MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvopab4ndm Structured version   Visualization version   GIF version

Theorem fvopab4ndm 6968
Description: Value of a function given by an ordered-pair class abstraction, outside of its domain. (Contributed by NM, 28-Mar-2008.)
Hypothesis
Ref Expression
fvopab4ndm.1 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
Assertion
Ref Expression
fvopab4ndm 𝐵𝐴 → (𝐹𝐵) = ∅)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem fvopab4ndm
StepHypRef Expression
1 fvopab4ndm.1 . . . . 5 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
21dmeqi 5851 . . . 4 dom 𝐹 = dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
3 dmopabss 5865 . . . 4 dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ⊆ 𝐴
42, 3eqsstri 3978 . . 3 dom 𝐹𝐴
54sseli 3927 . 2 (𝐵 ∈ dom 𝐹𝐵𝐴)
6 ndmfv 6863 . 2 𝐵 ∈ dom 𝐹 → (𝐹𝐵) = ∅)
75, 6nsyl5 159 1 𝐵𝐴 → (𝐹𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  c0 4284  {copab 5157  dom cdm 5621  cfv 6489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-dm 5631  df-iota 6445  df-fv 6497
This theorem is referenced by:  fvmptndm  6969
  Copyright terms: Public domain W3C validator