MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpassd Structured version   Visualization version   GIF version

Theorem grpassd 18884
Description: A group operation is associative. (Contributed by SN, 29-Jan-2025.)
Hypotheses
Ref Expression
grpassd.b 𝐵 = (Base‘𝐺)
grpassd.p + = (+g𝐺)
grpassd.g (𝜑𝐺 ∈ Grp)
grpassd.1 (𝜑𝑋𝐵)
grpassd.2 (𝜑𝑌𝐵)
grpassd.3 (𝜑𝑍𝐵)
Assertion
Ref Expression
grpassd (𝜑 → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))

Proof of Theorem grpassd
StepHypRef Expression
1 grpassd.g . 2 (𝜑𝐺 ∈ Grp)
2 grpassd.1 . 2 (𝜑𝑋𝐵)
3 grpassd.2 . 2 (𝜑𝑌𝐵)
4 grpassd.3 . 2 (𝜑𝑍𝐵)
5 grpassd.b . . 3 𝐵 = (Base‘𝐺)
6 grpassd.p . . 3 + = (+g𝐺)
75, 6grpass 18881 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
81, 2, 3, 4, 7syl13anc 1374 1 (𝜑 → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  Grpcgrp 18872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393  df-sgrp 18653  df-mnd 18669  df-grp 18875
This theorem is referenced by:  grplmulf1o  18952  grpraddf1o  18953  eqger  19117  conjnmz  19191  psdmul  22060  conjga  33134  rloccring  33228  qsdrngilem  33472  grpcominv1  42503
  Copyright terms: Public domain W3C validator