Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fusgrhashclwwlkn | Structured version Visualization version GIF version |
Description: The size of the set of closed walks (defined as words) with a fixed length which is a prime number is the product of the number of equivalence classes for ∼ over the set of closed walks and the fixed length. (Contributed by Alexander van der Vekens, 17-Jun-2018.) (Revised by AV, 1-May-2021.) |
Ref | Expression |
---|---|
erclwwlkn.w | ⊢ 𝑊 = (𝑁 ClWWalksN 𝐺) |
erclwwlkn.r | ⊢ ∼ = {〈𝑡, 𝑢〉 ∣ (𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))} |
Ref | Expression |
---|---|
fusgrhashclwwlkn | ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (♯‘𝑊) = ((♯‘(𝑊 / ∼ )) · 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | 1 | fusgrvtxfi 27589 | . . . 4 ⊢ (𝐺 ∈ FinUSGraph → (Vtx‘𝐺) ∈ Fin) |
3 | 2 | adantr 480 | . . 3 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (Vtx‘𝐺) ∈ Fin) |
4 | erclwwlkn.w | . . . 4 ⊢ 𝑊 = (𝑁 ClWWalksN 𝐺) | |
5 | erclwwlkn.r | . . . 4 ⊢ ∼ = {〈𝑡, 𝑢〉 ∣ (𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))} | |
6 | 4, 5 | hashclwwlkn0 28339 | . . 3 ⊢ ((Vtx‘𝐺) ∈ Fin → (♯‘𝑊) = Σ𝑥 ∈ (𝑊 / ∼ )(♯‘𝑥)) |
7 | 3, 6 | syl 17 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (♯‘𝑊) = Σ𝑥 ∈ (𝑊 / ∼ )(♯‘𝑥)) |
8 | fusgrusgr 27592 | . . . . . 6 ⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph) | |
9 | usgrumgr 27452 | . . . . . 6 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph) | |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ UMGraph) |
11 | 4, 5 | umgrhashecclwwlk 28343 | . . . . 5 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑥 ∈ (𝑊 / ∼ ) → (♯‘𝑥) = 𝑁)) |
12 | 10, 11 | sylan 579 | . . . 4 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (𝑥 ∈ (𝑊 / ∼ ) → (♯‘𝑥) = 𝑁)) |
13 | 12 | imp 406 | . . 3 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (𝑊 / ∼ )) → (♯‘𝑥) = 𝑁) |
14 | 13 | sumeq2dv 15343 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → Σ𝑥 ∈ (𝑊 / ∼ )(♯‘𝑥) = Σ𝑥 ∈ (𝑊 / ∼ )𝑁) |
15 | 4, 5 | qerclwwlknfi 28338 | . . . 4 ⊢ ((Vtx‘𝐺) ∈ Fin → (𝑊 / ∼ ) ∈ Fin) |
16 | 3, 15 | syl 17 | . . 3 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (𝑊 / ∼ ) ∈ Fin) |
17 | prmnn 16307 | . . . . 5 ⊢ (𝑁 ∈ ℙ → 𝑁 ∈ ℕ) | |
18 | 17 | nncnd 11919 | . . . 4 ⊢ (𝑁 ∈ ℙ → 𝑁 ∈ ℂ) |
19 | 18 | adantl 481 | . . 3 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℂ) |
20 | fsumconst 15430 | . . 3 ⊢ (((𝑊 / ∼ ) ∈ Fin ∧ 𝑁 ∈ ℂ) → Σ𝑥 ∈ (𝑊 / ∼ )𝑁 = ((♯‘(𝑊 / ∼ )) · 𝑁)) | |
21 | 16, 19, 20 | syl2anc 583 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → Σ𝑥 ∈ (𝑊 / ∼ )𝑁 = ((♯‘(𝑊 / ∼ )) · 𝑁)) |
22 | 7, 14, 21 | 3eqtrd 2782 | 1 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (♯‘𝑊) = ((♯‘(𝑊 / ∼ )) · 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 {copab 5132 ‘cfv 6418 (class class class)co 7255 / cqs 8455 Fincfn 8691 ℂcc 10800 0cc0 10802 · cmul 10807 ...cfz 13168 ♯chash 13972 cyclShift ccsh 14429 Σcsu 15325 ℙcprime 16304 Vtxcvtx 27269 UMGraphcumgr 27354 USGraphcusgr 27422 FinUSGraphcfusgr 27586 ClWWalksN cclwwlkn 28289 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-disj 5036 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-er 8456 df-ec 8458 df-qs 8462 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-oi 9199 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-rp 12660 df-ico 13014 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-hash 13973 df-word 14146 df-lsw 14194 df-concat 14202 df-substr 14282 df-pfx 14312 df-reps 14410 df-csh 14430 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-dvds 15892 df-gcd 16130 df-prm 16305 df-phi 16395 df-edg 27321 df-umgr 27356 df-usgr 27424 df-fusgr 27587 df-clwwlk 28247 df-clwwlkn 28290 |
This theorem is referenced by: clwwlkndivn 28345 |
Copyright terms: Public domain | W3C validator |