MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfvmptrab Structured version   Visualization version   GIF version

Theorem elfvmptrab 6806
Description: Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Hypotheses
Ref Expression
elfvmptrab.f 𝐹 = (𝑥𝑉 ↦ {𝑦𝑀𝜑})
elfvmptrab.v (𝑋𝑉𝑀 ∈ V)
Assertion
Ref Expression
elfvmptrab (𝑌 ∈ (𝐹𝑋) → (𝑋𝑉𝑌𝑀))
Distinct variable groups:   𝑥,𝑀,𝑦   𝑥,𝑉   𝑥,𝑋,𝑦   𝑦,𝑌
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑦)   𝑌(𝑥)

Proof of Theorem elfvmptrab
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 elfvmptrab.f . . . 4 𝐹 = (𝑥𝑉 ↦ {𝑦𝑀𝜑})
2 csbconstg 3810 . . . . . . 7 (𝑥𝑉𝑥 / 𝑚𝑀 = 𝑀)
32eqcomd 2745 . . . . . 6 (𝑥𝑉𝑀 = 𝑥 / 𝑚𝑀)
4 rabeq 3386 . . . . . 6 (𝑀 = 𝑥 / 𝑚𝑀 → {𝑦𝑀𝜑} = {𝑦𝑥 / 𝑚𝑀𝜑})
53, 4syl 17 . . . . 5 (𝑥𝑉 → {𝑦𝑀𝜑} = {𝑦𝑥 / 𝑚𝑀𝜑})
65mpteq2ia 5122 . . . 4 (𝑥𝑉 ↦ {𝑦𝑀𝜑}) = (𝑥𝑉 ↦ {𝑦𝑥 / 𝑚𝑀𝜑})
71, 6eqtri 2762 . . 3 𝐹 = (𝑥𝑉 ↦ {𝑦𝑥 / 𝑚𝑀𝜑})
8 csbconstg 3810 . . . 4 (𝑋𝑉𝑋 / 𝑚𝑀 = 𝑀)
9 elfvmptrab.v . . . 4 (𝑋𝑉𝑀 ∈ V)
108, 9eqeltrd 2834 . . 3 (𝑋𝑉𝑋 / 𝑚𝑀 ∈ V)
117, 10elfvmptrab1w 6804 . 2 (𝑌 ∈ (𝐹𝑋) → (𝑋𝑉𝑌𝑋 / 𝑚𝑀))
128eleq2d 2819 . . . 4 (𝑋𝑉 → (𝑌𝑋 / 𝑚𝑀𝑌𝑀))
1312biimpd 232 . . 3 (𝑋𝑉 → (𝑌𝑋 / 𝑚𝑀𝑌𝑀))
1413imdistani 572 . 2 ((𝑋𝑉𝑌𝑋 / 𝑚𝑀) → (𝑋𝑉𝑌𝑀))
1511, 14syl 17 1 (𝑌 ∈ (𝐹𝑋) → (𝑋𝑉𝑌𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114  {crab 3058  Vcvv 3399  csb 3791  cmpt 5111  cfv 6340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5168  ax-nul 5175  ax-pr 5297
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-nul 4213  df-if 4416  df-sn 4518  df-pr 4520  df-op 4524  df-uni 4798  df-br 5032  df-opab 5094  df-mpt 5112  df-id 5430  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-iota 6298  df-fun 6342  df-fv 6348
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator