![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nbfusgrlevtxm1 | Structured version Visualization version GIF version |
Description: The number of neighbors of a vertex is at most the number of vertices of the graph minus 1 in a finite simple graph. (Contributed by AV, 16-Dec-2020.) (Proof shortened by AV, 13-Feb-2022.) |
Ref | Expression |
---|---|
hashnbusgrnn0.v | ⢠ð = (Vtxâðº) |
Ref | Expression |
---|---|
nbfusgrlevtxm1 | ⢠((ðº â FinUSGraph â§ ð â ð) â (â¯â(ðº NeighbVtx ð)) †((â¯âð) â 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashnbusgrnn0.v | . . . . 5 ⢠ð = (Vtxâðº) | |
2 | 1 | fvexi 6904 | . . . 4 ⢠ð â V |
3 | 2 | difexi 5326 | . . 3 ⢠(ð â {ð}) â V |
4 | 1 | nbgrssovtx 29213 | . . . 4 ⢠(ðº NeighbVtx ð) â (ð â {ð}) |
5 | 4 | a1i 11 | . . 3 ⢠((ðº â FinUSGraph â§ ð â ð) â (ðº NeighbVtx ð) â (ð â {ð})) |
6 | hashss 14395 | . . 3 ⢠(((ð â {ð}) â V â§ (ðº NeighbVtx ð) â (ð â {ð})) â (â¯â(ðº NeighbVtx ð)) †(â¯â(ð â {ð}))) | |
7 | 3, 5, 6 | sylancr 585 | . 2 ⢠((ðº â FinUSGraph â§ ð â ð) â (â¯â(ðº NeighbVtx ð)) †(â¯â(ð â {ð}))) |
8 | 1 | fusgrvtxfi 29171 | . . 3 ⢠(ðº â FinUSGraph â ð â Fin) |
9 | hashdifsn 14400 | . . . 4 ⢠((ð â Fin â§ ð â ð) â (â¯â(ð â {ð})) = ((â¯âð) â 1)) | |
10 | 9 | eqcomd 2731 | . . 3 ⢠((ð â Fin â§ ð â ð) â ((â¯âð) â 1) = (â¯â(ð â {ð}))) |
11 | 8, 10 | sylan 578 | . 2 ⢠((ðº â FinUSGraph â§ ð â ð) â ((â¯âð) â 1) = (â¯â(ð â {ð}))) |
12 | 7, 11 | breqtrrd 5172 | 1 ⢠((ðº â FinUSGraph â§ ð â ð) â (â¯â(ðº NeighbVtx ð)) †((â¯âð) â 1)) |
Colors of variables: wff setvar class |
Syntax hints: â wi 4 â§ wa 394 = wceq 1533 â wcel 2098 Vcvv 3463 â cdif 3938 â wss 3941 {csn 4625 class class class wbr 5144 âcfv 6543 (class class class)co 7413 Fincfn 8957 1c1 11134 †cle 11274 â cmin 11469 â¯chash 14316 Vtxcvtx 28848 FinUSGraphcfusgr 29168 NeighbVtx cnbgr 29184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-dju 9919 df-card 9957 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-n0 12498 df-xnn0 12570 df-z 12584 df-uz 12848 df-fz 13512 df-hash 14317 df-fusgr 29169 df-nbgr 29185 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |