Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uvtxnm1nbgr | Structured version Visualization version GIF version |
Description: A universal vertex has 𝑛 − 1 neighbors in a finite graph with 𝑛 vertices. (Contributed by Alexander van der Vekens, 14-Oct-2017.) (Revised by AV, 3-Nov-2020.) |
Ref | Expression |
---|---|
uvtxnm1nbgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
uvtxnm1nbgr | ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ (UnivVtx‘𝐺)) → (♯‘(𝐺 NeighbVtx 𝑁)) = ((♯‘𝑉) − 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uvtxnm1nbgr.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | uvtxnbgr 27517 | . . . 4 ⊢ (𝑁 ∈ (UnivVtx‘𝐺) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})) |
3 | 2 | adantl 485 | . . 3 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ (UnivVtx‘𝐺)) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})) |
4 | 3 | fveq2d 6742 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ (UnivVtx‘𝐺)) → (♯‘(𝐺 NeighbVtx 𝑁)) = (♯‘(𝑉 ∖ {𝑁}))) |
5 | 1 | fusgrvtxfi 27436 | . . 3 ⊢ (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin) |
6 | 1 | uvtxisvtx 27506 | . . . 4 ⊢ (𝑁 ∈ (UnivVtx‘𝐺) → 𝑁 ∈ 𝑉) |
7 | 6 | snssd 4738 | . . 3 ⊢ (𝑁 ∈ (UnivVtx‘𝐺) → {𝑁} ⊆ 𝑉) |
8 | hashssdif 14009 | . . 3 ⊢ ((𝑉 ∈ Fin ∧ {𝑁} ⊆ 𝑉) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − (♯‘{𝑁}))) | |
9 | 5, 7, 8 | syl2an 599 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ (UnivVtx‘𝐺)) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − (♯‘{𝑁}))) |
10 | hashsng 13966 | . . . 4 ⊢ (𝑁 ∈ (UnivVtx‘𝐺) → (♯‘{𝑁}) = 1) | |
11 | 10 | adantl 485 | . . 3 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ (UnivVtx‘𝐺)) → (♯‘{𝑁}) = 1) |
12 | 11 | oveq2d 7250 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ (UnivVtx‘𝐺)) → ((♯‘𝑉) − (♯‘{𝑁})) = ((♯‘𝑉) − 1)) |
13 | 4, 9, 12 | 3eqtrd 2783 | 1 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ (UnivVtx‘𝐺)) → (♯‘(𝐺 NeighbVtx 𝑁)) = ((♯‘𝑉) − 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2112 ∖ cdif 3879 ⊆ wss 3882 {csn 4557 ‘cfv 6400 (class class class)co 7234 Fincfn 8649 1c1 10757 − cmin 11089 ♯chash 13926 Vtxcvtx 27116 FinUSGraphcfusgr 27433 NeighbVtx cnbgr 27449 UnivVtxcuvtx 27502 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5208 ax-nul 5215 ax-pow 5274 ax-pr 5338 ax-un 7544 ax-cnex 10812 ax-resscn 10813 ax-1cn 10814 ax-icn 10815 ax-addcl 10816 ax-addrcl 10817 ax-mulcl 10818 ax-mulrcl 10819 ax-mulcom 10820 ax-addass 10821 ax-mulass 10822 ax-distr 10823 ax-i2m1 10824 ax-1ne0 10825 ax-1rid 10826 ax-rnegex 10827 ax-rrecex 10828 ax-cnre 10829 ax-pre-lttri 10830 ax-pre-lttrn 10831 ax-pre-ltadd 10832 ax-pre-mulgt0 10833 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3711 df-csb 3828 df-dif 3885 df-un 3887 df-in 3889 df-ss 3899 df-pss 3901 df-nul 4254 df-if 4456 df-pw 4531 df-sn 4558 df-pr 4560 df-tp 4562 df-op 4564 df-uni 4836 df-int 4876 df-iun 4922 df-br 5070 df-opab 5132 df-mpt 5152 df-tr 5178 df-id 5471 df-eprel 5477 df-po 5485 df-so 5486 df-fr 5526 df-we 5528 df-xp 5574 df-rel 5575 df-cnv 5576 df-co 5577 df-dm 5578 df-rn 5579 df-res 5580 df-ima 5581 df-pred 6178 df-ord 6236 df-on 6237 df-lim 6238 df-suc 6239 df-iota 6358 df-fun 6402 df-fn 6403 df-f 6404 df-f1 6405 df-fo 6406 df-f1o 6407 df-fv 6408 df-riota 7191 df-ov 7237 df-oprab 7238 df-mpo 7239 df-om 7666 df-1st 7782 df-2nd 7783 df-wrecs 8070 df-recs 8131 df-rdg 8169 df-1o 8225 df-oadd 8229 df-er 8414 df-en 8650 df-dom 8651 df-sdom 8652 df-fin 8653 df-dju 9544 df-card 9582 df-pnf 10896 df-mnf 10897 df-xr 10898 df-ltxr 10899 df-le 10900 df-sub 11091 df-neg 11092 df-nn 11858 df-n0 12118 df-z 12204 df-uz 12466 df-fz 13123 df-hash 13927 df-fusgr 27434 df-nbgr 27450 df-uvtx 27503 |
This theorem is referenced by: uvtxnbvtxm1 27523 |
Copyright terms: Public domain | W3C validator |