉𝑀𝑈) → ((♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1) → 𝑀 ∈ (𝐺 NeighbVtx 𝑈))))
4039com23 86 . . 3 ((¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑈𝑉)) → ((♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1) → ((𝑀𝑉𝑀𝑈) → 𝑀 ∈ (𝐺 NeighbVtx 𝑈))))
4140ex 415 . 2 𝑀 ∈ (𝐺 NeighbVtx 𝑈) → ((𝐺 ∈ FinUSGraph ∧ 𝑈𝑉) → ((♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1) → ((𝑀𝑉𝑀𝑈) → 𝑀 ∈ (𝐺 NeighbVtx 𝑈)))))
422, 41pm2.61i 184 1 ((𝐺 ∈ FinUSGraph ∧ 𝑈𝑉) → ((♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1) → ((𝑀𝑉𝑀𝑈) → 𝑀 ∈ (𝐺 NeighbVtx 𝑈))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018  wnel 3125   class class class wbr 5068  cfv 6357  (class class class)co 7158  Fincfn 8511  cr 10538  1c1 10540   < clt 10677  cle 10678  cmin 10872  2c2 11695  0cn0 11900  chash 13693  Vtxcvtx 26783  FinUSGraphcfusgr 27100   NeighbVtx cnbgr 27116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-fz 12896  df-hash 13694  df-fusgr 27101  df-nbgr 27117
This theorem is referenced by:  nbusgrvtxm1uvtx  27189
  Copyright terms: Public domain W3C validator