MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpassd Structured version   Visualization version   GIF version

Theorem grpassd 18985
Description: A group operation is associative. (Contributed by SN, 29-Jan-2025.)
Hypotheses
Ref Expression
grpassd.b 𝐵 = (Base‘𝐺)
grpassd.p + = (+g𝐺)
grpassd.g (𝜑𝐺 ∈ Grp)
grpassd.1 (𝜑𝑋𝐵)
grpassd.2 (𝜑𝑌𝐵)
grpassd.3 (𝜑𝑍𝐵)
Assertion
Ref Expression
grpassd (𝜑 → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))

Proof of Theorem grpassd
StepHypRef Expression
1 grpassd.g . 2 (𝜑𝐺 ∈ Grp)
2 grpassd.1 . 2 (𝜑𝑋𝐵)
3 grpassd.2 . 2 (𝜑𝑌𝐵)
4 grpassd.3 . 2 (𝜑𝑍𝐵)
5 grpassd.b . . 3 𝐵 = (Base‘𝐺)
6 grpassd.p . . 3 + = (+g𝐺)
75, 6grpass 18982 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
81, 2, 3, 4, 7syl13anc 1372 1 (𝜑 → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  Grpcgrp 18973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-sgrp 18757  df-mnd 18773  df-grp 18976
This theorem is referenced by:  grplmulf1o  19053  grpraddf1o  19054  eqger  19218  conjnmz  19292  psdmul  22193  rloccring  33242  qsdrngilem  33487  grpcominv1  42463
  Copyright terms: Public domain W3C validator