| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfvmptrab | Structured version Visualization version GIF version | ||
| Description: Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. (Contributed by Alexander van der Vekens, 15-Jul-2018.) |
| Ref | Expression |
|---|---|
| elfvmptrab.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ 𝑀 ∣ 𝜑}) |
| elfvmptrab.v | ⊢ (𝑋 ∈ 𝑉 → 𝑀 ∈ V) |
| Ref | Expression |
|---|---|
| elfvmptrab | ⊢ (𝑌 ∈ (𝐹‘𝑋) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvmptrab.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ 𝑀 ∣ 𝜑}) | |
| 2 | csbconstg 3898 | . . . . . . 7 ⊢ (𝑥 ∈ 𝑉 → ⦋𝑥 / 𝑚⦌𝑀 = 𝑀) | |
| 3 | 2 | eqcomd 2740 | . . . . . 6 ⊢ (𝑥 ∈ 𝑉 → 𝑀 = ⦋𝑥 / 𝑚⦌𝑀) |
| 4 | rabeq 3434 | . . . . . 6 ⊢ (𝑀 = ⦋𝑥 / 𝑚⦌𝑀 → {𝑦 ∈ 𝑀 ∣ 𝜑} = {𝑦 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑}) | |
| 5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ 𝑉 → {𝑦 ∈ 𝑀 ∣ 𝜑} = {𝑦 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑}) |
| 6 | 5 | mpteq2ia 5225 | . . . 4 ⊢ (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ 𝑀 ∣ 𝜑}) = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑}) |
| 7 | 1, 6 | eqtri 2757 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑}) |
| 8 | csbconstg 3898 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → ⦋𝑋 / 𝑚⦌𝑀 = 𝑀) | |
| 9 | elfvmptrab.v | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 𝑀 ∈ V) | |
| 10 | 8, 9 | eqeltrd 2833 | . . 3 ⊢ (𝑋 ∈ 𝑉 → ⦋𝑋 / 𝑚⦌𝑀 ∈ V) |
| 11 | 7, 10 | elfvmptrab1w 7023 | . 2 ⊢ (𝑌 ∈ (𝐹‘𝑋) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀)) |
| 12 | 8 | eleq2d 2819 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → (𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀 ↔ 𝑌 ∈ 𝑀)) |
| 13 | 12 | biimpd 229 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀 → 𝑌 ∈ 𝑀)) |
| 14 | 13 | imdistani 568 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑀)) |
| 15 | 11, 14 | syl 17 | 1 ⊢ (𝑌 ∈ (𝐹‘𝑋) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {crab 3419 Vcvv 3463 ⦋csb 3879 ↦ cmpt 5205 ‘cfv 6541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fv 6549 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |