| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gneispace0nelrn2 | Structured version Visualization version GIF version | ||
| Description: A generic neighborhood space has a nonempty set of neighborhoods for every point in its domain. (Contributed by RP, 15-Apr-2021.) |
| Ref | Expression |
|---|---|
| gneispace.a | ⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} |
| Ref | Expression |
|---|---|
| gneispace0nelrn2 | ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑃 ∈ dom 𝐹) → (𝐹‘𝑃) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gneispace.a | . . . 4 ⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} | |
| 2 | 1 | gneispace0nelrn 44122 | . . 3 ⊢ (𝐹 ∈ 𝐴 → ∀𝑝 ∈ dom 𝐹(𝐹‘𝑝) ≠ ∅) |
| 3 | fveq2 6860 | . . . . 5 ⊢ (𝑝 = 𝑃 → (𝐹‘𝑝) = (𝐹‘𝑃)) | |
| 4 | 3 | neeq1d 2985 | . . . 4 ⊢ (𝑝 = 𝑃 → ((𝐹‘𝑝) ≠ ∅ ↔ (𝐹‘𝑃) ≠ ∅)) |
| 5 | 4 | rspccv 3588 | . . 3 ⊢ (∀𝑝 ∈ dom 𝐹(𝐹‘𝑝) ≠ ∅ → (𝑃 ∈ dom 𝐹 → (𝐹‘𝑃) ≠ ∅)) |
| 6 | 2, 5 | syl 17 | . 2 ⊢ (𝐹 ∈ 𝐴 → (𝑃 ∈ dom 𝐹 → (𝐹‘𝑃) ≠ ∅)) |
| 7 | 6 | imp 406 | 1 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑃 ∈ dom 𝐹) → (𝐹‘𝑃) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2708 ≠ wne 2926 ∀wral 3045 ∖ cdif 3913 ⊆ wss 3916 ∅c0 4298 𝒫 cpw 4565 {csn 4591 dom cdm 5640 ⟶wf 6509 ‘cfv 6513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-fv 6521 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |