| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvopab4ndm | Structured version Visualization version GIF version | ||
| Description: Value of a function given by an ordered-pair class abstraction, outside of its domain. (Contributed by NM, 28-Mar-2008.) |
| Ref | Expression |
|---|---|
| fvopab4ndm.1 | ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
| Ref | Expression |
|---|---|
| fvopab4ndm | ⊢ (¬ 𝐵 ∈ 𝐴 → (𝐹‘𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvopab4ndm.1 | . . . . 5 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 2 | 1 | dmeqi 5884 | . . . 4 ⊢ dom 𝐹 = dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
| 3 | dmopabss 5898 | . . . 4 ⊢ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 | |
| 4 | 2, 3 | eqsstri 4005 | . . 3 ⊢ dom 𝐹 ⊆ 𝐴 |
| 5 | 4 | sseli 3954 | . 2 ⊢ (𝐵 ∈ dom 𝐹 → 𝐵 ∈ 𝐴) |
| 6 | ndmfv 6911 | . 2 ⊢ (¬ 𝐵 ∈ dom 𝐹 → (𝐹‘𝐵) = ∅) | |
| 7 | 5, 6 | nsyl5 159 | 1 ⊢ (¬ 𝐵 ∈ 𝐴 → (𝐹‘𝐵) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∅c0 4308 {copab 5181 dom cdm 5654 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-dm 5664 df-iota 6484 df-fv 6539 |
| This theorem is referenced by: fvmptndm 7017 |
| Copyright terms: Public domain | W3C validator |