![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlksnfi | Structured version Visualization version GIF version |
Description: The number of walks of fixed length is finite if the number of vertices is finite (in the graph). (Contributed by Alexander van der Vekens, 25-Aug-2018.) (Revised by AV, 20-Apr-2021.) |
Ref | Expression |
---|---|
wlksnfi | ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ0) → {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st ‘𝑝)) = 𝑁} ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2734 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | 1 | fusgrvtxfi 29345 | . . . 4 ⊢ (𝐺 ∈ FinUSGraph → (Vtx‘𝐺) ∈ Fin) |
3 | 2 | adantr 480 | . . 3 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ0) → (Vtx‘𝐺) ∈ Fin) |
4 | wwlksnfi 29930 | . . 3 ⊢ ((Vtx‘𝐺) ∈ Fin → (𝑁 WWalksN 𝐺) ∈ Fin) | |
5 | 3, 4 | syl 17 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ0) → (𝑁 WWalksN 𝐺) ∈ Fin) |
6 | fusgrusgr 29348 | . . . 4 ⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph) | |
7 | usgruspgr 29206 | . . . 4 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ USPGraph) |
9 | wlknwwlksnen 29913 | . . 3 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st ‘𝑝)) = 𝑁} ≈ (𝑁 WWalksN 𝐺)) | |
10 | 8, 9 | sylan 579 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ0) → {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st ‘𝑝)) = 𝑁} ≈ (𝑁 WWalksN 𝐺)) |
11 | enfii 9248 | . 2 ⊢ (((𝑁 WWalksN 𝐺) ∈ Fin ∧ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st ‘𝑝)) = 𝑁} ≈ (𝑁 WWalksN 𝐺)) → {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st ‘𝑝)) = 𝑁} ∈ Fin) | |
12 | 5, 10, 11 | syl2anc 583 | 1 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ0) → {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st ‘𝑝)) = 𝑁} ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2103 {crab 3438 class class class wbr 5169 ‘cfv 6572 (class class class)co 7445 1st c1st 8024 ≈ cen 8996 Fincfn 8999 ℕ0cn0 12549 ♯chash 14375 Vtxcvtx 29022 USPGraphcuspgr 29174 USGraphcusgr 29175 FinUSGraphcfusgr 29342 Walkscwlks 29623 WWalksN cwwlksn 29850 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-rep 5306 ax-sep 5320 ax-nul 5327 ax-pow 5386 ax-pr 5450 ax-un 7766 ax-cnex 11236 ax-resscn 11237 ax-1cn 11238 ax-icn 11239 ax-addcl 11240 ax-addrcl 11241 ax-mulcl 11242 ax-mulrcl 11243 ax-mulcom 11244 ax-addass 11245 ax-mulass 11246 ax-distr 11247 ax-i2m1 11248 ax-1ne0 11249 ax-1rid 11250 ax-rnegex 11251 ax-rrecex 11252 ax-cnre 11253 ax-pre-lttri 11254 ax-pre-lttrn 11255 ax-pre-ltadd 11256 ax-pre-mulgt0 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ifp 1064 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-reu 3384 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-pss 3990 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4973 df-iun 5021 df-br 5170 df-opab 5232 df-mpt 5253 df-tr 5287 df-id 5597 df-eprel 5603 df-po 5611 df-so 5612 df-fr 5654 df-we 5656 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-pred 6331 df-ord 6397 df-on 6398 df-lim 6399 df-suc 6400 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 df-riota 7401 df-ov 7448 df-oprab 7449 df-mpo 7450 df-om 7900 df-1st 8026 df-2nd 8027 df-frecs 8318 df-wrecs 8349 df-recs 8423 df-rdg 8462 df-1o 8518 df-2o 8519 df-oadd 8522 df-er 8759 df-map 8882 df-pm 8883 df-en 9000 df-dom 9001 df-sdom 9002 df-fin 9003 df-dju 9966 df-card 10004 df-pnf 11322 df-mnf 11323 df-xr 11324 df-ltxr 11325 df-le 11326 df-sub 11518 df-neg 11519 df-nn 12290 df-2 12352 df-n0 12550 df-xnn0 12622 df-z 12636 df-uz 12900 df-fz 13564 df-fzo 13708 df-seq 14049 df-exp 14109 df-hash 14376 df-word 14559 df-edg 29074 df-uhgr 29084 df-upgr 29108 df-uspgr 29176 df-usgr 29177 df-fusgr 29343 df-wlks 29626 df-wwlks 29854 df-wwlksn 29855 |
This theorem is referenced by: clwlknon2num 30391 numclwlk1lem2 30393 |
Copyright terms: Public domain | W3C validator |