MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk3lem2 Structured version   Visualization version   GIF version

Theorem numclwwlk3lem2 30359
Description: Lemma 1 for numclwwlk3 30360: The number of closed vertices of a fixed length 𝑁 on a fixed vertex 𝑉 is the sum of the number of closed walks of length 𝑁 at 𝑉 with the last but one vertex being 𝑉 and the set of closed walks of length 𝑁 at 𝑉 with the last but one vertex not being 𝑉. (Contributed by Alexander van der Vekens, 6-Oct-2018.) (Revised by AV, 1-Jun-2021.) (Revised by AV, 1-May-2022.)
Hypotheses
Ref Expression
numclwwlk3lem2.c 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
numclwwlk3lem2.h 𝐻 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣})
Assertion
Ref Expression
numclwwlk3lem2 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (♯‘(𝑋(ClWWalksNOn‘𝐺)𝑁)) = ((♯‘(𝑋𝐻𝑁)) + (♯‘(𝑋𝐶𝑁))))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤
Allowed substitution hints:   𝐶(𝑤,𝑣,𝑛)   𝐻(𝑤,𝑣,𝑛)   𝑉(𝑤)

Proof of Theorem numclwwlk3lem2
StepHypRef Expression
1 numclwwlk3lem2.c . . . . 5 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
2 numclwwlk3lem2.h . . . . 5 𝐻 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣})
31, 2numclwwlk3lem2lem 30358 . . . 4 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = ((𝑋𝐻𝑁) ∪ (𝑋𝐶𝑁)))
43adantll 714 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = ((𝑋𝐻𝑁) ∪ (𝑋𝐶𝑁)))
54fveq2d 6826 . 2 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (♯‘(𝑋(ClWWalksNOn‘𝐺)𝑁)) = (♯‘((𝑋𝐻𝑁) ∪ (𝑋𝐶𝑁))))
62numclwwlkovh0 30347 . . . . 5 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑋𝐻𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋})
76adantll 714 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑋𝐻𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋})
8 eqid 2731 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
98fusgrvtxfi 29295 . . . . . 6 (𝐺 ∈ FinUSGraph → (Vtx‘𝐺) ∈ Fin)
109ad2antrr 726 . . . . 5 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (Vtx‘𝐺) ∈ Fin)
118clwwlknonfin 30069 . . . . 5 ((Vtx‘𝐺) ∈ Fin → (𝑋(ClWWalksNOn‘𝐺)𝑁) ∈ Fin)
12 rabfi 9155 . . . . 5 ((𝑋(ClWWalksNOn‘𝐺)𝑁) ∈ Fin → {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋} ∈ Fin)
1310, 11, 123syl 18 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋} ∈ Fin)
147, 13eqeltrd 2831 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑋𝐻𝑁) ∈ Fin)
1512clwwlk 30322 . . . . 5 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋})
1615adantll 714 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋})
17 rabfi 9155 . . . . 5 ((𝑋(ClWWalksNOn‘𝐺)𝑁) ∈ Fin → {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} ∈ Fin)
1810, 11, 173syl 18 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} ∈ Fin)
1916, 18eqeltrd 2831 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑋𝐶𝑁) ∈ Fin)
207, 16ineq12d 4171 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑋𝐻𝑁) ∩ (𝑋𝐶𝑁)) = ({𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋} ∩ {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}))
21 inrab 4266 . . . . 5 ({𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋} ∩ {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)}
22 exmid 894 . . . . . . . 8 ((𝑤‘(𝑁 − 2)) = 𝑋 ∨ ¬ (𝑤‘(𝑁 − 2)) = 𝑋)
23 ianor 983 . . . . . . . . 9 (¬ ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ (¬ (𝑤‘(𝑁 − 2)) ≠ 𝑋 ∨ ¬ (𝑤‘(𝑁 − 2)) = 𝑋))
24 nne 2932 . . . . . . . . . 10 (¬ (𝑤‘(𝑁 − 2)) ≠ 𝑋 ↔ (𝑤‘(𝑁 − 2)) = 𝑋)
2524orbi1i 913 . . . . . . . . 9 ((¬ (𝑤‘(𝑁 − 2)) ≠ 𝑋 ∨ ¬ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ ((𝑤‘(𝑁 − 2)) = 𝑋 ∨ ¬ (𝑤‘(𝑁 − 2)) = 𝑋))
2623, 25bitri 275 . . . . . . . 8 (¬ ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ ((𝑤‘(𝑁 − 2)) = 𝑋 ∨ ¬ (𝑤‘(𝑁 − 2)) = 𝑋))
2722, 26mpbir 231 . . . . . . 7 ¬ ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)
2827rgenw 3051 . . . . . 6 𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ¬ ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)
29 rabeq0 4338 . . . . . 6 ({𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)} = ∅ ↔ ∀𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ¬ ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋))
3028, 29mpbir 231 . . . . 5 {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)} = ∅
3121, 30eqtri 2754 . . . 4 ({𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋} ∩ {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}) = ∅
3220, 31eqtrdi 2782 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑋𝐻𝑁) ∩ (𝑋𝐶𝑁)) = ∅)
33 hashun 14286 . . 3 (((𝑋𝐻𝑁) ∈ Fin ∧ (𝑋𝐶𝑁) ∈ Fin ∧ ((𝑋𝐻𝑁) ∩ (𝑋𝐶𝑁)) = ∅) → (♯‘((𝑋𝐻𝑁) ∪ (𝑋𝐶𝑁))) = ((♯‘(𝑋𝐻𝑁)) + (♯‘(𝑋𝐶𝑁))))
3414, 19, 32, 33syl3anc 1373 . 2 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (♯‘((𝑋𝐻𝑁) ∪ (𝑋𝐶𝑁))) = ((♯‘(𝑋𝐻𝑁)) + (♯‘(𝑋𝐶𝑁))))
355, 34eqtrd 2766 1 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (♯‘(𝑋(ClWWalksNOn‘𝐺)𝑁)) = ((♯‘(𝑋𝐻𝑁)) + (♯‘(𝑋𝐶𝑁))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928  wral 3047  {crab 3395  cun 3900  cin 3901  c0 4283  cfv 6481  (class class class)co 7346  cmpo 7348  Fincfn 8869   + caddc 11006  cmin 11341  2c2 12177  cuz 12729  chash 14234  Vtxcvtx 28972  FinUSGraphcfusgr 29292  ClWWalksNOncclwwlknon 30062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9791  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-n0 12379  df-xnn0 12452  df-z 12466  df-uz 12730  df-fz 13405  df-fzo 13552  df-seq 13906  df-exp 13966  df-hash 14235  df-word 14418  df-fusgr 29293  df-clwwlk 29957  df-clwwlkn 30000  df-clwwlknon 30063
This theorem is referenced by:  numclwwlk3  30360
  Copyright terms: Public domain W3C validator