![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvopab4ndm | Structured version Visualization version GIF version |
Description: Value of a function given by an ordered-pair class abstraction, outside of its domain. (Contributed by NM, 28-Mar-2008.) |
Ref | Expression |
---|---|
fvopab4ndm.1 | ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
Ref | Expression |
---|---|
fvopab4ndm | ⊢ (¬ 𝐵 ∈ 𝐴 → (𝐹‘𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvopab4ndm.1 | . . . . . 6 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
2 | 1 | dmeqi 5619 | . . . . 5 ⊢ dom 𝐹 = dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
3 | dmopabss 5631 | . . . . 5 ⊢ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 | |
4 | 2, 3 | eqsstri 3884 | . . . 4 ⊢ dom 𝐹 ⊆ 𝐴 |
5 | 4 | sseli 3847 | . . 3 ⊢ (𝐵 ∈ dom 𝐹 → 𝐵 ∈ 𝐴) |
6 | 5 | con3i 152 | . 2 ⊢ (¬ 𝐵 ∈ 𝐴 → ¬ 𝐵 ∈ dom 𝐹) |
7 | ndmfv 6526 | . 2 ⊢ (¬ 𝐵 ∈ dom 𝐹 → (𝐹‘𝐵) = ∅) | |
8 | 6, 7 | syl 17 | 1 ⊢ (¬ 𝐵 ∈ 𝐴 → (𝐹‘𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 387 = wceq 1508 ∈ wcel 2051 ∅c0 4172 {copab 4987 dom cdm 5403 ‘cfv 6185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ral 3086 df-rex 3087 df-rab 3090 df-v 3410 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-br 4926 df-opab 4988 df-dm 5413 df-iota 6149 df-fv 6193 |
This theorem is referenced by: fvmptndm 6621 |
Copyright terms: Public domain | W3C validator |