![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numclwwlk4 | Structured version Visualization version GIF version |
Description: The total number of closed walks in a finite simple graph is the sum of the numbers of closed walks starting at each of its vertices. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 2-Jun-2021.) (Revised by AV, 7-Mar-2022.) (Proof shortened by AV, 28-Mar-2022.) |
Ref | Expression |
---|---|
numclwwlk3.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
numclwwlk4 | ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ) → (♯‘(𝑁 ClWWalksN 𝐺)) = Σ𝑥 ∈ 𝑉 (♯‘(𝑥(ClWWalksNOn‘𝐺)𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fusgrusgr 29148 | . . . . 5 ⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph) | |
2 | 1 | adantr 480 | . . . 4 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ) → 𝐺 ∈ USGraph) |
3 | numclwwlk3.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | 3 | clwwlknun 29935 | . . . 4 ⊢ (𝐺 ∈ USGraph → (𝑁 ClWWalksN 𝐺) = ∪ 𝑥 ∈ 𝑉 (𝑥(ClWWalksNOn‘𝐺)𝑁)) |
5 | 2, 4 | syl 17 | . . 3 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ) → (𝑁 ClWWalksN 𝐺) = ∪ 𝑥 ∈ 𝑉 (𝑥(ClWWalksNOn‘𝐺)𝑁)) |
6 | 5 | fveq2d 6901 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ) → (♯‘(𝑁 ClWWalksN 𝐺)) = (♯‘∪ 𝑥 ∈ 𝑉 (𝑥(ClWWalksNOn‘𝐺)𝑁))) |
7 | 3 | fusgrvtxfi 29145 | . . . 4 ⊢ (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin) |
8 | 7 | adantr 480 | . . 3 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ) → 𝑉 ∈ Fin) |
9 | 3 | clwwlknonfin 29917 | . . . . . 6 ⊢ (𝑉 ∈ Fin → (𝑥(ClWWalksNOn‘𝐺)𝑁) ∈ Fin) |
10 | 7, 9 | syl 17 | . . . . 5 ⊢ (𝐺 ∈ FinUSGraph → (𝑥(ClWWalksNOn‘𝐺)𝑁) ∈ Fin) |
11 | 10 | adantr 480 | . . . 4 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ) → (𝑥(ClWWalksNOn‘𝐺)𝑁) ∈ Fin) |
12 | 11 | adantr 480 | . . 3 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝑉) → (𝑥(ClWWalksNOn‘𝐺)𝑁) ∈ Fin) |
13 | clwwlknondisj 29934 | . . . 4 ⊢ Disj 𝑥 ∈ 𝑉 (𝑥(ClWWalksNOn‘𝐺)𝑁) | |
14 | 13 | a1i 11 | . . 3 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ) → Disj 𝑥 ∈ 𝑉 (𝑥(ClWWalksNOn‘𝐺)𝑁)) |
15 | 8, 12, 14 | hashiun 15801 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ) → (♯‘∪ 𝑥 ∈ 𝑉 (𝑥(ClWWalksNOn‘𝐺)𝑁)) = Σ𝑥 ∈ 𝑉 (♯‘(𝑥(ClWWalksNOn‘𝐺)𝑁))) |
16 | 6, 15 | eqtrd 2768 | 1 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ) → (♯‘(𝑁 ClWWalksN 𝐺)) = Σ𝑥 ∈ 𝑉 (♯‘(𝑥(ClWWalksNOn‘𝐺)𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∪ ciun 4996 Disj wdisj 5113 ‘cfv 6548 (class class class)co 7420 Fincfn 8964 ℕcn 12243 ♯chash 14322 Σcsu 15665 Vtxcvtx 28822 USGraphcusgr 28975 FinUSGraphcfusgr 29142 ClWWalksN cclwwlkn 29847 ClWWalksNOncclwwlknon 29910 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-inf2 9665 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 ax-pre-sup 11217 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-disj 5114 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-oadd 8491 df-er 8725 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9466 df-oi 9534 df-dju 9925 df-card 9963 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-div 11903 df-nn 12244 df-2 12306 df-3 12307 df-n0 12504 df-xnn0 12576 df-z 12590 df-uz 12854 df-rp 13008 df-fz 13518 df-fzo 13661 df-seq 14000 df-exp 14060 df-hash 14323 df-word 14498 df-cj 15079 df-re 15080 df-im 15081 df-sqrt 15215 df-abs 15216 df-clim 15465 df-sum 15666 df-edg 28874 df-umgr 28909 df-usgr 28977 df-fusgr 29143 df-clwwlk 29805 df-clwwlkn 29848 df-clwwlknon 29911 |
This theorem is referenced by: numclwwlk6 30213 |
Copyright terms: Public domain | W3C validator |