![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvopab4ndm | Structured version Visualization version GIF version |
Description: Value of a function given by an ordered-pair class abstraction, outside of its domain. (Contributed by NM, 28-Mar-2008.) |
Ref | Expression |
---|---|
fvopab4ndm.1 | ⊢ 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
Ref | Expression |
---|---|
fvopab4ndm | ⊢ (¬ 𝐵 ∈ 𝐴 → (𝐹‘𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvopab4ndm.1 | . . . . 5 ⊢ 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
2 | 1 | dmeqi 5898 | . . . 4 ⊢ dom 𝐹 = dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
3 | dmopabss 5912 | . . . 4 ⊢ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 | |
4 | 2, 3 | eqsstri 4011 | . . 3 ⊢ dom 𝐹 ⊆ 𝐴 |
5 | 4 | sseli 3973 | . 2 ⊢ (𝐵 ∈ dom 𝐹 → 𝐵 ∈ 𝐴) |
6 | ndmfv 6920 | . 2 ⊢ (¬ 𝐵 ∈ dom 𝐹 → (𝐹‘𝐵) = ∅) | |
7 | 5, 6 | nsyl5 159 | 1 ⊢ (¬ 𝐵 ∈ 𝐴 → (𝐹‘𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∅c0 4317 {copab 5203 dom cdm 5669 ‘cfv 6537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-dm 5679 df-iota 6489 df-fv 6545 |
This theorem is referenced by: fvmptndm 7022 |
Copyright terms: Public domain | W3C validator |