MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpassd Structured version   Visualization version   GIF version

Theorem grpassd 18860
Description: A group operation is associative. (Contributed by SN, 29-Jan-2025.)
Hypotheses
Ref Expression
grpassd.b 𝐵 = (Base‘𝐺)
grpassd.p + = (+g𝐺)
grpassd.g (𝜑𝐺 ∈ Grp)
grpassd.1 (𝜑𝑋𝐵)
grpassd.2 (𝜑𝑌𝐵)
grpassd.3 (𝜑𝑍𝐵)
Assertion
Ref Expression
grpassd (𝜑 → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))

Proof of Theorem grpassd
StepHypRef Expression
1 grpassd.g . 2 (𝜑𝐺 ∈ Grp)
2 grpassd.1 . 2 (𝜑𝑋𝐵)
3 grpassd.2 . 2 (𝜑𝑌𝐵)
4 grpassd.3 . 2 (𝜑𝑍𝐵)
5 grpassd.b . . 3 𝐵 = (Base‘𝐺)
6 grpassd.p . . 3 + = (+g𝐺)
75, 6grpass 18857 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
81, 2, 3, 4, 7syl13anc 1374 1 (𝜑 → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cfv 6486  (class class class)co 7352  Basecbs 17122  +gcplusg 17163  Grpcgrp 18848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-nul 5246
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-iota 6442  df-fv 6494  df-ov 7355  df-sgrp 18629  df-mnd 18645  df-grp 18851
This theorem is referenced by:  grplmulf1o  18928  grpraddf1o  18929  eqger  19092  conjnmz  19166  psdmul  22082  conjga  33146  rloccring  33244  qsdrngilem  33466  grpcominv1  42626
  Copyright terms: Public domain W3C validator