Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gneispace0nelrn3 Structured version   Visualization version   GIF version

Theorem gneispace0nelrn3 40845
Description: A generic neighborhood space has a nonempty set of neighborhoods for every point in its domain. (Contributed by RP, 15-Apr-2021.)
Hypothesis
Ref Expression
gneispace.a 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}
Assertion
Ref Expression
gneispace0nelrn3 (𝐹𝐴 → ¬ ∅ ∈ ran 𝐹)
Distinct variable groups:   𝑛,𝐹,𝑝,𝑓   𝐹,𝑠,𝑓   𝑓,𝑛,𝑝
Allowed substitution hints:   𝐴(𝑓,𝑛,𝑠,𝑝)

Proof of Theorem gneispace0nelrn3
StepHypRef Expression
1 gneispace.a . . 3 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}
21gneispacern 40841 . 2 (𝐹𝐴 → ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}))
3 neldifsnd 4686 . . 3 (ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}) → ¬ ∅ ∈ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}))
4 ssel 3908 . . 3 (ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}) → (∅ ∈ ran 𝐹 → ∅ ∈ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})))
53, 4mtod 201 . 2 (ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}) → ¬ ∅ ∈ ran 𝐹)
62, 5syl 17 1 (𝐹𝐴 → ¬ ∅ ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2111  {cab 2776  wral 3106  cdif 3878  wss 3881  c0 4243  𝒫 cpw 4497  {csn 4525  dom cdm 5519  ran crn 5520  wf 6320  cfv 6324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator