MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptndm Structured version   Visualization version   GIF version

Theorem fvmptndm 6969
Description: Value of a function given by the maps-to notation, outside of its domain. (Contributed by AV, 31-Dec-2020.)
Hypothesis
Ref Expression
fvmptndm.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fvmptndm 𝑋𝐴 → (𝐹𝑋) = ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝑋(𝑥)

Proof of Theorem fvmptndm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fvmptndm.1 . . 3 𝐹 = (𝑥𝐴𝐵)
2 df-mpt 5177 . . 3 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
31, 2eqtri 2756 . 2 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
43fvopab4ndm 6968 1 𝑋𝐴 → (𝐹𝑋) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  c0 4284  {copab 5157  cmpt 5176  cfv 6489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-dm 5631  df-iota 6445  df-fv 6497
This theorem is referenced by:  bropfvvvvlem  8030  bropfvvvv  8031  curry1val  8044  curry2val  8048  homarcl  17945  arwval  17960  coafval  17981  pcofval  24947  newval  27806  leftval  27814  rightval  27815  fvmptrab  47406  fpprbasnn  47843  setrec2mpt  49812
  Copyright terms: Public domain W3C validator