| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fusgrhashclwwlkn | Structured version Visualization version GIF version | ||
| Description: The size of the set of closed walks (defined as words) with a fixed length which is a prime number is the product of the number of equivalence classes for ∼ over the set of closed walks and the fixed length. (Contributed by Alexander van der Vekens, 17-Jun-2018.) (Revised by AV, 1-May-2021.) |
| Ref | Expression |
|---|---|
| erclwwlkn.w | ⊢ 𝑊 = (𝑁 ClWWalksN 𝐺) |
| erclwwlkn.r | ⊢ ∼ = {〈𝑡, 𝑢〉 ∣ (𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))} |
| Ref | Expression |
|---|---|
| fusgrhashclwwlkn | ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (♯‘𝑊) = ((♯‘(𝑊 / ∼ )) · 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | 1 | fusgrvtxfi 29253 | . . . 4 ⊢ (𝐺 ∈ FinUSGraph → (Vtx‘𝐺) ∈ Fin) |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (Vtx‘𝐺) ∈ Fin) |
| 4 | erclwwlkn.w | . . . 4 ⊢ 𝑊 = (𝑁 ClWWalksN 𝐺) | |
| 5 | erclwwlkn.r | . . . 4 ⊢ ∼ = {〈𝑡, 𝑢〉 ∣ (𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))} | |
| 6 | 4, 5 | hashclwwlkn0 30010 | . . 3 ⊢ ((Vtx‘𝐺) ∈ Fin → (♯‘𝑊) = Σ𝑥 ∈ (𝑊 / ∼ )(♯‘𝑥)) |
| 7 | 3, 6 | syl 17 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (♯‘𝑊) = Σ𝑥 ∈ (𝑊 / ∼ )(♯‘𝑥)) |
| 8 | fusgrusgr 29256 | . . . . . 6 ⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph) | |
| 9 | usgrumgr 29115 | . . . . . 6 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph) | |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ UMGraph) |
| 11 | 4, 5 | umgrhashecclwwlk 30014 | . . . . 5 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑥 ∈ (𝑊 / ∼ ) → (♯‘𝑥) = 𝑁)) |
| 12 | 10, 11 | sylan 580 | . . . 4 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (𝑥 ∈ (𝑊 / ∼ ) → (♯‘𝑥) = 𝑁)) |
| 13 | 12 | imp 406 | . . 3 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (𝑊 / ∼ )) → (♯‘𝑥) = 𝑁) |
| 14 | 13 | sumeq2dv 15675 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → Σ𝑥 ∈ (𝑊 / ∼ )(♯‘𝑥) = Σ𝑥 ∈ (𝑊 / ∼ )𝑁) |
| 15 | 4, 5 | qerclwwlknfi 30009 | . . . 4 ⊢ ((Vtx‘𝐺) ∈ Fin → (𝑊 / ∼ ) ∈ Fin) |
| 16 | 3, 15 | syl 17 | . . 3 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (𝑊 / ∼ ) ∈ Fin) |
| 17 | prmnn 16651 | . . . . 5 ⊢ (𝑁 ∈ ℙ → 𝑁 ∈ ℕ) | |
| 18 | 17 | nncnd 12209 | . . . 4 ⊢ (𝑁 ∈ ℙ → 𝑁 ∈ ℂ) |
| 19 | 18 | adantl 481 | . . 3 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℂ) |
| 20 | fsumconst 15763 | . . 3 ⊢ (((𝑊 / ∼ ) ∈ Fin ∧ 𝑁 ∈ ℂ) → Σ𝑥 ∈ (𝑊 / ∼ )𝑁 = ((♯‘(𝑊 / ∼ )) · 𝑁)) | |
| 21 | 16, 19, 20 | syl2anc 584 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → Σ𝑥 ∈ (𝑊 / ∼ )𝑁 = ((♯‘(𝑊 / ∼ )) · 𝑁)) |
| 22 | 7, 14, 21 | 3eqtrd 2769 | 1 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (♯‘𝑊) = ((♯‘(𝑊 / ∼ )) · 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 {copab 5172 ‘cfv 6514 (class class class)co 7390 / cqs 8673 Fincfn 8921 ℂcc 11073 0cc0 11075 · cmul 11080 ...cfz 13475 ♯chash 14302 cyclShift ccsh 14760 Σcsu 15659 ℙcprime 16648 Vtxcvtx 28930 UMGraphcumgr 29015 USGraphcusgr 29083 FinUSGraphcfusgr 29250 ClWWalksN cclwwlkn 29960 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-disj 5078 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-oadd 8441 df-er 8674 df-ec 8676 df-qs 8680 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-oi 9470 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-xnn0 12523 df-z 12537 df-uz 12801 df-rp 12959 df-ico 13319 df-fz 13476 df-fzo 13623 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-hash 14303 df-word 14486 df-lsw 14535 df-concat 14543 df-substr 14613 df-pfx 14643 df-reps 14741 df-csh 14761 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-sum 15660 df-dvds 16230 df-gcd 16472 df-prm 16649 df-phi 16743 df-edg 28982 df-umgr 29017 df-usgr 29085 df-fusgr 29251 df-clwwlk 29918 df-clwwlkn 29961 |
| This theorem is referenced by: clwwlkndivn 30016 |
| Copyright terms: Public domain | W3C validator |