MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fusgrhashclwwlkn Structured version   Visualization version   GIF version

Theorem fusgrhashclwwlkn 27477
Description: The size of the set of closed walks (defined as words) with a fixed length which is a prime number is the product of the number of equivalence classes for over the set of closed walks and the fixed length. (Contributed by Alexander van der Vekens, 17-Jun-2018.) (Revised by AV, 1-May-2021.)
Hypotheses
Ref Expression
erclwwlkn.w 𝑊 = (𝑁 ClWWalksN 𝐺)
erclwwlkn.r = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
Assertion
Ref Expression
fusgrhashclwwlkn ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (♯‘𝑊) = ((♯‘(𝑊 / )) · 𝑁))
Distinct variable groups:   𝑡,𝑊,𝑢   𝑛,𝑁,𝑢,𝑡   𝑛,𝑊   𝑛,𝐺,𝑢
Allowed substitution hints:   (𝑢,𝑡,𝑛)   𝐺(𝑡)

Proof of Theorem fusgrhashclwwlkn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2777 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
21fusgrvtxfi 26666 . . . 4 (𝐺 ∈ FinUSGraph → (Vtx‘𝐺) ∈ Fin)
32adantr 474 . . 3 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (Vtx‘𝐺) ∈ Fin)
4 erclwwlkn.w . . . 4 𝑊 = (𝑁 ClWWalksN 𝐺)
5 erclwwlkn.r . . . 4 = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
64, 5hashclwwlkn0 27472 . . 3 ((Vtx‘𝐺) ∈ Fin → (♯‘𝑊) = Σ𝑥 ∈ (𝑊 / )(♯‘𝑥))
73, 6syl 17 . 2 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (♯‘𝑊) = Σ𝑥 ∈ (𝑊 / )(♯‘𝑥))
8 fusgrusgr 26669 . . . . . 6 (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph)
9 usgrumgr 26528 . . . . . 6 (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph)
108, 9syl 17 . . . . 5 (𝐺 ∈ FinUSGraph → 𝐺 ∈ UMGraph)
114, 5umgrhashecclwwlk 27476 . . . . 5 ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑥 ∈ (𝑊 / ) → (♯‘𝑥) = 𝑁))
1210, 11sylan 575 . . . 4 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (𝑥 ∈ (𝑊 / ) → (♯‘𝑥) = 𝑁))
1312imp 397 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (𝑊 / )) → (♯‘𝑥) = 𝑁)
1413sumeq2dv 14841 . 2 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → Σ𝑥 ∈ (𝑊 / )(♯‘𝑥) = Σ𝑥 ∈ (𝑊 / )𝑁)
154, 5qerclwwlknfi 27471 . . . 4 ((Vtx‘𝐺) ∈ Fin → (𝑊 / ) ∈ Fin)
163, 15syl 17 . . 3 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (𝑊 / ) ∈ Fin)
17 prmnn 15793 . . . . 5 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ)
1817nncnd 11392 . . . 4 (𝑁 ∈ ℙ → 𝑁 ∈ ℂ)
1918adantl 475 . . 3 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℂ)
20 fsumconst 14926 . . 3 (((𝑊 / ) ∈ Fin ∧ 𝑁 ∈ ℂ) → Σ𝑥 ∈ (𝑊 / )𝑁 = ((♯‘(𝑊 / )) · 𝑁))
2116, 19, 20syl2anc 579 . 2 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → Σ𝑥 ∈ (𝑊 / )𝑁 = ((♯‘(𝑊 / )) · 𝑁))
227, 14, 213eqtrd 2817 1 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (♯‘𝑊) = ((♯‘(𝑊 / )) · 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1071   = wceq 1601  wcel 2106  wrex 3090  {copab 4948  cfv 6135  (class class class)co 6922   / cqs 8025  Fincfn 8241  cc 10270  0cc0 10272   · cmul 10277  ...cfz 12643  chash 13435   cyclShift ccsh 13934  Σcsu 14824  cprime 15790  Vtxcvtx 26344  UMGraphcumgr 26429  USGraphcusgr 26498  FinUSGraphcfusgr 26663   ClWWalksN cclwwlkn 27413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-disj 4855  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-ec 8028  df-qs 8032  df-map 8142  df-pm 8143  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-xnn0 11715  df-z 11729  df-uz 11993  df-rp 12138  df-ico 12493  df-fz 12644  df-fzo 12785  df-fl 12912  df-mod 12988  df-seq 13120  df-exp 13179  df-hash 13436  df-word 13600  df-lsw 13653  df-concat 13661  df-substr 13731  df-pfx 13780  df-reps 13915  df-csh 13936  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-clim 14627  df-sum 14825  df-dvds 15388  df-gcd 15623  df-prm 15791  df-phi 15875  df-edg 26396  df-umgr 26431  df-usgr 26500  df-fusgr 26664  df-clwwlk 27362  df-clwwlkn 27414
This theorem is referenced by:  clwwlkndivn  27478
  Copyright terms: Public domain W3C validator