![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvopab4ndm | Structured version Visualization version GIF version |
Description: Value of a function given by an ordered-pair class abstraction, outside of its domain. (Contributed by NM, 28-Mar-2008.) |
Ref | Expression |
---|---|
fvopab4ndm.1 | ⊢ 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
Ref | Expression |
---|---|
fvopab4ndm | ⊢ (¬ 𝐵 ∈ 𝐴 → (𝐹‘𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvopab4ndm.1 | . . . . 5 ⊢ 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
2 | 1 | dmeqi 5904 | . . . 4 ⊢ dom 𝐹 = dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
3 | dmopabss 5918 | . . . 4 ⊢ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 | |
4 | 2, 3 | eqsstri 4016 | . . 3 ⊢ dom 𝐹 ⊆ 𝐴 |
5 | 4 | sseli 3978 | . 2 ⊢ (𝐵 ∈ dom 𝐹 → 𝐵 ∈ 𝐴) |
6 | ndmfv 6926 | . 2 ⊢ (¬ 𝐵 ∈ dom 𝐹 → (𝐹‘𝐵) = ∅) | |
7 | 5, 6 | nsyl5 159 | 1 ⊢ (¬ 𝐵 ∈ 𝐴 → (𝐹‘𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∅c0 4322 {copab 5210 dom cdm 5676 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-dm 5686 df-iota 6495 df-fv 6551 |
This theorem is referenced by: fvmptndm 7028 |
Copyright terms: Public domain | W3C validator |