| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fusgrhashclwwlkn | Structured version Visualization version GIF version | ||
| Description: The size of the set of closed walks (defined as words) with a fixed length which is a prime number is the product of the number of equivalence classes for ∼ over the set of closed walks and the fixed length. (Contributed by Alexander van der Vekens, 17-Jun-2018.) (Revised by AV, 1-May-2021.) |
| Ref | Expression |
|---|---|
| erclwwlkn.w | ⊢ 𝑊 = (𝑁 ClWWalksN 𝐺) |
| erclwwlkn.r | ⊢ ∼ = {〈𝑡, 𝑢〉 ∣ (𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))} |
| Ref | Expression |
|---|---|
| fusgrhashclwwlkn | ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (♯‘𝑊) = ((♯‘(𝑊 / ∼ )) · 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | 1 | fusgrvtxfi 29318 | . . . 4 ⊢ (𝐺 ∈ FinUSGraph → (Vtx‘𝐺) ∈ Fin) |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (Vtx‘𝐺) ∈ Fin) |
| 4 | erclwwlkn.w | . . . 4 ⊢ 𝑊 = (𝑁 ClWWalksN 𝐺) | |
| 5 | erclwwlkn.r | . . . 4 ⊢ ∼ = {〈𝑡, 𝑢〉 ∣ (𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))} | |
| 6 | 4, 5 | hashclwwlkn0 30075 | . . 3 ⊢ ((Vtx‘𝐺) ∈ Fin → (♯‘𝑊) = Σ𝑥 ∈ (𝑊 / ∼ )(♯‘𝑥)) |
| 7 | 3, 6 | syl 17 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (♯‘𝑊) = Σ𝑥 ∈ (𝑊 / ∼ )(♯‘𝑥)) |
| 8 | fusgrusgr 29321 | . . . . . 6 ⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph) | |
| 9 | usgrumgr 29180 | . . . . . 6 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph) | |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ UMGraph) |
| 11 | 4, 5 | umgrhashecclwwlk 30079 | . . . . 5 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑥 ∈ (𝑊 / ∼ ) → (♯‘𝑥) = 𝑁)) |
| 12 | 10, 11 | sylan 580 | . . . 4 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (𝑥 ∈ (𝑊 / ∼ ) → (♯‘𝑥) = 𝑁)) |
| 13 | 12 | imp 406 | . . 3 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (𝑊 / ∼ )) → (♯‘𝑥) = 𝑁) |
| 14 | 13 | sumeq2dv 15616 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → Σ𝑥 ∈ (𝑊 / ∼ )(♯‘𝑥) = Σ𝑥 ∈ (𝑊 / ∼ )𝑁) |
| 15 | 4, 5 | qerclwwlknfi 30074 | . . . 4 ⊢ ((Vtx‘𝐺) ∈ Fin → (𝑊 / ∼ ) ∈ Fin) |
| 16 | 3, 15 | syl 17 | . . 3 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (𝑊 / ∼ ) ∈ Fin) |
| 17 | prmnn 16592 | . . . . 5 ⊢ (𝑁 ∈ ℙ → 𝑁 ∈ ℕ) | |
| 18 | 17 | nncnd 12152 | . . . 4 ⊢ (𝑁 ∈ ℙ → 𝑁 ∈ ℂ) |
| 19 | 18 | adantl 481 | . . 3 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℂ) |
| 20 | fsumconst 15704 | . . 3 ⊢ (((𝑊 / ∼ ) ∈ Fin ∧ 𝑁 ∈ ℂ) → Σ𝑥 ∈ (𝑊 / ∼ )𝑁 = ((♯‘(𝑊 / ∼ )) · 𝑁)) | |
| 21 | 16, 19, 20 | syl2anc 584 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → Σ𝑥 ∈ (𝑊 / ∼ )𝑁 = ((♯‘(𝑊 / ∼ )) · 𝑁)) |
| 22 | 7, 14, 21 | 3eqtrd 2772 | 1 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (♯‘𝑊) = ((♯‘(𝑊 / ∼ )) · 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 {copab 5157 ‘cfv 6489 (class class class)co 7355 / cqs 8630 Fincfn 8879 ℂcc 11015 0cc0 11017 · cmul 11022 ...cfz 13414 ♯chash 14244 cyclShift ccsh 14702 Σcsu 15600 ℙcprime 16589 Vtxcvtx 28995 UMGraphcumgr 29080 USGraphcusgr 29148 FinUSGraphcfusgr 29315 ClWWalksN cclwwlkn 30025 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9542 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-disj 5063 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-oadd 8398 df-er 8631 df-ec 8633 df-qs 8637 df-map 8761 df-pm 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9337 df-inf 9338 df-oi 9407 df-dju 9805 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-n0 12393 df-xnn0 12466 df-z 12480 df-uz 12743 df-rp 12897 df-ico 13258 df-fz 13415 df-fzo 13562 df-fl 13703 df-mod 13781 df-seq 13916 df-exp 13976 df-hash 14245 df-word 14428 df-lsw 14477 df-concat 14485 df-substr 14556 df-pfx 14586 df-reps 14683 df-csh 14703 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-clim 15402 df-sum 15601 df-dvds 16171 df-gcd 16413 df-prm 16590 df-phi 16684 df-edg 29047 df-umgr 29082 df-usgr 29150 df-fusgr 29316 df-clwwlk 29983 df-clwwlkn 30026 |
| This theorem is referenced by: clwwlkndivn 30081 |
| Copyright terms: Public domain | W3C validator |