Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbfusgrlevtxm2 Structured version   Visualization version   GIF version

Theorem nbfusgrlevtxm2 27212
 Description: If there is a vertex which is not a neighbor of another vertex, the number of neighbors of the other vertex is at most the number of vertices of the graph minus 2 in a finite simple graph. (Contributed by AV, 16-Dec-2020.) (Proof shortened by AV, 13-Feb-2022.)
Hypothesis
Ref Expression
hashnbusgrnn0.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
nbfusgrlevtxm2 (((𝐺 ∈ FinUSGraph ∧ 𝑈𝑉) ∧ (𝑀𝑉𝑀𝑈𝑀 ∉ (𝐺 NeighbVtx 𝑈))) → (♯‘(𝐺 NeighbVtx 𝑈)) ≤ ((♯‘𝑉) − 2))

Proof of Theorem nbfusgrlevtxm2
StepHypRef Expression
1 hashnbusgrnn0.v . . . . 5 𝑉 = (Vtx‘𝐺)
21fvexi 6669 . . . 4 𝑉 ∈ V
3 difexg 5199 . . . 4 (𝑉 ∈ V → (𝑉 ∖ {𝑀, 𝑈}) ∈ V)
42, 3mp1i 13 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑈𝑉) ∧ (𝑀𝑉𝑀𝑈𝑀 ∉ (𝐺 NeighbVtx 𝑈))) → (𝑉 ∖ {𝑀, 𝑈}) ∈ V)
5 simpr3 1193 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑈𝑉) ∧ (𝑀𝑉𝑀𝑈𝑀 ∉ (𝐺 NeighbVtx 𝑈))) → 𝑀 ∉ (𝐺 NeighbVtx 𝑈))
61nbgrssvwo2 27196 . . . 4 (𝑀 ∉ (𝐺 NeighbVtx 𝑈) → (𝐺 NeighbVtx 𝑈) ⊆ (𝑉 ∖ {𝑀, 𝑈}))
75, 6syl 17 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑈𝑉) ∧ (𝑀𝑉𝑀𝑈𝑀 ∉ (𝐺 NeighbVtx 𝑈))) → (𝐺 NeighbVtx 𝑈) ⊆ (𝑉 ∖ {𝑀, 𝑈}))
8 hashss 13786 . . 3 (((𝑉 ∖ {𝑀, 𝑈}) ∈ V ∧ (𝐺 NeighbVtx 𝑈) ⊆ (𝑉 ∖ {𝑀, 𝑈})) → (♯‘(𝐺 NeighbVtx 𝑈)) ≤ (♯‘(𝑉 ∖ {𝑀, 𝑈})))
94, 7, 8syl2anc 587 . 2 (((𝐺 ∈ FinUSGraph ∧ 𝑈𝑉) ∧ (𝑀𝑉𝑀𝑈𝑀 ∉ (𝐺 NeighbVtx 𝑈))) → (♯‘(𝐺 NeighbVtx 𝑈)) ≤ (♯‘(𝑉 ∖ {𝑀, 𝑈})))
101fusgrvtxfi 27153 . . . 4 (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin)
1110ad2antrr 725 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑈𝑉) ∧ (𝑀𝑉𝑀𝑈𝑀 ∉ (𝐺 NeighbVtx 𝑈))) → 𝑉 ∈ Fin)
12 simpr1 1191 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑈𝑉) ∧ (𝑀𝑉𝑀𝑈𝑀 ∉ (𝐺 NeighbVtx 𝑈))) → 𝑀𝑉)
13 simplr 768 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑈𝑉) ∧ (𝑀𝑉𝑀𝑈𝑀 ∉ (𝐺 NeighbVtx 𝑈))) → 𝑈𝑉)
14 simpr2 1192 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑈𝑉) ∧ (𝑀𝑉𝑀𝑈𝑀 ∉ (𝐺 NeighbVtx 𝑈))) → 𝑀𝑈)
15 hashdifpr 13792 . . 3 ((𝑉 ∈ Fin ∧ (𝑀𝑉𝑈𝑉𝑀𝑈)) → (♯‘(𝑉 ∖ {𝑀, 𝑈})) = ((♯‘𝑉) − 2))
1611, 12, 13, 14, 15syl13anc 1369 . 2 (((𝐺 ∈ FinUSGraph ∧ 𝑈𝑉) ∧ (𝑀𝑉𝑀𝑈𝑀 ∉ (𝐺 NeighbVtx 𝑈))) → (♯‘(𝑉 ∖ {𝑀, 𝑈})) = ((♯‘𝑉) − 2))
179, 16breqtrd 5060 1 (((𝐺 ∈ FinUSGraph ∧ 𝑈𝑉) ∧ (𝑀𝑉𝑀𝑈𝑀 ∉ (𝐺 NeighbVtx 𝑈))) → (♯‘(𝐺 NeighbVtx 𝑈)) ≤ ((♯‘𝑉) − 2))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2987   ∉ wnel 3091  Vcvv 3442   ∖ cdif 3880   ⊆ wss 3883  {cpr 4530   class class class wbr 5034  ‘cfv 6332  (class class class)co 7145  Fincfn 8510   ≤ cle 10683   − cmin 10877  2c2 11698  ♯chash 13706  Vtxcvtx 26833  FinUSGraphcfusgr 27150   NeighbVtx cnbgr 27166 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-int 4843  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7574  df-1st 7684  df-2nd 7685  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-1o 8103  df-oadd 8107  df-er 8290  df-en 8511  df-dom 8512  df-sdom 8513  df-fin 8514  df-dju 9332  df-card 9370  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-nn 11644  df-2 11706  df-n0 11904  df-xnn0 11976  df-z 11990  df-uz 12252  df-fz 12906  df-hash 13707  df-fusgr 27151  df-nbgr 27167 This theorem is referenced by:  nbusgrvtxm1  27213
 Copyright terms: Public domain W3C validator