| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpassd | Structured version Visualization version GIF version | ||
| Description: A group operation is associative. (Contributed by SN, 29-Jan-2025.) |
| Ref | Expression |
|---|---|
| grpassd.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpassd.p | ⊢ + = (+g‘𝐺) |
| grpassd.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| grpassd.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| grpassd.2 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| grpassd.3 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| grpassd | ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpassd.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 2 | grpassd.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | grpassd.2 | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 4 | grpassd.3 | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 5 | grpassd.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 6 | grpassd.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 7 | 5, 6 | grpass 18852 | . 2 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| 8 | 1, 2, 3, 4, 7 | syl13anc 1374 | 1 ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 +gcplusg 17158 Grpcgrp 18843 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5244 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-ov 7349 df-sgrp 18624 df-mnd 18640 df-grp 18846 |
| This theorem is referenced by: grplmulf1o 18923 grpraddf1o 18924 eqger 19088 conjnmz 19162 psdmul 22079 conjga 33134 rloccring 33232 qsdrngilem 33454 grpcominv1 42540 |
| Copyright terms: Public domain | W3C validator |