| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nbfusgrlevtxm2 | Structured version Visualization version GIF version | ||
| Description: If there is a vertex which is not a neighbor of another vertex, the number of neighbors of the other vertex is at most the number of vertices of the graph minus 2 in a finite simple graph. (Contributed by AV, 16-Dec-2020.) (Proof shortened by AV, 13-Feb-2022.) |
| Ref | Expression |
|---|---|
| hashnbusgrnn0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| nbfusgrlevtxm2 | ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉) ∧ (𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ∧ 𝑀 ∉ (𝐺 NeighbVtx 𝑈))) → (♯‘(𝐺 NeighbVtx 𝑈)) ≤ ((♯‘𝑉) − 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashnbusgrnn0.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | fvexi 6831 | . . . 4 ⊢ 𝑉 ∈ V |
| 3 | difexg 5262 | . . . 4 ⊢ (𝑉 ∈ V → (𝑉 ∖ {𝑀, 𝑈}) ∈ V) | |
| 4 | 2, 3 | mp1i 13 | . . 3 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉) ∧ (𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ∧ 𝑀 ∉ (𝐺 NeighbVtx 𝑈))) → (𝑉 ∖ {𝑀, 𝑈}) ∈ V) |
| 5 | simpr3 1197 | . . . 4 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉) ∧ (𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ∧ 𝑀 ∉ (𝐺 NeighbVtx 𝑈))) → 𝑀 ∉ (𝐺 NeighbVtx 𝑈)) | |
| 6 | 1 | nbgrssvwo2 29335 | . . . 4 ⊢ (𝑀 ∉ (𝐺 NeighbVtx 𝑈) → (𝐺 NeighbVtx 𝑈) ⊆ (𝑉 ∖ {𝑀, 𝑈})) |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉) ∧ (𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ∧ 𝑀 ∉ (𝐺 NeighbVtx 𝑈))) → (𝐺 NeighbVtx 𝑈) ⊆ (𝑉 ∖ {𝑀, 𝑈})) |
| 8 | hashss 14311 | . . 3 ⊢ (((𝑉 ∖ {𝑀, 𝑈}) ∈ V ∧ (𝐺 NeighbVtx 𝑈) ⊆ (𝑉 ∖ {𝑀, 𝑈})) → (♯‘(𝐺 NeighbVtx 𝑈)) ≤ (♯‘(𝑉 ∖ {𝑀, 𝑈}))) | |
| 9 | 4, 7, 8 | syl2anc 584 | . 2 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉) ∧ (𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ∧ 𝑀 ∉ (𝐺 NeighbVtx 𝑈))) → (♯‘(𝐺 NeighbVtx 𝑈)) ≤ (♯‘(𝑉 ∖ {𝑀, 𝑈}))) |
| 10 | 1 | fusgrvtxfi 29292 | . . . 4 ⊢ (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin) |
| 11 | 10 | ad2antrr 726 | . . 3 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉) ∧ (𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ∧ 𝑀 ∉ (𝐺 NeighbVtx 𝑈))) → 𝑉 ∈ Fin) |
| 12 | simpr1 1195 | . . 3 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉) ∧ (𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ∧ 𝑀 ∉ (𝐺 NeighbVtx 𝑈))) → 𝑀 ∈ 𝑉) | |
| 13 | simplr 768 | . . 3 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉) ∧ (𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ∧ 𝑀 ∉ (𝐺 NeighbVtx 𝑈))) → 𝑈 ∈ 𝑉) | |
| 14 | simpr2 1196 | . . 3 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉) ∧ (𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ∧ 𝑀 ∉ (𝐺 NeighbVtx 𝑈))) → 𝑀 ≠ 𝑈) | |
| 15 | hashdifpr 14317 | . . 3 ⊢ ((𝑉 ∈ Fin ∧ (𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈)) → (♯‘(𝑉 ∖ {𝑀, 𝑈})) = ((♯‘𝑉) − 2)) | |
| 16 | 11, 12, 13, 14, 15 | syl13anc 1374 | . 2 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉) ∧ (𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ∧ 𝑀 ∉ (𝐺 NeighbVtx 𝑈))) → (♯‘(𝑉 ∖ {𝑀, 𝑈})) = ((♯‘𝑉) − 2)) |
| 17 | 9, 16 | breqtrd 5112 | 1 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉) ∧ (𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ∧ 𝑀 ∉ (𝐺 NeighbVtx 𝑈))) → (♯‘(𝐺 NeighbVtx 𝑈)) ≤ ((♯‘𝑉) − 2)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∉ wnel 3032 Vcvv 3436 ∖ cdif 3894 ⊆ wss 3897 {cpr 4573 class class class wbr 5086 ‘cfv 6476 (class class class)co 7341 Fincfn 8864 ≤ cle 11142 − cmin 11339 2c2 12175 ♯chash 14232 Vtxcvtx 28969 FinUSGraphcfusgr 29289 NeighbVtx cnbgr 29305 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-oadd 8384 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-dju 9789 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-n0 12377 df-xnn0 12450 df-z 12464 df-uz 12728 df-fz 13403 df-hash 14233 df-fusgr 29290 df-nbgr 29306 |
| This theorem is referenced by: nbusgrvtxm1 29352 |
| Copyright terms: Public domain | W3C validator |