![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfvmptrab | Structured version Visualization version GIF version |
Description: Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. (Contributed by Alexander van der Vekens, 15-Jul-2018.) |
Ref | Expression |
---|---|
elfvmptrab.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ 𝑀 ∣ 𝜑}) |
elfvmptrab.v | ⊢ (𝑋 ∈ 𝑉 → 𝑀 ∈ V) |
Ref | Expression |
---|---|
elfvmptrab | ⊢ (𝑌 ∈ (𝐹‘𝑋) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvmptrab.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ 𝑀 ∣ 𝜑}) | |
2 | csbconstg 3763 | . . . . . . 7 ⊢ (𝑥 ∈ 𝑉 → ⦋𝑥 / 𝑚⦌𝑀 = 𝑀) | |
3 | 2 | eqcomd 2783 | . . . . . 6 ⊢ (𝑥 ∈ 𝑉 → 𝑀 = ⦋𝑥 / 𝑚⦌𝑀) |
4 | rabeq 3388 | . . . . . 6 ⊢ (𝑀 = ⦋𝑥 / 𝑚⦌𝑀 → {𝑦 ∈ 𝑀 ∣ 𝜑} = {𝑦 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑}) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ 𝑉 → {𝑦 ∈ 𝑀 ∣ 𝜑} = {𝑦 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑}) |
6 | 5 | mpteq2ia 4975 | . . . 4 ⊢ (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ 𝑀 ∣ 𝜑}) = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑}) |
7 | 1, 6 | eqtri 2801 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑}) |
8 | csbconstg 3763 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → ⦋𝑋 / 𝑚⦌𝑀 = 𝑀) | |
9 | elfvmptrab.v | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 𝑀 ∈ V) | |
10 | 8, 9 | eqeltrd 2858 | . . 3 ⊢ (𝑋 ∈ 𝑉 → ⦋𝑋 / 𝑚⦌𝑀 ∈ V) |
11 | 7, 10 | elfvmptrab1 6567 | . 2 ⊢ (𝑌 ∈ (𝐹‘𝑋) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀)) |
12 | 8 | eleq2d 2844 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → (𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀 ↔ 𝑌 ∈ 𝑀)) |
13 | 12 | biimpd 221 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀 → 𝑌 ∈ 𝑀)) |
14 | 13 | imdistani 564 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑀)) |
15 | 11, 14 | syl 17 | 1 ⊢ (𝑌 ∈ (𝐹‘𝑋) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2106 {crab 3093 Vcvv 3397 ⦋csb 3750 ↦ cmpt 4965 ‘cfv 6135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fv 6143 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |