MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk3lem2 Structured version   Visualization version   GIF version

Theorem numclwwlk3lem2 28169
Description: Lemma 1 for numclwwlk3 28170: The number of closed vertices of a fixed length 𝑁 on a fixed vertex 𝑉 is the sum of the number of closed walks of length 𝑁 at 𝑉 with the last but one vertex being 𝑉 and the set of closed walks of length 𝑁 at 𝑉 with the last but one vertex not being 𝑉. (Contributed by Alexander van der Vekens, 6-Oct-2018.) (Revised by AV, 1-Jun-2021.) (Revised by AV, 1-May-2022.)
Hypotheses
Ref Expression
numclwwlk3lem2.c 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
numclwwlk3lem2.h 𝐻 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣})
Assertion
Ref Expression
numclwwlk3lem2 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (♯‘(𝑋(ClWWalksNOn‘𝐺)𝑁)) = ((♯‘(𝑋𝐻𝑁)) + (♯‘(𝑋𝐶𝑁))))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤
Allowed substitution hints:   𝐶(𝑤,𝑣,𝑛)   𝐻(𝑤,𝑣,𝑛)   𝑉(𝑤)

Proof of Theorem numclwwlk3lem2
StepHypRef Expression
1 numclwwlk3lem2.c . . . . 5 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
2 numclwwlk3lem2.h . . . . 5 𝐻 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣})
31, 2numclwwlk3lem2lem 28168 . . . 4 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = ((𝑋𝐻𝑁) ∪ (𝑋𝐶𝑁)))
43adantll 713 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = ((𝑋𝐻𝑁) ∪ (𝑋𝐶𝑁)))
54fveq2d 6649 . 2 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (♯‘(𝑋(ClWWalksNOn‘𝐺)𝑁)) = (♯‘((𝑋𝐻𝑁) ∪ (𝑋𝐶𝑁))))
62numclwwlkovh0 28157 . . . . 5 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑋𝐻𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋})
76adantll 713 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑋𝐻𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋})
8 eqid 2798 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
98fusgrvtxfi 27109 . . . . . 6 (𝐺 ∈ FinUSGraph → (Vtx‘𝐺) ∈ Fin)
109ad2antrr 725 . . . . 5 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (Vtx‘𝐺) ∈ Fin)
118clwwlknonfin 27879 . . . . 5 ((Vtx‘𝐺) ∈ Fin → (𝑋(ClWWalksNOn‘𝐺)𝑁) ∈ Fin)
12 rabfi 8727 . . . . 5 ((𝑋(ClWWalksNOn‘𝐺)𝑁) ∈ Fin → {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋} ∈ Fin)
1310, 11, 123syl 18 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋} ∈ Fin)
147, 13eqeltrd 2890 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑋𝐻𝑁) ∈ Fin)
1512clwwlk 28132 . . . . 5 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋})
1615adantll 713 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋})
17 rabfi 8727 . . . . 5 ((𝑋(ClWWalksNOn‘𝐺)𝑁) ∈ Fin → {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} ∈ Fin)
1810, 11, 173syl 18 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} ∈ Fin)
1916, 18eqeltrd 2890 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑋𝐶𝑁) ∈ Fin)
207, 16ineq12d 4140 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑋𝐻𝑁) ∩ (𝑋𝐶𝑁)) = ({𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋} ∩ {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}))
21 inrab 4227 . . . . 5 ({𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋} ∩ {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)}
22 exmid 892 . . . . . . . 8 ((𝑤‘(𝑁 − 2)) = 𝑋 ∨ ¬ (𝑤‘(𝑁 − 2)) = 𝑋)
23 ianor 979 . . . . . . . . 9 (¬ ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ (¬ (𝑤‘(𝑁 − 2)) ≠ 𝑋 ∨ ¬ (𝑤‘(𝑁 − 2)) = 𝑋))
24 nne 2991 . . . . . . . . . 10 (¬ (𝑤‘(𝑁 − 2)) ≠ 𝑋 ↔ (𝑤‘(𝑁 − 2)) = 𝑋)
2524orbi1i 911 . . . . . . . . 9 ((¬ (𝑤‘(𝑁 − 2)) ≠ 𝑋 ∨ ¬ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ ((𝑤‘(𝑁 − 2)) = 𝑋 ∨ ¬ (𝑤‘(𝑁 − 2)) = 𝑋))
2623, 25bitri 278 . . . . . . . 8 (¬ ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ ((𝑤‘(𝑁 − 2)) = 𝑋 ∨ ¬ (𝑤‘(𝑁 − 2)) = 𝑋))
2722, 26mpbir 234 . . . . . . 7 ¬ ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)
2827rgenw 3118 . . . . . 6 𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ¬ ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)
29 rabeq0 4292 . . . . . 6 ({𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)} = ∅ ↔ ∀𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ¬ ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋))
3028, 29mpbir 234 . . . . 5 {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋)} = ∅
3121, 30eqtri 2821 . . . 4 ({𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋} ∩ {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}) = ∅
3220, 31eqtrdi 2849 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑋𝐻𝑁) ∩ (𝑋𝐶𝑁)) = ∅)
33 hashun 13739 . . 3 (((𝑋𝐻𝑁) ∈ Fin ∧ (𝑋𝐶𝑁) ∈ Fin ∧ ((𝑋𝐻𝑁) ∩ (𝑋𝐶𝑁)) = ∅) → (♯‘((𝑋𝐻𝑁) ∪ (𝑋𝐶𝑁))) = ((♯‘(𝑋𝐻𝑁)) + (♯‘(𝑋𝐶𝑁))))
3414, 19, 32, 33syl3anc 1368 . 2 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (♯‘((𝑋𝐻𝑁) ∪ (𝑋𝐶𝑁))) = ((♯‘(𝑋𝐻𝑁)) + (♯‘(𝑋𝐶𝑁))))
355, 34eqtrd 2833 1 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (♯‘(𝑋(ClWWalksNOn‘𝐺)𝑁)) = ((♯‘(𝑋𝐻𝑁)) + (♯‘(𝑋𝐶𝑁))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 844   = wceq 1538  wcel 2111  wne 2987  wral 3106  {crab 3110  cun 3879  cin 3880  c0 4243  cfv 6324  (class class class)co 7135  cmpo 7137  Fincfn 8492   + caddc 10529  cmin 10859  2c2 11680  cuz 12231  chash 13686  Vtxcvtx 26789  FinUSGraphcfusgr 27106  ClWWalksNOncclwwlknon 27872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-word 13858  df-fusgr 27107  df-clwwlk 27767  df-clwwlkn 27810  df-clwwlknon 27873
This theorem is referenced by:  numclwwlk3  28170
  Copyright terms: Public domain W3C validator