Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gneispace0nelrn3 Structured version   Visualization version   GIF version

Theorem gneispace0nelrn3 44124
Description: A generic neighborhood space has a nonempty set of neighborhoods for every point in its domain. (Contributed by RP, 15-Apr-2021.)
Hypothesis
Ref Expression
gneispace.a 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}
Assertion
Ref Expression
gneispace0nelrn3 (𝐹𝐴 → ¬ ∅ ∈ ran 𝐹)
Distinct variable groups:   𝑛,𝐹,𝑝,𝑓   𝐹,𝑠,𝑓   𝑓,𝑛,𝑝
Allowed substitution hints:   𝐴(𝑓,𝑛,𝑠,𝑝)

Proof of Theorem gneispace0nelrn3
StepHypRef Expression
1 gneispace.a . . 3 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}
21gneispacern 44120 . 2 (𝐹𝐴 → ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}))
3 neldifsnd 4759 . . 3 (ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}) → ¬ ∅ ∈ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}))
4 ssel 3942 . . 3 (ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}) → (∅ ∈ ran 𝐹 → ∅ ∈ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})))
53, 4mtod 198 . 2 (ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}) → ¬ ∅ ∈ ran 𝐹)
62, 5syl 17 1 (𝐹𝐴 → ¬ ∅ ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2708  wral 3045  cdif 3913  wss 3916  c0 4298  𝒫 cpw 4565  {csn 4591  dom cdm 5640  ran crn 5641  wf 6509  cfv 6513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-fv 6521
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator