MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfvmptrab Structured version   Visualization version   GIF version

Theorem elfvmptrab 7045
Description: Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Hypotheses
Ref Expression
elfvmptrab.f 𝐹 = (𝑥𝑉 ↦ {𝑦𝑀𝜑})
elfvmptrab.v (𝑋𝑉𝑀 ∈ V)
Assertion
Ref Expression
elfvmptrab (𝑌 ∈ (𝐹𝑋) → (𝑋𝑉𝑌𝑀))
Distinct variable groups:   𝑥,𝑀,𝑦   𝑥,𝑉   𝑥,𝑋,𝑦   𝑦,𝑌
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑦)   𝑌(𝑥)

Proof of Theorem elfvmptrab
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 elfvmptrab.f . . . 4 𝐹 = (𝑥𝑉 ↦ {𝑦𝑀𝜑})
2 csbconstg 3927 . . . . . . 7 (𝑥𝑉𝑥 / 𝑚𝑀 = 𝑀)
32eqcomd 2741 . . . . . 6 (𝑥𝑉𝑀 = 𝑥 / 𝑚𝑀)
4 rabeq 3448 . . . . . 6 (𝑀 = 𝑥 / 𝑚𝑀 → {𝑦𝑀𝜑} = {𝑦𝑥 / 𝑚𝑀𝜑})
53, 4syl 17 . . . . 5 (𝑥𝑉 → {𝑦𝑀𝜑} = {𝑦𝑥 / 𝑚𝑀𝜑})
65mpteq2ia 5251 . . . 4 (𝑥𝑉 ↦ {𝑦𝑀𝜑}) = (𝑥𝑉 ↦ {𝑦𝑥 / 𝑚𝑀𝜑})
71, 6eqtri 2763 . . 3 𝐹 = (𝑥𝑉 ↦ {𝑦𝑥 / 𝑚𝑀𝜑})
8 csbconstg 3927 . . . 4 (𝑋𝑉𝑋 / 𝑚𝑀 = 𝑀)
9 elfvmptrab.v . . . 4 (𝑋𝑉𝑀 ∈ V)
108, 9eqeltrd 2839 . . 3 (𝑋𝑉𝑋 / 𝑚𝑀 ∈ V)
117, 10elfvmptrab1w 7043 . 2 (𝑌 ∈ (𝐹𝑋) → (𝑋𝑉𝑌𝑋 / 𝑚𝑀))
128eleq2d 2825 . . . 4 (𝑋𝑉 → (𝑌𝑋 / 𝑚𝑀𝑌𝑀))
1312biimpd 229 . . 3 (𝑋𝑉 → (𝑌𝑋 / 𝑚𝑀𝑌𝑀))
1413imdistani 568 . 2 ((𝑋𝑉𝑌𝑋 / 𝑚𝑀) → (𝑋𝑉𝑌𝑀))
1511, 14syl 17 1 (𝑌 ∈ (𝐹𝑋) → (𝑋𝑉𝑌𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  {crab 3433  Vcvv 3478  csb 3908  cmpt 5231  cfv 6563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fv 6571
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator