Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gneispace0nelrn2 Structured version   Visualization version   GIF version

Theorem gneispace0nelrn2 44123
Description: A generic neighborhood space has a nonempty set of neighborhoods for every point in its domain. (Contributed by RP, 15-Apr-2021.)
Hypothesis
Ref Expression
gneispace.a 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}
Assertion
Ref Expression
gneispace0nelrn2 ((𝐹𝐴𝑃 ∈ dom 𝐹) → (𝐹𝑃) ≠ ∅)
Distinct variable groups:   𝑛,𝐹,𝑝,𝑓   𝐹,𝑠,𝑓   𝑓,𝑛,𝑝   𝑃,𝑝,𝑛
Allowed substitution hints:   𝐴(𝑓,𝑛,𝑠,𝑝)   𝑃(𝑓,𝑠)

Proof of Theorem gneispace0nelrn2
StepHypRef Expression
1 gneispace.a . . . 4 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}
21gneispace0nelrn 44122 . . 3 (𝐹𝐴 → ∀𝑝 ∈ dom 𝐹(𝐹𝑝) ≠ ∅)
3 fveq2 6860 . . . . 5 (𝑝 = 𝑃 → (𝐹𝑝) = (𝐹𝑃))
43neeq1d 2985 . . . 4 (𝑝 = 𝑃 → ((𝐹𝑝) ≠ ∅ ↔ (𝐹𝑃) ≠ ∅))
54rspccv 3588 . . 3 (∀𝑝 ∈ dom 𝐹(𝐹𝑝) ≠ ∅ → (𝑃 ∈ dom 𝐹 → (𝐹𝑃) ≠ ∅))
62, 5syl 17 . 2 (𝐹𝐴 → (𝑃 ∈ dom 𝐹 → (𝐹𝑃) ≠ ∅))
76imp 406 1 ((𝐹𝐴𝑃 ∈ dom 𝐹) → (𝐹𝑃) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2708  wne 2926  wral 3045  cdif 3913  wss 3916  c0 4298  𝒫 cpw 4565  {csn 4591  dom cdm 5640  wf 6509  cfv 6513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-fv 6521
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator