![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpassd | Structured version Visualization version GIF version |
Description: A group operation is associative. (Contributed by SN, 29-Jan-2025.) |
Ref | Expression |
---|---|
grpassd.b | ⊢ 𝐵 = (Base‘𝐺) |
grpassd.p | ⊢ + = (+g‘𝐺) |
grpassd.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
grpassd.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
grpassd.2 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
grpassd.3 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
Ref | Expression |
---|---|
grpassd | ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpassd.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
2 | grpassd.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
3 | grpassd.2 | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
4 | grpassd.3 | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
5 | grpassd.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
6 | grpassd.p | . . 3 ⊢ + = (+g‘𝐺) | |
7 | 5, 6 | grpass 18973 | . 2 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
8 | 1, 2, 3, 4, 7 | syl13anc 1371 | 1 ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 +gcplusg 17298 Grpcgrp 18964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 df-sgrp 18745 df-mnd 18761 df-grp 18967 |
This theorem is referenced by: grplmulf1o 19044 grpraddf1o 19045 eqger 19209 conjnmz 19283 psdmul 22188 rloccring 33257 qsdrngilem 33502 grpcominv1 42495 |
Copyright terms: Public domain | W3C validator |