MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbusgrvtxm1 Structured version   Visualization version   GIF version

Theorem nbusgrvtxm1 28903
Description: If the number of neighbors of a vertex in a finite simple graph is the number of vertices of the graph minus 1, each vertex except the first mentioned vertex is a neighbor of this vertex. (Contributed by Alexander van der Vekens, 14-Jul-2018.) (Revised by AV, 16-Dec-2020.)
Hypothesis
Ref Expression
hashnbusgrnn0.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
nbusgrvtxm1 ((𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉) → ((♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1) → ((𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈) → 𝑀 ∈ (𝐺 NeighbVtx 𝑈))))

Proof of Theorem nbusgrvtxm1
StepHypRef Expression
1 ax-1 6 . . 3 (𝑀 ∈ (𝐺 NeighbVtx 𝑈) → ((𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈) → 𝑀 ∈ (𝐺 NeighbVtx 𝑈)))
212a1d 26 . 2 (𝑀 ∈ (𝐺 NeighbVtx 𝑈) → ((𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉) → ((♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1) → ((𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈) → 𝑀 ∈ (𝐺 NeighbVtx 𝑈)))))
3 simpr 483 . . . . . . . 8 ((¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉)) → (𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉))
43adantr 479 . . . . . . 7 (((¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉)) ∧ (𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈)) → (𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉))
5 simprl 767 . . . . . . 7 (((¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉)) ∧ (𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈)) → 𝑀 ∈ 𝑉)
6 simpr 483 . . . . . . . 8 ((𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈) → 𝑀 ≠ 𝑈)
76adantl 480 . . . . . . 7 (((¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉)) ∧ (𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈)) → 𝑀 ≠ 𝑈)
8 df-nel 3045 . . . . . . . . . 10 (𝑀 ∉ (𝐺 NeighbVtx 𝑈) ↔ ¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈))
98biimpri 227 . . . . . . . . 9 (¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈) → 𝑀 ∉ (𝐺 NeighbVtx 𝑈))
109adantr 479 . . . . . . . 8 ((¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉)) → 𝑀 ∉ (𝐺 NeighbVtx 𝑈))
1110adantr 479 . . . . . . 7 (((¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉)) ∧ (𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈)) → 𝑀 ∉ (𝐺 NeighbVtx 𝑈))
12 hashnbusgrnn0.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
1312nbfusgrlevtxm2 28902 . . . . . . 7 (((𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉) ∧ (𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ∧ 𝑀 ∉ (𝐺 NeighbVtx 𝑈))) → (♯‘(𝐺 NeighbVtx 𝑈)) ≀ ((♯‘𝑉) − 2))
144, 5, 7, 11, 13syl13anc 1370 . . . . . 6 (((¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉)) ∧ (𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈)) → (♯‘(𝐺 NeighbVtx 𝑈)) ≀ ((♯‘𝑉) − 2))
15 breq1 5150 . . . . . . . . 9 ((♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1) → ((♯‘(𝐺 NeighbVtx 𝑈)) ≀ ((♯‘𝑉) − 2) ↔ ((♯‘𝑉) − 1) ≀ ((♯‘𝑉) − 2)))
1615adantl 480 . . . . . . . 8 ((((¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉)) ∧ (𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈)) ∧ (♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1)) → ((♯‘(𝐺 NeighbVtx 𝑈)) ≀ ((♯‘𝑉) − 2) ↔ ((♯‘𝑉) − 1) ≀ ((♯‘𝑉) − 2)))
1712fusgrvtxfi 28843 . . . . . . . . . . . 12 (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin)
18 hashcl 14320 . . . . . . . . . . . 12 (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℕ0)
19 nn0re 12485 . . . . . . . . . . . . 13 ((♯‘𝑉) ∈ ℕ0 → (♯‘𝑉) ∈ ℝ)
20 1red 11219 . . . . . . . . . . . . . . 15 ((♯‘𝑉) ∈ ℝ → 1 ∈ ℝ)
21 2re 12290 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
2221a1i 11 . . . . . . . . . . . . . . 15 ((♯‘𝑉) ∈ ℝ → 2 ∈ ℝ)
23 id 22 . . . . . . . . . . . . . . 15 ((♯‘𝑉) ∈ ℝ → (♯‘𝑉) ∈ ℝ)
24 1lt2 12387 . . . . . . . . . . . . . . . 16 1 < 2
2524a1i 11 . . . . . . . . . . . . . . 15 ((♯‘𝑉) ∈ ℝ → 1 < 2)
2620, 22, 23, 25ltsub2dd 11831 . . . . . . . . . . . . . 14 ((♯‘𝑉) ∈ ℝ → ((♯‘𝑉) − 2) < ((♯‘𝑉) − 1))
2723, 22resubcld 11646 . . . . . . . . . . . . . . 15 ((♯‘𝑉) ∈ ℝ → ((♯‘𝑉) − 2) ∈ ℝ)
28 peano2rem 11531 . . . . . . . . . . . . . . 15 ((♯‘𝑉) ∈ ℝ → ((♯‘𝑉) − 1) ∈ ℝ)
2927, 28ltnled 11365 . . . . . . . . . . . . . 14 ((♯‘𝑉) ∈ ℝ → (((♯‘𝑉) − 2) < ((♯‘𝑉) − 1) ↔ ¬ ((♯‘𝑉) − 1) ≀ ((♯‘𝑉) − 2)))
3026, 29mpbid 231 . . . . . . . . . . . . 13 ((♯‘𝑉) ∈ ℝ → ¬ ((♯‘𝑉) − 1) ≀ ((♯‘𝑉) − 2))
3119, 30syl 17 . . . . . . . . . . . 12 ((♯‘𝑉) ∈ ℕ0 → ¬ ((♯‘𝑉) − 1) ≀ ((♯‘𝑉) − 2))
3217, 18, 313syl 18 . . . . . . . . . . 11 (𝐺 ∈ FinUSGraph → ¬ ((♯‘𝑉) − 1) ≀ ((♯‘𝑉) − 2))
3332pm2.21d 121 . . . . . . . . . 10 (𝐺 ∈ FinUSGraph → (((♯‘𝑉) − 1) ≀ ((♯‘𝑉) − 2) → 𝑀 ∈ (𝐺 NeighbVtx 𝑈)))
3433adantr 479 . . . . . . . . 9 ((𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉) → (((♯‘𝑉) − 1) ≀ ((♯‘𝑉) − 2) → 𝑀 ∈ (𝐺 NeighbVtx 𝑈)))
3534ad3antlr 727 . . . . . . . 8 ((((¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉)) ∧ (𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈)) ∧ (♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1)) → (((♯‘𝑉) − 1) ≀ ((♯‘𝑉) − 2) → 𝑀 ∈ (𝐺 NeighbVtx 𝑈)))
3616, 35sylbid 239 . . . . . . 7 ((((¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉)) ∧ (𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈)) ∧ (♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1)) → ((♯‘(𝐺 NeighbVtx 𝑈)) ≀ ((♯‘𝑉) − 2) → 𝑀 ∈ (𝐺 NeighbVtx 𝑈)))
3736ex 411 . . . . . 6 (((¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉)) ∧ (𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈)) → ((♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1) → ((♯‘(𝐺 NeighbVtx 𝑈)) ≀ ((♯‘𝑉) − 2) → 𝑀 ∈ (𝐺 NeighbVtx 𝑈))))
3814, 37mpid 44 . . . . 5 (((¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉)) ∧ (𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈)) → ((♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1) → 𝑀 ∈ (𝐺 NeighbVtx 𝑈)))
3938ex 411 . . . 4 ((¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉)) → ((𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈) → ((♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1) → 𝑀 ∈ (𝐺 NeighbVtx 𝑈))))
4039com23 86 . . 3 ((¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉)) → ((♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1) → ((𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈) → 𝑀 ∈ (𝐺 NeighbVtx 𝑈))))
4140ex 411 . 2 (¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈) → ((𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉) → ((♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1) → ((𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈) → 𝑀 ∈ (𝐺 NeighbVtx 𝑈)))))
422, 41pm2.61i 182 1 ((𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉) → ((♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1) → ((𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈) → 𝑀 ∈ (𝐺 NeighbVtx 𝑈))))
Colors of variables: wff setvar class
Syntax hints:  Â¬ wn 3   → wi 4   ↔ wb 205   ∧ wa 394   = wceq 1539   ∈ wcel 2104   ≠ wne 2938   ∉ wnel 3044   class class class wbr 5147  â€˜cfv 6542  (class class class)co 7411  Fincfn 8941  â„cr 11111  1c1 11113   < clt 11252   ≀ cle 11253   − cmin 11448  2c2 12271  â„•0cn0 12476  â™¯chash 14294  Vtxcvtx 28523  FinUSGraphcfusgr 28840   NeighbVtx cnbgr 28856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-oadd 8472  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-dju 9898  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-n0 12477  df-xnn0 12549  df-z 12563  df-uz 12827  df-fz 13489  df-hash 14295  df-fusgr 28841  df-nbgr 28857
This theorem is referenced by:  nbusgrvtxm1uvtx  28929
  Copyright terms: Public domain W3C validator