Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gneispace0nelrn3 Structured version   Visualization version   GIF version

Theorem gneispace0nelrn3 44090
Description: A generic neighborhood space has a nonempty set of neighborhoods for every point in its domain. (Contributed by RP, 15-Apr-2021.)
Hypothesis
Ref Expression
gneispace.a 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}
Assertion
Ref Expression
gneispace0nelrn3 (𝐹𝐴 → ¬ ∅ ∈ ran 𝐹)
Distinct variable groups:   𝑛,𝐹,𝑝,𝑓   𝐹,𝑠,𝑓   𝑓,𝑛,𝑝
Allowed substitution hints:   𝐴(𝑓,𝑛,𝑠,𝑝)

Proof of Theorem gneispace0nelrn3
StepHypRef Expression
1 gneispace.a . . 3 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}
21gneispacern 44086 . 2 (𝐹𝐴 → ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}))
3 neldifsnd 4800 . . 3 (ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}) → ¬ ∅ ∈ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}))
4 ssel 3989 . . 3 (ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}) → (∅ ∈ ran 𝐹 → ∅ ∈ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})))
53, 4mtod 198 . 2 (ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}) → ¬ ∅ ∈ ran 𝐹)
62, 5syl 17 1 (𝐹𝐴 → ¬ ∅ ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1535  wcel 2104  {cab 2710  wral 3057  cdif 3960  wss 3963  c0 4339  𝒫 cpw 4604  {csn 4630  dom cdm 5683  ran crn 5684  wf 6554  cfv 6558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1963  ax-7 2003  ax-8 2106  ax-9 2114  ax-ext 2704
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1087  df-tru 1538  df-fal 1548  df-ex 1775  df-sb 2061  df-clab 2711  df-cleq 2725  df-clel 2812  df-ne 2937  df-ral 3058  df-rab 3433  df-v 3479  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4915  df-br 5150  df-opab 5212  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-iota 6510  df-fun 6560  df-fn 6561  df-f 6562  df-fv 6566
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator