MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptndm Structured version   Visualization version   GIF version

Theorem fvmptndm 6663
Description: Value of a function given by the maps-to notation, outside of its domain. (Contributed by AV, 31-Dec-2020.)
Hypothesis
Ref Expression
fvmptndm.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fvmptndm 𝑋𝐴 → (𝐹𝑋) = ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝑋(𝑥)

Proof of Theorem fvmptndm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fvmptndm.1 . . 3 𝐹 = (𝑥𝐴𝐵)
2 df-mpt 5042 . . 3 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
31, 2eqtri 2819 . 2 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
43fvopab4ndm 6662 1 𝑋𝐴 → (𝐹𝑋) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1522  wcel 2081  c0 4211  {copab 5024  cmpt 5041  cfv 6225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-br 4963  df-opab 5025  df-mpt 5042  df-dm 5453  df-iota 6189  df-fv 6233
This theorem is referenced by:  bropfvvvvlem  7642  bropfvvvv  7643  curry1val  7656  curry2val  7660  homarcl  17117  arwval  17132  coafval  17153  pcofval  23297  fvmptrab  43007  fpprbasnn  43376
  Copyright terms: Public domain W3C validator