![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numclwwlk4 | Structured version Visualization version GIF version |
Description: The total number of closed walks in a finite simple graph is the sum of the numbers of closed walks starting at each of its vertices. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 2-Jun-2021.) (Revised by AV, 7-Mar-2022.) (Proof shortened by AV, 28-Mar-2022.) |
Ref | Expression |
---|---|
numclwwlk3.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
numclwwlk4 | ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ) → (♯‘(𝑁 ClWWalksN 𝐺)) = Σ𝑥 ∈ 𝑉 (♯‘(𝑥(ClWWalksNOn‘𝐺)𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fusgrusgr 29354 | . . . . 5 ⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph) | |
2 | 1 | adantr 480 | . . . 4 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ) → 𝐺 ∈ USGraph) |
3 | numclwwlk3.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | 3 | clwwlknun 30141 | . . . 4 ⊢ (𝐺 ∈ USGraph → (𝑁 ClWWalksN 𝐺) = ∪ 𝑥 ∈ 𝑉 (𝑥(ClWWalksNOn‘𝐺)𝑁)) |
5 | 2, 4 | syl 17 | . . 3 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ) → (𝑁 ClWWalksN 𝐺) = ∪ 𝑥 ∈ 𝑉 (𝑥(ClWWalksNOn‘𝐺)𝑁)) |
6 | 5 | fveq2d 6911 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ) → (♯‘(𝑁 ClWWalksN 𝐺)) = (♯‘∪ 𝑥 ∈ 𝑉 (𝑥(ClWWalksNOn‘𝐺)𝑁))) |
7 | 3 | fusgrvtxfi 29351 | . . . 4 ⊢ (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin) |
8 | 7 | adantr 480 | . . 3 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ) → 𝑉 ∈ Fin) |
9 | 3 | clwwlknonfin 30123 | . . . . . 6 ⊢ (𝑉 ∈ Fin → (𝑥(ClWWalksNOn‘𝐺)𝑁) ∈ Fin) |
10 | 7, 9 | syl 17 | . . . . 5 ⊢ (𝐺 ∈ FinUSGraph → (𝑥(ClWWalksNOn‘𝐺)𝑁) ∈ Fin) |
11 | 10 | adantr 480 | . . . 4 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ) → (𝑥(ClWWalksNOn‘𝐺)𝑁) ∈ Fin) |
12 | 11 | adantr 480 | . . 3 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝑉) → (𝑥(ClWWalksNOn‘𝐺)𝑁) ∈ Fin) |
13 | clwwlknondisj 30140 | . . . 4 ⊢ Disj 𝑥 ∈ 𝑉 (𝑥(ClWWalksNOn‘𝐺)𝑁) | |
14 | 13 | a1i 11 | . . 3 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ) → Disj 𝑥 ∈ 𝑉 (𝑥(ClWWalksNOn‘𝐺)𝑁)) |
15 | 8, 12, 14 | hashiun 15855 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ) → (♯‘∪ 𝑥 ∈ 𝑉 (𝑥(ClWWalksNOn‘𝐺)𝑁)) = Σ𝑥 ∈ 𝑉 (♯‘(𝑥(ClWWalksNOn‘𝐺)𝑁))) |
16 | 6, 15 | eqtrd 2775 | 1 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ) → (♯‘(𝑁 ClWWalksN 𝐺)) = Σ𝑥 ∈ 𝑉 (♯‘(𝑥(ClWWalksNOn‘𝐺)𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∪ ciun 4996 Disj wdisj 5115 ‘cfv 6563 (class class class)co 7431 Fincfn 8984 ℕcn 12264 ♯chash 14366 Σcsu 15719 Vtxcvtx 29028 USGraphcusgr 29181 FinUSGraphcfusgr 29348 ClWWalksN cclwwlkn 30053 ClWWalksNOncclwwlknon 30116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-disj 5116 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-oadd 8509 df-er 8744 df-map 8867 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-oi 9548 df-dju 9939 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-xnn0 12598 df-z 12612 df-uz 12877 df-rp 13033 df-fz 13545 df-fzo 13692 df-seq 14040 df-exp 14100 df-hash 14367 df-word 14550 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-sum 15720 df-edg 29080 df-umgr 29115 df-usgr 29183 df-fusgr 29349 df-clwwlk 30011 df-clwwlkn 30054 df-clwwlknon 30117 |
This theorem is referenced by: numclwwlk6 30419 |
Copyright terms: Public domain | W3C validator |