| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpassd | Structured version Visualization version GIF version | ||
| Description: A group operation is associative. (Contributed by SN, 29-Jan-2025.) |
| Ref | Expression |
|---|---|
| grpassd.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpassd.p | ⊢ + = (+g‘𝐺) |
| grpassd.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| grpassd.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| grpassd.2 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| grpassd.3 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| grpassd | ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpassd.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 2 | grpassd.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | grpassd.2 | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 4 | grpassd.3 | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 5 | grpassd.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 6 | grpassd.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 7 | 5, 6 | grpass 18881 | . 2 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| 8 | 1, 2, 3, 4, 7 | syl13anc 1374 | 1 ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 Grpcgrp 18872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-sgrp 18653 df-mnd 18669 df-grp 18875 |
| This theorem is referenced by: grplmulf1o 18952 grpraddf1o 18953 eqger 19117 conjnmz 19191 psdmul 22060 conjga 33134 rloccring 33228 qsdrngilem 33472 grpcominv1 42503 |
| Copyright terms: Public domain | W3C validator |