Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gneispace0nelrn2 Structured version   Visualization version   GIF version

Theorem gneispace0nelrn2 41640
Description: A generic neighborhood space has a nonempty set of neighborhoods for every point in its domain. (Contributed by RP, 15-Apr-2021.)
Hypothesis
Ref Expression
gneispace.a 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}
Assertion
Ref Expression
gneispace0nelrn2 ((𝐹𝐴𝑃 ∈ dom 𝐹) → (𝐹𝑃) ≠ ∅)
Distinct variable groups:   𝑛,𝐹,𝑝,𝑓   𝐹,𝑠,𝑓   𝑓,𝑛,𝑝   𝑃,𝑝,𝑛
Allowed substitution hints:   𝐴(𝑓,𝑛,𝑠,𝑝)   𝑃(𝑓,𝑠)

Proof of Theorem gneispace0nelrn2
StepHypRef Expression
1 gneispace.a . . . 4 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}
21gneispace0nelrn 41639 . . 3 (𝐹𝐴 → ∀𝑝 ∈ dom 𝐹(𝐹𝑝) ≠ ∅)
3 fveq2 6756 . . . . 5 (𝑝 = 𝑃 → (𝐹𝑝) = (𝐹𝑃))
43neeq1d 3002 . . . 4 (𝑝 = 𝑃 → ((𝐹𝑝) ≠ ∅ ↔ (𝐹𝑃) ≠ ∅))
54rspccv 3549 . . 3 (∀𝑝 ∈ dom 𝐹(𝐹𝑝) ≠ ∅ → (𝑃 ∈ dom 𝐹 → (𝐹𝑃) ≠ ∅))
62, 5syl 17 . 2 (𝐹𝐴 → (𝑃 ∈ dom 𝐹 → (𝐹𝑃) ≠ ∅))
76imp 406 1 ((𝐹𝐴𝑃 ∈ dom 𝐹) → (𝐹𝑃) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {cab 2715  wne 2942  wral 3063  cdif 3880  wss 3883  c0 4253  𝒫 cpw 4530  {csn 4558  dom cdm 5580  wf 6414  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator