Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elfvmptrab | Structured version Visualization version GIF version |
Description: Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. (Contributed by Alexander van der Vekens, 15-Jul-2018.) |
Ref | Expression |
---|---|
elfvmptrab.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ 𝑀 ∣ 𝜑}) |
elfvmptrab.v | ⊢ (𝑋 ∈ 𝑉 → 𝑀 ∈ V) |
Ref | Expression |
---|---|
elfvmptrab | ⊢ (𝑌 ∈ (𝐹‘𝑋) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvmptrab.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ 𝑀 ∣ 𝜑}) | |
2 | csbconstg 3847 | . . . . . . 7 ⊢ (𝑥 ∈ 𝑉 → ⦋𝑥 / 𝑚⦌𝑀 = 𝑀) | |
3 | 2 | eqcomd 2744 | . . . . . 6 ⊢ (𝑥 ∈ 𝑉 → 𝑀 = ⦋𝑥 / 𝑚⦌𝑀) |
4 | rabeq 3408 | . . . . . 6 ⊢ (𝑀 = ⦋𝑥 / 𝑚⦌𝑀 → {𝑦 ∈ 𝑀 ∣ 𝜑} = {𝑦 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑}) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ 𝑉 → {𝑦 ∈ 𝑀 ∣ 𝜑} = {𝑦 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑}) |
6 | 5 | mpteq2ia 5173 | . . . 4 ⊢ (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ 𝑀 ∣ 𝜑}) = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑}) |
7 | 1, 6 | eqtri 2766 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑}) |
8 | csbconstg 3847 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → ⦋𝑋 / 𝑚⦌𝑀 = 𝑀) | |
9 | elfvmptrab.v | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 𝑀 ∈ V) | |
10 | 8, 9 | eqeltrd 2839 | . . 3 ⊢ (𝑋 ∈ 𝑉 → ⦋𝑋 / 𝑚⦌𝑀 ∈ V) |
11 | 7, 10 | elfvmptrab1w 6883 | . 2 ⊢ (𝑌 ∈ (𝐹‘𝑋) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀)) |
12 | 8 | eleq2d 2824 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → (𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀 ↔ 𝑌 ∈ 𝑀)) |
13 | 12 | biimpd 228 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀 → 𝑌 ∈ 𝑀)) |
14 | 13 | imdistani 568 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑀)) |
15 | 11, 14 | syl 17 | 1 ⊢ (𝑌 ∈ (𝐹‘𝑋) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3067 Vcvv 3422 ⦋csb 3828 ↦ cmpt 5153 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |