| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmptndm | Structured version Visualization version GIF version | ||
| Description: Value of a function given by the maps-to notation, outside of its domain. (Contributed by AV, 31-Dec-2020.) |
| Ref | Expression |
|---|---|
| fvmptndm.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| fvmptndm | ⊢ (¬ 𝑋 ∈ 𝐴 → (𝐹‘𝑋) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptndm.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | df-mpt 5171 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 3 | 1, 2 | eqtri 2753 | . 2 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| 4 | 3 | fvopab4ndm 6954 | 1 ⊢ (¬ 𝑋 ∈ 𝐴 → (𝐹‘𝑋) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ∅c0 4281 {copab 5151 ↦ cmpt 5170 ‘cfv 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-dm 5624 df-iota 6433 df-fv 6485 |
| This theorem is referenced by: bropfvvvvlem 8016 bropfvvvv 8017 curry1val 8030 curry2val 8034 homarcl 17927 arwval 17942 coafval 17963 pcofval 24930 newval 27789 leftval 27797 rightval 27798 fvmptrab 47302 fpprbasnn 47739 setrec2mpt 49708 |
| Copyright terms: Public domain | W3C validator |