MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fusgrhashclwwlkn Structured version   Visualization version   GIF version

Theorem fusgrhashclwwlkn 30108
Description: The size of the set of closed walks (defined as words) with a fixed length which is a prime number is the product of the number of equivalence classes for over the set of closed walks and the fixed length. (Contributed by Alexander van der Vekens, 17-Jun-2018.) (Revised by AV, 1-May-2021.)
Hypotheses
Ref Expression
erclwwlkn.w 𝑊 = (𝑁 ClWWalksN 𝐺)
erclwwlkn.r = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
Assertion
Ref Expression
fusgrhashclwwlkn ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (♯‘𝑊) = ((♯‘(𝑊 / )) · 𝑁))
Distinct variable groups:   𝑡,𝑊,𝑢   𝑛,𝑁,𝑢,𝑡   𝑛,𝑊   𝑛,𝐺,𝑢
Allowed substitution hints:   (𝑢,𝑡,𝑛)   𝐺(𝑡)

Proof of Theorem fusgrhashclwwlkn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
21fusgrvtxfi 29351 . . . 4 (𝐺 ∈ FinUSGraph → (Vtx‘𝐺) ∈ Fin)
32adantr 480 . . 3 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (Vtx‘𝐺) ∈ Fin)
4 erclwwlkn.w . . . 4 𝑊 = (𝑁 ClWWalksN 𝐺)
5 erclwwlkn.r . . . 4 = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
64, 5hashclwwlkn0 30103 . . 3 ((Vtx‘𝐺) ∈ Fin → (♯‘𝑊) = Σ𝑥 ∈ (𝑊 / )(♯‘𝑥))
73, 6syl 17 . 2 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (♯‘𝑊) = Σ𝑥 ∈ (𝑊 / )(♯‘𝑥))
8 fusgrusgr 29354 . . . . . 6 (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph)
9 usgrumgr 29213 . . . . . 6 (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph)
108, 9syl 17 . . . . 5 (𝐺 ∈ FinUSGraph → 𝐺 ∈ UMGraph)
114, 5umgrhashecclwwlk 30107 . . . . 5 ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑥 ∈ (𝑊 / ) → (♯‘𝑥) = 𝑁))
1210, 11sylan 580 . . . 4 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (𝑥 ∈ (𝑊 / ) → (♯‘𝑥) = 𝑁))
1312imp 406 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (𝑊 / )) → (♯‘𝑥) = 𝑁)
1413sumeq2dv 15735 . 2 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → Σ𝑥 ∈ (𝑊 / )(♯‘𝑥) = Σ𝑥 ∈ (𝑊 / )𝑁)
154, 5qerclwwlknfi 30102 . . . 4 ((Vtx‘𝐺) ∈ Fin → (𝑊 / ) ∈ Fin)
163, 15syl 17 . . 3 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (𝑊 / ) ∈ Fin)
17 prmnn 16708 . . . . 5 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ)
1817nncnd 12280 . . . 4 (𝑁 ∈ ℙ → 𝑁 ∈ ℂ)
1918adantl 481 . . 3 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℂ)
20 fsumconst 15823 . . 3 (((𝑊 / ) ∈ Fin ∧ 𝑁 ∈ ℂ) → Σ𝑥 ∈ (𝑊 / )𝑁 = ((♯‘(𝑊 / )) · 𝑁))
2116, 19, 20syl2anc 584 . 2 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → Σ𝑥 ∈ (𝑊 / )𝑁 = ((♯‘(𝑊 / )) · 𝑁))
227, 14, 213eqtrd 2779 1 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (♯‘𝑊) = ((♯‘(𝑊 / )) · 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wrex 3068  {copab 5210  cfv 6563  (class class class)co 7431   / cqs 8743  Fincfn 8984  cc 11151  0cc0 11153   · cmul 11158  ...cfz 13544  chash 14366   cyclShift ccsh 14823  Σcsu 15719  cprime 16705  Vtxcvtx 29028  UMGraphcumgr 29113  USGraphcusgr 29181  FinUSGraphcfusgr 29348   ClWWalksN cclwwlkn 30053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-ec 8746  df-qs 8750  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-rp 13033  df-ico 13390  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-hash 14367  df-word 14550  df-lsw 14598  df-concat 14606  df-substr 14676  df-pfx 14706  df-reps 14804  df-csh 14824  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-dvds 16288  df-gcd 16529  df-prm 16706  df-phi 16800  df-edg 29080  df-umgr 29115  df-usgr 29183  df-fusgr 29349  df-clwwlk 30011  df-clwwlkn 30054
This theorem is referenced by:  clwwlkndivn  30109
  Copyright terms: Public domain W3C validator