MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbusgrvtxm1 Structured version   Visualization version   GIF version

Theorem nbusgrvtxm1 29358
Description: If the number of neighbors of a vertex in a finite simple graph is the number of vertices of the graph minus 1, each vertex except the first mentioned vertex is a neighbor of this vertex. (Contributed by Alexander van der Vekens, 14-Jul-2018.) (Revised by AV, 16-Dec-2020.)
Hypothesis
Ref Expression
hashnbusgrnn0.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
nbusgrvtxm1 ((𝐺 ∈ FinUSGraph ∧ 𝑈𝑉) → ((♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1) → ((𝑀𝑉𝑀𝑈) → 𝑀 ∈ (𝐺 NeighbVtx 𝑈))))

Proof of Theorem nbusgrvtxm1
StepHypRef Expression
1 ax-1 6 . . 3 (𝑀 ∈ (𝐺 NeighbVtx 𝑈) → ((𝑀𝑉𝑀𝑈) → 𝑀 ∈ (𝐺 NeighbVtx 𝑈)))
212a1d 26 . 2 (𝑀 ∈ (𝐺 NeighbVtx 𝑈) → ((𝐺 ∈ FinUSGraph ∧ 𝑈𝑉) → ((♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1) → ((𝑀𝑉𝑀𝑈) → 𝑀 ∈ (𝐺 NeighbVtx 𝑈)))))
3 simpr 484 . . . . . . . 8 ((¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑈𝑉)) → (𝐺 ∈ FinUSGraph ∧ 𝑈𝑉))
43adantr 480 . . . . . . 7 (((¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑈𝑉)) ∧ (𝑀𝑉𝑀𝑈)) → (𝐺 ∈ FinUSGraph ∧ 𝑈𝑉))
5 simprl 770 . . . . . . 7 (((¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑈𝑉)) ∧ (𝑀𝑉𝑀𝑈)) → 𝑀𝑉)
6 simpr 484 . . . . . . . 8 ((𝑀𝑉𝑀𝑈) → 𝑀𝑈)
76adantl 481 . . . . . . 7 (((¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑈𝑉)) ∧ (𝑀𝑉𝑀𝑈)) → 𝑀𝑈)
8 df-nel 3037 . . . . . . . . . 10 (𝑀 ∉ (𝐺 NeighbVtx 𝑈) ↔ ¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈))
98biimpri 228 . . . . . . . . 9 𝑀 ∈ (𝐺 NeighbVtx 𝑈) → 𝑀 ∉ (𝐺 NeighbVtx 𝑈))
109adantr 480 . . . . . . . 8 ((¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑈𝑉)) → 𝑀 ∉ (𝐺 NeighbVtx 𝑈))
1110adantr 480 . . . . . . 7 (((¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑈𝑉)) ∧ (𝑀𝑉𝑀𝑈)) → 𝑀 ∉ (𝐺 NeighbVtx 𝑈))
12 hashnbusgrnn0.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
1312nbfusgrlevtxm2 29357 . . . . . . 7 (((𝐺 ∈ FinUSGraph ∧ 𝑈𝑉) ∧ (𝑀𝑉𝑀𝑈𝑀 ∉ (𝐺 NeighbVtx 𝑈))) → (♯‘(𝐺 NeighbVtx 𝑈)) ≤ ((♯‘𝑉) − 2))
144, 5, 7, 11, 13syl13anc 1374 . . . . . 6 (((¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑈𝑉)) ∧ (𝑀𝑉𝑀𝑈)) → (♯‘(𝐺 NeighbVtx 𝑈)) ≤ ((♯‘𝑉) − 2))
15 breq1 5122 . . . . . . . . 9 ((♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1) → ((♯‘(𝐺 NeighbVtx 𝑈)) ≤ ((♯‘𝑉) − 2) ↔ ((♯‘𝑉) − 1) ≤ ((♯‘𝑉) − 2)))
1615adantl 481 . . . . . . . 8 ((((¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑈𝑉)) ∧ (𝑀𝑉𝑀𝑈)) ∧ (♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1)) → ((♯‘(𝐺 NeighbVtx 𝑈)) ≤ ((♯‘𝑉) − 2) ↔ ((♯‘𝑉) − 1) ≤ ((♯‘𝑉) − 2)))
1712fusgrvtxfi 29298 . . . . . . . . . . . 12 (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin)
18 hashcl 14374 . . . . . . . . . . . 12 (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℕ0)
19 nn0re 12510 . . . . . . . . . . . 12 ((♯‘𝑉) ∈ ℕ0 → (♯‘𝑉) ∈ ℝ)
20 1red 11236 . . . . . . . . . . . . . 14 ((♯‘𝑉) ∈ ℝ → 1 ∈ ℝ)
21 2re 12314 . . . . . . . . . . . . . . 15 2 ∈ ℝ
2221a1i 11 . . . . . . . . . . . . . 14 ((♯‘𝑉) ∈ ℝ → 2 ∈ ℝ)
23 id 22 . . . . . . . . . . . . . 14 ((♯‘𝑉) ∈ ℝ → (♯‘𝑉) ∈ ℝ)
24 1lt2 12411 . . . . . . . . . . . . . . 15 1 < 2
2524a1i 11 . . . . . . . . . . . . . 14 ((♯‘𝑉) ∈ ℝ → 1 < 2)
2620, 22, 23, 25ltsub2dd 11850 . . . . . . . . . . . . 13 ((♯‘𝑉) ∈ ℝ → ((♯‘𝑉) − 2) < ((♯‘𝑉) − 1))
2723, 22resubcld 11665 . . . . . . . . . . . . . 14 ((♯‘𝑉) ∈ ℝ → ((♯‘𝑉) − 2) ∈ ℝ)
28 peano2rem 11550 . . . . . . . . . . . . . 14 ((♯‘𝑉) ∈ ℝ → ((♯‘𝑉) − 1) ∈ ℝ)
2927, 28ltnled 11382 . . . . . . . . . . . . 13 ((♯‘𝑉) ∈ ℝ → (((♯‘𝑉) − 2) < ((♯‘𝑉) − 1) ↔ ¬ ((♯‘𝑉) − 1) ≤ ((♯‘𝑉) − 2)))
3026, 29mpbid 232 . . . . . . . . . . . 12 ((♯‘𝑉) ∈ ℝ → ¬ ((♯‘𝑉) − 1) ≤ ((♯‘𝑉) − 2))
3117, 18, 19, 304syl 19 . . . . . . . . . . 11 (𝐺 ∈ FinUSGraph → ¬ ((♯‘𝑉) − 1) ≤ ((♯‘𝑉) − 2))
3231pm2.21d 121 . . . . . . . . . 10 (𝐺 ∈ FinUSGraph → (((♯‘𝑉) − 1) ≤ ((♯‘𝑉) − 2) → 𝑀 ∈ (𝐺 NeighbVtx 𝑈)))
3332adantr 480 . . . . . . . . 9 ((𝐺 ∈ FinUSGraph ∧ 𝑈𝑉) → (((♯‘𝑉) − 1) ≤ ((♯‘𝑉) − 2) → 𝑀 ∈ (𝐺 NeighbVtx 𝑈)))
3433ad3antlr 731 . . . . . . . 8 ((((¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑈𝑉)) ∧ (𝑀𝑉𝑀𝑈)) ∧ (♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1)) → (((♯‘𝑉) − 1) ≤ ((♯‘𝑉) − 2) → 𝑀 ∈ (𝐺 NeighbVtx 𝑈)))
3516, 34sylbid 240 . . . . . . 7 ((((¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑈𝑉)) ∧ (𝑀𝑉𝑀𝑈)) ∧ (♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1)) → ((♯‘(𝐺 NeighbVtx 𝑈)) ≤ ((♯‘𝑉) − 2) → 𝑀 ∈ (𝐺 NeighbVtx 𝑈)))
3635ex 412 . . . . . 6 (((¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑈𝑉)) ∧ (𝑀𝑉𝑀𝑈)) → ((♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1) → ((♯‘(𝐺 NeighbVtx 𝑈)) ≤ ((♯‘𝑉) − 2) → 𝑀 ∈ (𝐺 NeighbVtx 𝑈))))
3714, 36mpid 44 . . . . 5 (((¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑈𝑉)) ∧ (𝑀𝑉𝑀𝑈)) → ((♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1) → 𝑀 ∈ (𝐺 NeighbVtx 𝑈)))
3837ex 412 . . . 4 ((¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑈𝑉)) → ((𝑀𝑉𝑀𝑈) → ((♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1) → 𝑀 ∈ (𝐺 NeighbVtx 𝑈))))
3938com23 86 . . 3 ((¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑈) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑈𝑉)) → ((♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1) → ((𝑀𝑉𝑀𝑈) → 𝑀 ∈ (𝐺 NeighbVtx 𝑈))))
4039ex 412 . 2 𝑀 ∈ (𝐺 NeighbVtx 𝑈) → ((𝐺 ∈ FinUSGraph ∧ 𝑈𝑉) → ((♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1) → ((𝑀𝑉𝑀𝑈) → 𝑀 ∈ (𝐺 NeighbVtx 𝑈)))))
412, 40pm2.61i 182 1 ((𝐺 ∈ FinUSGraph ∧ 𝑈𝑉) → ((♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1) → ((𝑀𝑉𝑀𝑈) → 𝑀 ∈ (𝐺 NeighbVtx 𝑈))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  wnel 3036   class class class wbr 5119  cfv 6531  (class class class)co 7405  Fincfn 8959  cr 11128  1c1 11130   < clt 11269  cle 11270  cmin 11466  2c2 12295  0cn0 12501  chash 14348  Vtxcvtx 28975  FinUSGraphcfusgr 29295   NeighbVtx cnbgr 29311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-fz 13525  df-hash 14349  df-fusgr 29296  df-nbgr 29312
This theorem is referenced by:  nbusgrvtxm1uvtx  29384
  Copyright terms: Public domain W3C validator