Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptndm Structured version   Visualization version   GIF version

Theorem fvmptndm 6776
 Description: Value of a function given by the maps-to notation, outside of its domain. (Contributed by AV, 31-Dec-2020.)
Hypothesis
Ref Expression
fvmptndm.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fvmptndm 𝑋𝐴 → (𝐹𝑋) = ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝑋(𝑥)

Proof of Theorem fvmptndm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fvmptndm.1 . . 3 𝐹 = (𝑥𝐴𝐵)
2 df-mpt 5112 . . 3 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
31, 2eqtri 2821 . 2 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
43fvopab4ndm 6775 1 𝑋𝐴 → (𝐹𝑋) = ∅)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∅c0 4243  {copab 5093   ↦ cmpt 5111  ‘cfv 6325 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5032  df-opab 5094  df-mpt 5112  df-dm 5530  df-iota 6284  df-fv 6333 This theorem is referenced by:  bropfvvvvlem  7772  bropfvvvv  7773  curry1val  7786  curry2val  7790  homarcl  17283  arwval  17298  coafval  17319  pcofval  23625  fvmptrab  43891  fpprbasnn  44290
 Copyright terms: Public domain W3C validator