MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk3lem2 Structured version   Visualization version   GIF version

Theorem numclwwlk3lem2 28748
Description: Lemma 1 for numclwwlk3 28749: The number of closed vertices of a fixed length 𝑁 on a fixed vertex 𝑉 is the sum of the number of closed walks of length 𝑁 at 𝑉 with the last but one vertex being 𝑉 and the set of closed walks of length 𝑁 at 𝑉 with the last but one vertex not being 𝑉. (Contributed by Alexander van der Vekens, 6-Oct-2018.) (Revised by AV, 1-Jun-2021.) (Revised by AV, 1-May-2022.)
Hypotheses
Ref Expression
numclwwlk3lem2.c 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
numclwwlk3lem2.h 𝐻 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣})
Assertion
Ref Expression
numclwwlk3lem2 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (♯‘(𝑋(ClWWalksNOn‘𝐺)𝑁)) = ((♯‘(𝑋𝐻𝑁)) + (♯‘(𝑋𝐶𝑁))))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤
Allowed substitution hints:   𝐶(𝑤,𝑣,𝑛)   𝐻(𝑤,𝑣,𝑛)   𝑉(𝑤)

Proof of Theorem numclwwlk3lem2
StepHypRef Expression
1 numclwwlk3lem2.c . . . . 5 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
2 numclwwlk3lem2.h . . . . 5 𝐻 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣})
31, 2numclwwlk3lem2lem 28747 . . . 4 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = ((𝑋𝐻𝑁) ∪ (𝑋𝐶𝑁)))
43adantll 711 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = ((𝑋𝐻𝑁) ∪ (𝑋𝐶𝑁)))
54fveq2d 6778 . 2 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (♯‘(𝑋(ClWWalksNOn‘𝐺)𝑁)) = (♯‘((𝑋𝐻𝑁) ∪ (𝑋𝐶𝑁))))
62numclwwlkovh0 28736 . . . . 5 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑋𝐻𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋})
76adantll 711 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑋𝐻𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋})
8 eqid 2738 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
98fusgrvtxfi 27686 . . . . . 6 (𝐺 ∈ FinUSGraph → (Vtx‘𝐺) ∈ Fin)
109ad2antrr 723 . . . . 5 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (Vtx‘𝐺) ∈ Fin)
118clwwlknonfin 28458 . . . . 5 ((Vtx‘𝐺) ∈ Fin → (𝑋(ClWWalksNOn‘𝐺)𝑁) ∈ Fin)
12 rabfi 9044 . . . . 5 ((𝑋(ClWWalksNOn‘𝐺)𝑁) ∈ Fin → {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋} ∈ Fin)
1310, 11, 123syl 18 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋} ∈ Fin)
147, 13eqeltrd 2839 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑋𝐻𝑁) ∈ Fin)
1512clwwlk 28711 . . . . 5 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋})
1615adantll 711 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋})
17 rabfi 9044 . . . . 5 ((𝑋(ClWWalksNOn‘𝐺)𝑁) ∈ Fin → {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} ∈ Fin)
1810, 11, 173syl 18 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} ∈ Fin)
1916, 18eqeltrd 2839 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑋𝐶𝑁) ∈ Fin)
207, 16ineq12d 4147 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑋𝐻𝑁) ∩ (𝑋𝐶𝑁)) = ({𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋} ∩ {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}))
21 inrab 4240 . . . . 5 ({𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋} ∩ {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)}
22 exmid 892 . . . . . . . 8 ((𝑤‘(𝑁 − 2)) = 𝑋 ∨ ¬ (𝑤‘(𝑁 − 2)) = 𝑋)
23 ianor 979 . . . . . . . . 9 (¬ ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ (¬ (𝑤‘(𝑁 − 2)) ≠ 𝑋 ∨ ¬ (𝑤‘(𝑁 − 2)) = 𝑋))
24 nne 2947 . . . . . . . . . 10 (¬ (𝑤‘(𝑁 − 2)) ≠ 𝑋 ↔ (𝑤‘(𝑁 − 2)) = 𝑋)
2524orbi1i 911 . . . . . . . . 9 ((¬ (𝑤‘(𝑁 − 2)) ≠ 𝑋 ∨ ¬ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ ((𝑤‘(𝑁 − 2)) = 𝑋 ∨ ¬ (𝑤‘(𝑁 − 2)) = 𝑋))
2623, 25bitri 274 . . . . . . . 8 (¬ ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ ((𝑤‘(𝑁 − 2)) = 𝑋 ∨ ¬ (𝑤‘(𝑁 − 2)) = 𝑋))
2722, 26mpbir 230 . . . . . . 7 ¬ ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)
2827rgenw 3076 . . . . . 6 𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ¬ ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)
29 rabeq0 4318 . . . . . 6 ({𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)} = ∅ ↔ ∀𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ¬ ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋))
3028, 29mpbir 230 . . . . 5 {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)} = ∅
3121, 30eqtri 2766 . . . 4 ({𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋} ∩ {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}) = ∅
3220, 31eqtrdi 2794 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑋𝐻𝑁) ∩ (𝑋𝐶𝑁)) = ∅)
33 hashun 14097 . . 3 (((𝑋𝐻𝑁) ∈ Fin ∧ (𝑋𝐶𝑁) ∈ Fin ∧ ((𝑋𝐻𝑁) ∩ (𝑋𝐶𝑁)) = ∅) → (♯‘((𝑋𝐻𝑁) ∪ (𝑋𝐶𝑁))) = ((♯‘(𝑋𝐻𝑁)) + (♯‘(𝑋𝐶𝑁))))
3414, 19, 32, 33syl3anc 1370 . 2 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (♯‘((𝑋𝐻𝑁) ∪ (𝑋𝐶𝑁))) = ((♯‘(𝑋𝐻𝑁)) + (♯‘(𝑋𝐶𝑁))))
355, 34eqtrd 2778 1 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (♯‘(𝑋(ClWWalksNOn‘𝐺)𝑁)) = ((♯‘(𝑋𝐻𝑁)) + (♯‘(𝑋𝐶𝑁))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  wral 3064  {crab 3068  cun 3885  cin 3886  c0 4256  cfv 6433  (class class class)co 7275  cmpo 7277  Fincfn 8733   + caddc 10874  cmin 11205  2c2 12028  cuz 12582  chash 14044  Vtxcvtx 27366  FinUSGraphcfusgr 27683  ClWWalksNOncclwwlknon 28451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-word 14218  df-fusgr 27684  df-clwwlk 28346  df-clwwlkn 28389  df-clwwlknon 28452
This theorem is referenced by:  numclwwlk3  28749
  Copyright terms: Public domain W3C validator