Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gneispace0nelrn2 Structured version   Visualization version   GIF version

Theorem gneispace0nelrn2 44131
Description: A generic neighborhood space has a nonempty set of neighborhoods for every point in its domain. (Contributed by RP, 15-Apr-2021.)
Hypothesis
Ref Expression
gneispace.a 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}
Assertion
Ref Expression
gneispace0nelrn2 ((𝐹𝐴𝑃 ∈ dom 𝐹) → (𝐹𝑃) ≠ ∅)
Distinct variable groups:   𝑛,𝐹,𝑝,𝑓   𝐹,𝑠,𝑓   𝑓,𝑛,𝑝   𝑃,𝑝,𝑛
Allowed substitution hints:   𝐴(𝑓,𝑛,𝑠,𝑝)   𝑃(𝑓,𝑠)

Proof of Theorem gneispace0nelrn2
StepHypRef Expression
1 gneispace.a . . . 4 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}
21gneispace0nelrn 44130 . . 3 (𝐹𝐴 → ∀𝑝 ∈ dom 𝐹(𝐹𝑝) ≠ ∅)
3 fveq2 6886 . . . . 5 (𝑝 = 𝑃 → (𝐹𝑝) = (𝐹𝑃))
43neeq1d 2990 . . . 4 (𝑝 = 𝑃 → ((𝐹𝑝) ≠ ∅ ↔ (𝐹𝑃) ≠ ∅))
54rspccv 3602 . . 3 (∀𝑝 ∈ dom 𝐹(𝐹𝑝) ≠ ∅ → (𝑃 ∈ dom 𝐹 → (𝐹𝑃) ≠ ∅))
62, 5syl 17 . 2 (𝐹𝐴 → (𝑃 ∈ dom 𝐹 → (𝐹𝑃) ≠ ∅))
76imp 406 1 ((𝐹𝐴𝑃 ∈ dom 𝐹) → (𝐹𝑃) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {cab 2712  wne 2931  wral 3050  cdif 3928  wss 3931  c0 4313  𝒫 cpw 4580  {csn 4606  dom cdm 5665  wf 6537  cfv 6541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-fv 6549
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator