| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmptndm | Structured version Visualization version GIF version | ||
| Description: Value of a function given by the maps-to notation, outside of its domain. (Contributed by AV, 31-Dec-2020.) |
| Ref | Expression |
|---|---|
| fvmptndm.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| fvmptndm | ⊢ (¬ 𝑋 ∈ 𝐴 → (𝐹‘𝑋) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptndm.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | df-mpt 5202 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 3 | 1, 2 | eqtri 2758 | . 2 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| 4 | 3 | fvopab4ndm 7016 | 1 ⊢ (¬ 𝑋 ∈ 𝐴 → (𝐹‘𝑋) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∅c0 4308 {copab 5181 ↦ cmpt 5201 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-dm 5664 df-iota 6484 df-fv 6539 |
| This theorem is referenced by: bropfvvvvlem 8090 bropfvvvv 8091 curry1val 8104 curry2val 8108 homarcl 18041 arwval 18056 coafval 18077 pcofval 24961 newval 27815 leftval 27823 rightval 27824 fvmptrab 47321 fpprbasnn 47743 setrec2mpt 49561 |
| Copyright terms: Public domain | W3C validator |