MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fusgrhashclwwlkn Structured version   Visualization version   GIF version

Theorem fusgrhashclwwlkn 30041
Description: The size of the set of closed walks (defined as words) with a fixed length which is a prime number is the product of the number of equivalence classes for over the set of closed walks and the fixed length. (Contributed by Alexander van der Vekens, 17-Jun-2018.) (Revised by AV, 1-May-2021.)
Hypotheses
Ref Expression
erclwwlkn.w 𝑊 = (𝑁 ClWWalksN 𝐺)
erclwwlkn.r = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
Assertion
Ref Expression
fusgrhashclwwlkn ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (♯‘𝑊) = ((♯‘(𝑊 / )) · 𝑁))
Distinct variable groups:   𝑡,𝑊,𝑢   𝑛,𝑁,𝑢,𝑡   𝑛,𝑊   𝑛,𝐺,𝑢
Allowed substitution hints:   (𝑢,𝑡,𝑛)   𝐺(𝑡)

Proof of Theorem fusgrhashclwwlkn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
21fusgrvtxfi 29282 . . . 4 (𝐺 ∈ FinUSGraph → (Vtx‘𝐺) ∈ Fin)
32adantr 480 . . 3 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (Vtx‘𝐺) ∈ Fin)
4 erclwwlkn.w . . . 4 𝑊 = (𝑁 ClWWalksN 𝐺)
5 erclwwlkn.r . . . 4 = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
64, 5hashclwwlkn0 30036 . . 3 ((Vtx‘𝐺) ∈ Fin → (♯‘𝑊) = Σ𝑥 ∈ (𝑊 / )(♯‘𝑥))
73, 6syl 17 . 2 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (♯‘𝑊) = Σ𝑥 ∈ (𝑊 / )(♯‘𝑥))
8 fusgrusgr 29285 . . . . . 6 (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph)
9 usgrumgr 29144 . . . . . 6 (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph)
108, 9syl 17 . . . . 5 (𝐺 ∈ FinUSGraph → 𝐺 ∈ UMGraph)
114, 5umgrhashecclwwlk 30040 . . . . 5 ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑥 ∈ (𝑊 / ) → (♯‘𝑥) = 𝑁))
1210, 11sylan 580 . . . 4 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (𝑥 ∈ (𝑊 / ) → (♯‘𝑥) = 𝑁))
1312imp 406 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (𝑊 / )) → (♯‘𝑥) = 𝑁)
1413sumeq2dv 15627 . 2 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → Σ𝑥 ∈ (𝑊 / )(♯‘𝑥) = Σ𝑥 ∈ (𝑊 / )𝑁)
154, 5qerclwwlknfi 30035 . . . 4 ((Vtx‘𝐺) ∈ Fin → (𝑊 / ) ∈ Fin)
163, 15syl 17 . . 3 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (𝑊 / ) ∈ Fin)
17 prmnn 16603 . . . . 5 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ)
1817nncnd 12162 . . . 4 (𝑁 ∈ ℙ → 𝑁 ∈ ℂ)
1918adantl 481 . . 3 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℂ)
20 fsumconst 15715 . . 3 (((𝑊 / ) ∈ Fin ∧ 𝑁 ∈ ℂ) → Σ𝑥 ∈ (𝑊 / )𝑁 = ((♯‘(𝑊 / )) · 𝑁))
2116, 19, 20syl2anc 584 . 2 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → Σ𝑥 ∈ (𝑊 / )𝑁 = ((♯‘(𝑊 / )) · 𝑁))
227, 14, 213eqtrd 2768 1 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (♯‘𝑊) = ((♯‘(𝑊 / )) · 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  {copab 5157  cfv 6486  (class class class)co 7353   / cqs 8631  Fincfn 8879  cc 11026  0cc0 11028   · cmul 11033  ...cfz 13428  chash 14255   cyclShift ccsh 14712  Σcsu 15611  cprime 16600  Vtxcvtx 28959  UMGraphcumgr 29044  USGraphcusgr 29112  FinUSGraphcfusgr 29279   ClWWalksN cclwwlkn 29986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-ec 8634  df-qs 8638  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-xnn0 12476  df-z 12490  df-uz 12754  df-rp 12912  df-ico 13272  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-hash 14256  df-word 14439  df-lsw 14488  df-concat 14496  df-substr 14566  df-pfx 14596  df-reps 14693  df-csh 14713  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612  df-dvds 16182  df-gcd 16424  df-prm 16601  df-phi 16695  df-edg 29011  df-umgr 29046  df-usgr 29114  df-fusgr 29280  df-clwwlk 29944  df-clwwlkn 29987
This theorem is referenced by:  clwwlkndivn  30042
  Copyright terms: Public domain W3C validator