MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk3lem2 Structured version   Visualization version   GIF version

Theorem numclwwlk3lem2 28313
Description: Lemma 1 for numclwwlk3 28314: The number of closed vertices of a fixed length 𝑁 on a fixed vertex 𝑉 is the sum of the number of closed walks of length 𝑁 at 𝑉 with the last but one vertex being 𝑉 and the set of closed walks of length 𝑁 at 𝑉 with the last but one vertex not being 𝑉. (Contributed by Alexander van der Vekens, 6-Oct-2018.) (Revised by AV, 1-Jun-2021.) (Revised by AV, 1-May-2022.)
Hypotheses
Ref Expression
numclwwlk3lem2.c 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
numclwwlk3lem2.h 𝐻 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣})
Assertion
Ref Expression
numclwwlk3lem2 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (♯‘(𝑋(ClWWalksNOn‘𝐺)𝑁)) = ((♯‘(𝑋𝐻𝑁)) + (♯‘(𝑋𝐶𝑁))))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤
Allowed substitution hints:   𝐶(𝑤,𝑣,𝑛)   𝐻(𝑤,𝑣,𝑛)   𝑉(𝑤)

Proof of Theorem numclwwlk3lem2
StepHypRef Expression
1 numclwwlk3lem2.c . . . . 5 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
2 numclwwlk3lem2.h . . . . 5 𝐻 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣})
31, 2numclwwlk3lem2lem 28312 . . . 4 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = ((𝑋𝐻𝑁) ∪ (𝑋𝐶𝑁)))
43adantll 714 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = ((𝑋𝐻𝑁) ∪ (𝑋𝐶𝑁)))
54fveq2d 6672 . 2 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (♯‘(𝑋(ClWWalksNOn‘𝐺)𝑁)) = (♯‘((𝑋𝐻𝑁) ∪ (𝑋𝐶𝑁))))
62numclwwlkovh0 28301 . . . . 5 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑋𝐻𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋})
76adantll 714 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑋𝐻𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋})
8 eqid 2738 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
98fusgrvtxfi 27253 . . . . . 6 (𝐺 ∈ FinUSGraph → (Vtx‘𝐺) ∈ Fin)
109ad2antrr 726 . . . . 5 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (Vtx‘𝐺) ∈ Fin)
118clwwlknonfin 28023 . . . . 5 ((Vtx‘𝐺) ∈ Fin → (𝑋(ClWWalksNOn‘𝐺)𝑁) ∈ Fin)
12 rabfi 8814 . . . . 5 ((𝑋(ClWWalksNOn‘𝐺)𝑁) ∈ Fin → {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋} ∈ Fin)
1310, 11, 123syl 18 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋} ∈ Fin)
147, 13eqeltrd 2833 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑋𝐻𝑁) ∈ Fin)
1512clwwlk 28276 . . . . 5 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋})
1615adantll 714 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋})
17 rabfi 8814 . . . . 5 ((𝑋(ClWWalksNOn‘𝐺)𝑁) ∈ Fin → {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} ∈ Fin)
1810, 11, 173syl 18 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} ∈ Fin)
1916, 18eqeltrd 2833 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑋𝐶𝑁) ∈ Fin)
207, 16ineq12d 4102 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑋𝐻𝑁) ∩ (𝑋𝐶𝑁)) = ({𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋} ∩ {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}))
21 inrab 4193 . . . . 5 ({𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋} ∩ {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)}
22 exmid 894 . . . . . . . 8 ((𝑤‘(𝑁 − 2)) = 𝑋 ∨ ¬ (𝑤‘(𝑁 − 2)) = 𝑋)
23 ianor 981 . . . . . . . . 9 (¬ ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ (¬ (𝑤‘(𝑁 − 2)) ≠ 𝑋 ∨ ¬ (𝑤‘(𝑁 − 2)) = 𝑋))
24 nne 2938 . . . . . . . . . 10 (¬ (𝑤‘(𝑁 − 2)) ≠ 𝑋 ↔ (𝑤‘(𝑁 − 2)) = 𝑋)
2524orbi1i 913 . . . . . . . . 9 ((¬ (𝑤‘(𝑁 − 2)) ≠ 𝑋 ∨ ¬ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ ((𝑤‘(𝑁 − 2)) = 𝑋 ∨ ¬ (𝑤‘(𝑁 − 2)) = 𝑋))
2623, 25bitri 278 . . . . . . . 8 (¬ ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ ((𝑤‘(𝑁 − 2)) = 𝑋 ∨ ¬ (𝑤‘(𝑁 − 2)) = 𝑋))
2722, 26mpbir 234 . . . . . . 7 ¬ ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)
2827rgenw 3065 . . . . . 6 𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ¬ ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)
29 rabeq0 4270 . . . . . 6 ({𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)} = ∅ ↔ ∀𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ¬ ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋))
3028, 29mpbir 234 . . . . 5 {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)} = ∅
3121, 30eqtri 2761 . . . 4 ({𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋} ∩ {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}) = ∅
3220, 31eqtrdi 2789 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑋𝐻𝑁) ∩ (𝑋𝐶𝑁)) = ∅)
33 hashun 13828 . . 3 (((𝑋𝐻𝑁) ∈ Fin ∧ (𝑋𝐶𝑁) ∈ Fin ∧ ((𝑋𝐻𝑁) ∩ (𝑋𝐶𝑁)) = ∅) → (♯‘((𝑋𝐻𝑁) ∪ (𝑋𝐶𝑁))) = ((♯‘(𝑋𝐻𝑁)) + (♯‘(𝑋𝐶𝑁))))
3414, 19, 32, 33syl3anc 1372 . 2 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (♯‘((𝑋𝐻𝑁) ∪ (𝑋𝐶𝑁))) = ((♯‘(𝑋𝐻𝑁)) + (♯‘(𝑋𝐶𝑁))))
355, 34eqtrd 2773 1 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (♯‘(𝑋(ClWWalksNOn‘𝐺)𝑁)) = ((♯‘(𝑋𝐻𝑁)) + (♯‘(𝑋𝐶𝑁))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 846   = wceq 1542  wcel 2113  wne 2934  wral 3053  {crab 3057  cun 3839  cin 3840  c0 4209  cfv 6333  (class class class)co 7164  cmpo 7166  Fincfn 8548   + caddc 10611  cmin 10941  2c2 11764  cuz 12317  chash 13775  Vtxcvtx 26933  FinUSGraphcfusgr 27250  ClWWalksNOncclwwlknon 28016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-int 4834  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-1st 7707  df-2nd 7708  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-1o 8124  df-oadd 8128  df-er 8313  df-map 8432  df-pm 8433  df-en 8549  df-dom 8550  df-sdom 8551  df-fin 8552  df-dju 9396  df-card 9434  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-nn 11710  df-n0 11970  df-xnn0 12042  df-z 12056  df-uz 12318  df-fz 12975  df-fzo 13118  df-seq 13454  df-exp 13515  df-hash 13776  df-word 13949  df-fusgr 27251  df-clwwlk 27911  df-clwwlkn 27954  df-clwwlknon 28017
This theorem is referenced by:  numclwwlk3  28314
  Copyright terms: Public domain W3C validator