Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qsdrngilem Structured version   Visualization version   GIF version

Theorem qsdrngilem 33487
Description: Lemma for qsdrngi 33488. (Contributed by Thierry Arnoux, 9-Mar-2025.)
Hypotheses
Ref Expression
qsdrng.0 𝑂 = (oppr𝑅)
qsdrng.q 𝑄 = (𝑅 /s (𝑅 ~QG 𝑀))
qsdrng.r (𝜑𝑅 ∈ NzRing)
qsdrngi.1 (𝜑𝑀 ∈ (MaxIdeal‘𝑅))
qsdrngi.2 (𝜑𝑀 ∈ (MaxIdeal‘𝑂))
qsdrngilem.1 (𝜑𝑋 ∈ (Base‘𝑅))
qsdrngilem.2 (𝜑 → ¬ 𝑋𝑀)
Assertion
Ref Expression
qsdrngilem (𝜑 → ∃𝑣 ∈ (Base‘𝑄)(𝑣(.r𝑄)[𝑋](𝑅 ~QG 𝑀)) = (1r𝑄))
Distinct variable groups:   𝑣,𝑀   𝑣,𝑄   𝑣,𝑅   𝑣,𝑋   𝜑,𝑣
Allowed substitution hint:   𝑂(𝑣)

Proof of Theorem qsdrngilem
Dummy variables 𝑚 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpllr 775 . . . . 5 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → 𝑟 ∈ (Base‘𝑅))
2 ovex 7481 . . . . . 6 (𝑅 ~QG 𝑀) ∈ V
32ecelqsi 8831 . . . . 5 (𝑟 ∈ (Base‘𝑅) → [𝑟](𝑅 ~QG 𝑀) ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑀)))
41, 3syl 17 . . . 4 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → [𝑟](𝑅 ~QG 𝑀) ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑀)))
5 qsdrng.q . . . . . . 7 𝑄 = (𝑅 /s (𝑅 ~QG 𝑀))
65a1i 11 . . . . . 6 (𝜑𝑄 = (𝑅 /s (𝑅 ~QG 𝑀)))
7 eqid 2740 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
87a1i 11 . . . . . 6 (𝜑 → (Base‘𝑅) = (Base‘𝑅))
9 ovexd 7483 . . . . . 6 (𝜑 → (𝑅 ~QG 𝑀) ∈ V)
10 qsdrng.r . . . . . 6 (𝜑𝑅 ∈ NzRing)
116, 8, 9, 10qusbas 17605 . . . . 5 (𝜑 → ((Base‘𝑅) / (𝑅 ~QG 𝑀)) = (Base‘𝑄))
1211ad3antrrr 729 . . . 4 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → ((Base‘𝑅) / (𝑅 ~QG 𝑀)) = (Base‘𝑄))
134, 12eleqtrd 2846 . . 3 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → [𝑟](𝑅 ~QG 𝑀) ∈ (Base‘𝑄))
14 oveq1 7455 . . . . 5 (𝑣 = [𝑟](𝑅 ~QG 𝑀) → (𝑣(.r𝑄)[𝑋](𝑅 ~QG 𝑀)) = ([𝑟](𝑅 ~QG 𝑀)(.r𝑄)[𝑋](𝑅 ~QG 𝑀)))
1514eqeq1d 2742 . . . 4 (𝑣 = [𝑟](𝑅 ~QG 𝑀) → ((𝑣(.r𝑄)[𝑋](𝑅 ~QG 𝑀)) = (1r𝑄) ↔ ([𝑟](𝑅 ~QG 𝑀)(.r𝑄)[𝑋](𝑅 ~QG 𝑀)) = (1r𝑄)))
1615adantl 481 . . 3 (((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) → ((𝑣(.r𝑄)[𝑋](𝑅 ~QG 𝑀)) = (1r𝑄) ↔ ([𝑟](𝑅 ~QG 𝑀)(.r𝑄)[𝑋](𝑅 ~QG 𝑀)) = (1r𝑄)))
17 eqid 2740 . . . . . 6 (.r𝑅) = (.r𝑅)
18 eqid 2740 . . . . . 6 (.r𝑄) = (.r𝑄)
19 nzrring 20542 . . . . . . . 8 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
2010, 19syl 17 . . . . . . 7 (𝜑𝑅 ∈ Ring)
2120ad3antrrr 729 . . . . . 6 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → 𝑅 ∈ Ring)
22 qsdrngi.1 . . . . . . . . . 10 (𝜑𝑀 ∈ (MaxIdeal‘𝑅))
237mxidlidl 33456 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (LIdeal‘𝑅))
2420, 22, 23syl2anc 583 . . . . . . . . 9 (𝜑𝑀 ∈ (LIdeal‘𝑅))
25 qsdrng.0 . . . . . . . . . . . 12 𝑂 = (oppr𝑅)
2625opprring 20373 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑂 ∈ Ring)
2720, 26syl 17 . . . . . . . . . 10 (𝜑𝑂 ∈ Ring)
28 qsdrngi.2 . . . . . . . . . 10 (𝜑𝑀 ∈ (MaxIdeal‘𝑂))
29 eqid 2740 . . . . . . . . . . 11 (Base‘𝑂) = (Base‘𝑂)
3029mxidlidl 33456 . . . . . . . . . 10 ((𝑂 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑂)) → 𝑀 ∈ (LIdeal‘𝑂))
3127, 28, 30syl2anc 583 . . . . . . . . 9 (𝜑𝑀 ∈ (LIdeal‘𝑂))
3224, 31elind 4223 . . . . . . . 8 (𝜑𝑀 ∈ ((LIdeal‘𝑅) ∩ (LIdeal‘𝑂)))
33 eqid 2740 . . . . . . . . 9 (LIdeal‘𝑅) = (LIdeal‘𝑅)
34 eqid 2740 . . . . . . . . 9 (LIdeal‘𝑂) = (LIdeal‘𝑂)
35 eqid 2740 . . . . . . . . 9 (2Ideal‘𝑅) = (2Ideal‘𝑅)
3633, 25, 34, 352idlval 21284 . . . . . . . 8 (2Ideal‘𝑅) = ((LIdeal‘𝑅) ∩ (LIdeal‘𝑂))
3732, 36eleqtrrdi 2855 . . . . . . 7 (𝜑𝑀 ∈ (2Ideal‘𝑅))
3837ad3antrrr 729 . . . . . 6 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → 𝑀 ∈ (2Ideal‘𝑅))
39 qsdrngilem.1 . . . . . . 7 (𝜑𝑋 ∈ (Base‘𝑅))
4039ad3antrrr 729 . . . . . 6 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → 𝑋 ∈ (Base‘𝑅))
415, 7, 17, 18, 21, 38, 1, 40qusmul2idl 21312 . . . . 5 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → ([𝑟](𝑅 ~QG 𝑀)(.r𝑄)[𝑋](𝑅 ~QG 𝑀)) = [(𝑟(.r𝑅)𝑋)](𝑅 ~QG 𝑀))
42 lidlnsg 21281 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (LIdeal‘𝑅)) → 𝑀 ∈ (NrmSGrp‘𝑅))
4320, 24, 42syl2anc 583 . . . . . . . 8 (𝜑𝑀 ∈ (NrmSGrp‘𝑅))
44 nsgsubg 19198 . . . . . . . 8 (𝑀 ∈ (NrmSGrp‘𝑅) → 𝑀 ∈ (SubGrp‘𝑅))
45 eqid 2740 . . . . . . . . 9 (𝑅 ~QG 𝑀) = (𝑅 ~QG 𝑀)
467, 45eqger 19218 . . . . . . . 8 (𝑀 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝑀) Er (Base‘𝑅))
4743, 44, 463syl 18 . . . . . . 7 (𝜑 → (𝑅 ~QG 𝑀) Er (Base‘𝑅))
4847ad3antrrr 729 . . . . . 6 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → (𝑅 ~QG 𝑀) Er (Base‘𝑅))
497, 33lidlss 21245 . . . . . . . . 9 (𝑀 ∈ (LIdeal‘𝑅) → 𝑀 ⊆ (Base‘𝑅))
5024, 49syl 17 . . . . . . . 8 (𝜑𝑀 ⊆ (Base‘𝑅))
5150ad3antrrr 729 . . . . . . 7 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → 𝑀 ⊆ (Base‘𝑅))
527, 17, 21, 1, 40ringcld 20286 . . . . . . 7 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → (𝑟(.r𝑅)𝑋) ∈ (Base‘𝑅))
53 eqid 2740 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
547, 53ringidcl 20289 . . . . . . . . 9 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
5520, 54syl 17 . . . . . . . 8 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
5655ad3antrrr 729 . . . . . . 7 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → (1r𝑅) ∈ (Base‘𝑅))
57 simpr 484 . . . . . . . . . 10 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚))
5857oveq2d 7464 . . . . . . . . 9 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → (((invg𝑅)‘(𝑟(.r𝑅)𝑋))(+g𝑅)(1r𝑅)) = (((invg𝑅)‘(𝑟(.r𝑅)𝑋))(+g𝑅)((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)))
59 eqid 2740 . . . . . . . . . . . 12 (+g𝑅) = (+g𝑅)
60 eqid 2740 . . . . . . . . . . . 12 (0g𝑅) = (0g𝑅)
61 eqid 2740 . . . . . . . . . . . 12 (invg𝑅) = (invg𝑅)
6220ringgrpd 20269 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ Grp)
6362ad3antrrr 729 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → 𝑅 ∈ Grp)
647, 59, 60, 61, 63, 52grplinvd 19034 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → (((invg𝑅)‘(𝑟(.r𝑅)𝑋))(+g𝑅)(𝑟(.r𝑅)𝑋)) = (0g𝑅))
6564oveq1d 7463 . . . . . . . . . 10 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → ((((invg𝑅)‘(𝑟(.r𝑅)𝑋))(+g𝑅)(𝑟(.r𝑅)𝑋))(+g𝑅)𝑚) = ((0g𝑅)(+g𝑅)𝑚))
667, 61, 63, 52grpinvcld 19028 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → ((invg𝑅)‘(𝑟(.r𝑅)𝑋)) ∈ (Base‘𝑅))
67 simplr 768 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → 𝑚𝑀)
6851, 67sseldd 4009 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → 𝑚 ∈ (Base‘𝑅))
697, 59, 63, 66, 52, 68grpassd 18985 . . . . . . . . . 10 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → ((((invg𝑅)‘(𝑟(.r𝑅)𝑋))(+g𝑅)(𝑟(.r𝑅)𝑋))(+g𝑅)𝑚) = (((invg𝑅)‘(𝑟(.r𝑅)𝑋))(+g𝑅)((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)))
707, 59, 60, 63, 68grplidd 19009 . . . . . . . . . 10 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → ((0g𝑅)(+g𝑅)𝑚) = 𝑚)
7165, 69, 703eqtr3d 2788 . . . . . . . . 9 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → (((invg𝑅)‘(𝑟(.r𝑅)𝑋))(+g𝑅)((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) = 𝑚)
7258, 71eqtrd 2780 . . . . . . . 8 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → (((invg𝑅)‘(𝑟(.r𝑅)𝑋))(+g𝑅)(1r𝑅)) = 𝑚)
7372, 67eqeltrd 2844 . . . . . . 7 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → (((invg𝑅)‘(𝑟(.r𝑅)𝑋))(+g𝑅)(1r𝑅)) ∈ 𝑀)
747, 61, 59, 45eqgval 19217 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑀 ⊆ (Base‘𝑅)) → ((𝑟(.r𝑅)𝑋)(𝑅 ~QG 𝑀)(1r𝑅) ↔ ((𝑟(.r𝑅)𝑋) ∈ (Base‘𝑅) ∧ (1r𝑅) ∈ (Base‘𝑅) ∧ (((invg𝑅)‘(𝑟(.r𝑅)𝑋))(+g𝑅)(1r𝑅)) ∈ 𝑀)))
7574biimpar 477 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑀 ⊆ (Base‘𝑅)) ∧ ((𝑟(.r𝑅)𝑋) ∈ (Base‘𝑅) ∧ (1r𝑅) ∈ (Base‘𝑅) ∧ (((invg𝑅)‘(𝑟(.r𝑅)𝑋))(+g𝑅)(1r𝑅)) ∈ 𝑀)) → (𝑟(.r𝑅)𝑋)(𝑅 ~QG 𝑀)(1r𝑅))
7621, 51, 52, 56, 73, 75syl23anc 1377 . . . . . 6 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → (𝑟(.r𝑅)𝑋)(𝑅 ~QG 𝑀)(1r𝑅))
7748, 76erthi 8816 . . . . 5 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → [(𝑟(.r𝑅)𝑋)](𝑅 ~QG 𝑀) = [(1r𝑅)](𝑅 ~QG 𝑀))
7841, 77eqtrd 2780 . . . 4 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → ([𝑟](𝑅 ~QG 𝑀)(.r𝑄)[𝑋](𝑅 ~QG 𝑀)) = [(1r𝑅)](𝑅 ~QG 𝑀))
795, 35, 53qus1 21307 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (2Ideal‘𝑅)) → (𝑄 ∈ Ring ∧ [(1r𝑅)](𝑅 ~QG 𝑀) = (1r𝑄)))
8079simprd 495 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (2Ideal‘𝑅)) → [(1r𝑅)](𝑅 ~QG 𝑀) = (1r𝑄))
8121, 38, 80syl2anc 583 . . . 4 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → [(1r𝑅)](𝑅 ~QG 𝑀) = (1r𝑄))
8278, 81eqtrd 2780 . . 3 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → ([𝑟](𝑅 ~QG 𝑀)(.r𝑄)[𝑋](𝑅 ~QG 𝑀)) = (1r𝑄))
8313, 16, 82rspcedvd 3637 . 2 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → ∃𝑣 ∈ (Base‘𝑄)(𝑣(.r𝑄)[𝑋](𝑅 ~QG 𝑀)) = (1r𝑄))
8439snssd 4834 . . . . . . 7 (𝜑 → {𝑋} ⊆ (Base‘𝑅))
8550, 84unssd 4215 . . . . . 6 (𝜑 → (𝑀 ∪ {𝑋}) ⊆ (Base‘𝑅))
86 eqid 2740 . . . . . . 7 (RSpan‘𝑅) = (RSpan‘𝑅)
8786, 7, 33rspcl 21268 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑀 ∪ {𝑋}) ⊆ (Base‘𝑅)) → ((RSpan‘𝑅)‘(𝑀 ∪ {𝑋})) ∈ (LIdeal‘𝑅))
8820, 85, 87syl2anc 583 . . . . 5 (𝜑 → ((RSpan‘𝑅)‘(𝑀 ∪ {𝑋})) ∈ (LIdeal‘𝑅))
8986, 7rspssid 21269 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑀 ∪ {𝑋}) ⊆ (Base‘𝑅)) → (𝑀 ∪ {𝑋}) ⊆ ((RSpan‘𝑅)‘(𝑀 ∪ {𝑋})))
9020, 85, 89syl2anc 583 . . . . . 6 (𝜑 → (𝑀 ∪ {𝑋}) ⊆ ((RSpan‘𝑅)‘(𝑀 ∪ {𝑋})))
9190unssad 4216 . . . . 5 (𝜑𝑀 ⊆ ((RSpan‘𝑅)‘(𝑀 ∪ {𝑋})))
9290unssbd 4217 . . . . . . 7 (𝜑 → {𝑋} ⊆ ((RSpan‘𝑅)‘(𝑀 ∪ {𝑋})))
93 snssg 4808 . . . . . . . 8 (𝑋 ∈ (Base‘𝑅) → (𝑋 ∈ ((RSpan‘𝑅)‘(𝑀 ∪ {𝑋})) ↔ {𝑋} ⊆ ((RSpan‘𝑅)‘(𝑀 ∪ {𝑋}))))
9493biimpar 477 . . . . . . 7 ((𝑋 ∈ (Base‘𝑅) ∧ {𝑋} ⊆ ((RSpan‘𝑅)‘(𝑀 ∪ {𝑋}))) → 𝑋 ∈ ((RSpan‘𝑅)‘(𝑀 ∪ {𝑋})))
9539, 92, 94syl2anc 583 . . . . . 6 (𝜑𝑋 ∈ ((RSpan‘𝑅)‘(𝑀 ∪ {𝑋})))
96 qsdrngilem.2 . . . . . 6 (𝜑 → ¬ 𝑋𝑀)
9795, 96eldifd 3987 . . . . 5 (𝜑𝑋 ∈ (((RSpan‘𝑅)‘(𝑀 ∪ {𝑋})) ∖ 𝑀))
987, 20, 22, 88, 91, 97mxidlmaxv 33461 . . . 4 (𝜑 → ((RSpan‘𝑅)‘(𝑀 ∪ {𝑋})) = (Base‘𝑅))
9955, 98eleqtrrd 2847 . . 3 (𝜑 → (1r𝑅) ∈ ((RSpan‘𝑅)‘(𝑀 ∪ {𝑋})))
10039, 96eldifd 3987 . . . 4 (𝜑𝑋 ∈ ((Base‘𝑅) ∖ 𝑀))
10186, 7, 60, 17, 20, 59, 24, 100elrspunsn 33422 . . 3 (𝜑 → ((1r𝑅) ∈ ((RSpan‘𝑅)‘(𝑀 ∪ {𝑋})) ↔ ∃𝑟 ∈ (Base‘𝑅)∃𝑚𝑀 (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)))
10299, 101mpbid 232 . 2 (𝜑 → ∃𝑟 ∈ (Base‘𝑅)∃𝑚𝑀 (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚))
10383, 102r19.29vva 3222 1 (𝜑 → ∃𝑣 ∈ (Base‘𝑄)(𝑣(.r𝑄)[𝑋](𝑅 ~QG 𝑀)) = (1r𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wrex 3076  Vcvv 3488  cun 3974  cin 3975  wss 3976  {csn 4648   class class class wbr 5166  cfv 6573  (class class class)co 7448   Er wer 8760  [cec 8761   / cqs 8762  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  0gc0g 17499   /s cqus 17565  Grpcgrp 18973  invgcminusg 18974  SubGrpcsubg 19160  NrmSGrpcnsg 19161   ~QG cqg 19162  1rcur 20208  Ringcrg 20260  opprcoppr 20359  NzRingcnzr 20538  LIdealclidl 21239  RSpancrsp 21240  2Idealc2idl 21282  MaxIdealcmxidl 33452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-ec 8765  df-qs 8769  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-imas 17568  df-qus 17569  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-nsg 19164  df-eqg 19165  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-nzr 20539  df-subrg 20597  df-lmod 20882  df-lss 20953  df-lsp 20993  df-lmhm 21044  df-lbs 21097  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-rsp 21242  df-2idl 21283  df-dsmm 21775  df-frlm 21790  df-uvc 21826  df-mxidl 33453
This theorem is referenced by:  qsdrngi  33488
  Copyright terms: Public domain W3C validator