Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qsdrngilem Structured version   Visualization version   GIF version

Theorem qsdrngilem 33458
Description: Lemma for qsdrngi 33459. (Contributed by Thierry Arnoux, 9-Mar-2025.)
Hypotheses
Ref Expression
qsdrng.0 𝑂 = (oppr𝑅)
qsdrng.q 𝑄 = (𝑅 /s (𝑅 ~QG 𝑀))
qsdrng.r (𝜑𝑅 ∈ NzRing)
qsdrngi.1 (𝜑𝑀 ∈ (MaxIdeal‘𝑅))
qsdrngi.2 (𝜑𝑀 ∈ (MaxIdeal‘𝑂))
qsdrngilem.1 (𝜑𝑋 ∈ (Base‘𝑅))
qsdrngilem.2 (𝜑 → ¬ 𝑋𝑀)
Assertion
Ref Expression
qsdrngilem (𝜑 → ∃𝑣 ∈ (Base‘𝑄)(𝑣(.r𝑄)[𝑋](𝑅 ~QG 𝑀)) = (1r𝑄))
Distinct variable groups:   𝑣,𝑀   𝑣,𝑄   𝑣,𝑅   𝑣,𝑋   𝜑,𝑣
Allowed substitution hint:   𝑂(𝑣)

Proof of Theorem qsdrngilem
Dummy variables 𝑚 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpllr 775 . . . . 5 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → 𝑟 ∈ (Base‘𝑅))
2 ovex 7402 . . . . . 6 (𝑅 ~QG 𝑀) ∈ V
32ecelqsi 8720 . . . . 5 (𝑟 ∈ (Base‘𝑅) → [𝑟](𝑅 ~QG 𝑀) ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑀)))
41, 3syl 17 . . . 4 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → [𝑟](𝑅 ~QG 𝑀) ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑀)))
5 qsdrng.q . . . . . . 7 𝑄 = (𝑅 /s (𝑅 ~QG 𝑀))
65a1i 11 . . . . . 6 (𝜑𝑄 = (𝑅 /s (𝑅 ~QG 𝑀)))
7 eqid 2729 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
87a1i 11 . . . . . 6 (𝜑 → (Base‘𝑅) = (Base‘𝑅))
9 ovexd 7404 . . . . . 6 (𝜑 → (𝑅 ~QG 𝑀) ∈ V)
10 qsdrng.r . . . . . 6 (𝜑𝑅 ∈ NzRing)
116, 8, 9, 10qusbas 17484 . . . . 5 (𝜑 → ((Base‘𝑅) / (𝑅 ~QG 𝑀)) = (Base‘𝑄))
1211ad3antrrr 730 . . . 4 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → ((Base‘𝑅) / (𝑅 ~QG 𝑀)) = (Base‘𝑄))
134, 12eleqtrd 2830 . . 3 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → [𝑟](𝑅 ~QG 𝑀) ∈ (Base‘𝑄))
14 oveq1 7376 . . . . 5 (𝑣 = [𝑟](𝑅 ~QG 𝑀) → (𝑣(.r𝑄)[𝑋](𝑅 ~QG 𝑀)) = ([𝑟](𝑅 ~QG 𝑀)(.r𝑄)[𝑋](𝑅 ~QG 𝑀)))
1514eqeq1d 2731 . . . 4 (𝑣 = [𝑟](𝑅 ~QG 𝑀) → ((𝑣(.r𝑄)[𝑋](𝑅 ~QG 𝑀)) = (1r𝑄) ↔ ([𝑟](𝑅 ~QG 𝑀)(.r𝑄)[𝑋](𝑅 ~QG 𝑀)) = (1r𝑄)))
1615adantl 481 . . 3 (((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) ∧ 𝑣 = [𝑟](𝑅 ~QG 𝑀)) → ((𝑣(.r𝑄)[𝑋](𝑅 ~QG 𝑀)) = (1r𝑄) ↔ ([𝑟](𝑅 ~QG 𝑀)(.r𝑄)[𝑋](𝑅 ~QG 𝑀)) = (1r𝑄)))
17 eqid 2729 . . . . . 6 (.r𝑅) = (.r𝑅)
18 eqid 2729 . . . . . 6 (.r𝑄) = (.r𝑄)
19 nzrring 20436 . . . . . . . 8 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
2010, 19syl 17 . . . . . . 7 (𝜑𝑅 ∈ Ring)
2120ad3antrrr 730 . . . . . 6 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → 𝑅 ∈ Ring)
22 qsdrngi.1 . . . . . . . . . 10 (𝜑𝑀 ∈ (MaxIdeal‘𝑅))
237mxidlidl 33427 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (LIdeal‘𝑅))
2420, 22, 23syl2anc 584 . . . . . . . . 9 (𝜑𝑀 ∈ (LIdeal‘𝑅))
25 qsdrng.0 . . . . . . . . . . . 12 𝑂 = (oppr𝑅)
2625opprring 20267 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑂 ∈ Ring)
2720, 26syl 17 . . . . . . . . . 10 (𝜑𝑂 ∈ Ring)
28 qsdrngi.2 . . . . . . . . . 10 (𝜑𝑀 ∈ (MaxIdeal‘𝑂))
29 eqid 2729 . . . . . . . . . . 11 (Base‘𝑂) = (Base‘𝑂)
3029mxidlidl 33427 . . . . . . . . . 10 ((𝑂 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑂)) → 𝑀 ∈ (LIdeal‘𝑂))
3127, 28, 30syl2anc 584 . . . . . . . . 9 (𝜑𝑀 ∈ (LIdeal‘𝑂))
3224, 31elind 4159 . . . . . . . 8 (𝜑𝑀 ∈ ((LIdeal‘𝑅) ∩ (LIdeal‘𝑂)))
33 eqid 2729 . . . . . . . . 9 (LIdeal‘𝑅) = (LIdeal‘𝑅)
34 eqid 2729 . . . . . . . . 9 (LIdeal‘𝑂) = (LIdeal‘𝑂)
35 eqid 2729 . . . . . . . . 9 (2Ideal‘𝑅) = (2Ideal‘𝑅)
3633, 25, 34, 352idlval 21193 . . . . . . . 8 (2Ideal‘𝑅) = ((LIdeal‘𝑅) ∩ (LIdeal‘𝑂))
3732, 36eleqtrrdi 2839 . . . . . . 7 (𝜑𝑀 ∈ (2Ideal‘𝑅))
3837ad3antrrr 730 . . . . . 6 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → 𝑀 ∈ (2Ideal‘𝑅))
39 qsdrngilem.1 . . . . . . 7 (𝜑𝑋 ∈ (Base‘𝑅))
4039ad3antrrr 730 . . . . . 6 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → 𝑋 ∈ (Base‘𝑅))
415, 7, 17, 18, 21, 38, 1, 40qusmul2idl 21221 . . . . 5 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → ([𝑟](𝑅 ~QG 𝑀)(.r𝑄)[𝑋](𝑅 ~QG 𝑀)) = [(𝑟(.r𝑅)𝑋)](𝑅 ~QG 𝑀))
42 lidlnsg 21190 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (LIdeal‘𝑅)) → 𝑀 ∈ (NrmSGrp‘𝑅))
4320, 24, 42syl2anc 584 . . . . . . . 8 (𝜑𝑀 ∈ (NrmSGrp‘𝑅))
44 nsgsubg 19072 . . . . . . . 8 (𝑀 ∈ (NrmSGrp‘𝑅) → 𝑀 ∈ (SubGrp‘𝑅))
45 eqid 2729 . . . . . . . . 9 (𝑅 ~QG 𝑀) = (𝑅 ~QG 𝑀)
467, 45eqger 19092 . . . . . . . 8 (𝑀 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝑀) Er (Base‘𝑅))
4743, 44, 463syl 18 . . . . . . 7 (𝜑 → (𝑅 ~QG 𝑀) Er (Base‘𝑅))
4847ad3antrrr 730 . . . . . 6 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → (𝑅 ~QG 𝑀) Er (Base‘𝑅))
497, 33lidlss 21154 . . . . . . . . 9 (𝑀 ∈ (LIdeal‘𝑅) → 𝑀 ⊆ (Base‘𝑅))
5024, 49syl 17 . . . . . . . 8 (𝜑𝑀 ⊆ (Base‘𝑅))
5150ad3antrrr 730 . . . . . . 7 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → 𝑀 ⊆ (Base‘𝑅))
527, 17, 21, 1, 40ringcld 20180 . . . . . . 7 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → (𝑟(.r𝑅)𝑋) ∈ (Base‘𝑅))
53 eqid 2729 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
547, 53ringidcl 20185 . . . . . . . . 9 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
5520, 54syl 17 . . . . . . . 8 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
5655ad3antrrr 730 . . . . . . 7 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → (1r𝑅) ∈ (Base‘𝑅))
57 simpr 484 . . . . . . . . . 10 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚))
5857oveq2d 7385 . . . . . . . . 9 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → (((invg𝑅)‘(𝑟(.r𝑅)𝑋))(+g𝑅)(1r𝑅)) = (((invg𝑅)‘(𝑟(.r𝑅)𝑋))(+g𝑅)((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)))
59 eqid 2729 . . . . . . . . . . . 12 (+g𝑅) = (+g𝑅)
60 eqid 2729 . . . . . . . . . . . 12 (0g𝑅) = (0g𝑅)
61 eqid 2729 . . . . . . . . . . . 12 (invg𝑅) = (invg𝑅)
6220ringgrpd 20162 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ Grp)
6362ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → 𝑅 ∈ Grp)
647, 59, 60, 61, 63, 52grplinvd 18908 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → (((invg𝑅)‘(𝑟(.r𝑅)𝑋))(+g𝑅)(𝑟(.r𝑅)𝑋)) = (0g𝑅))
6564oveq1d 7384 . . . . . . . . . 10 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → ((((invg𝑅)‘(𝑟(.r𝑅)𝑋))(+g𝑅)(𝑟(.r𝑅)𝑋))(+g𝑅)𝑚) = ((0g𝑅)(+g𝑅)𝑚))
667, 61, 63, 52grpinvcld 18902 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → ((invg𝑅)‘(𝑟(.r𝑅)𝑋)) ∈ (Base‘𝑅))
67 simplr 768 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → 𝑚𝑀)
6851, 67sseldd 3944 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → 𝑚 ∈ (Base‘𝑅))
697, 59, 63, 66, 52, 68grpassd 18859 . . . . . . . . . 10 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → ((((invg𝑅)‘(𝑟(.r𝑅)𝑋))(+g𝑅)(𝑟(.r𝑅)𝑋))(+g𝑅)𝑚) = (((invg𝑅)‘(𝑟(.r𝑅)𝑋))(+g𝑅)((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)))
707, 59, 60, 63, 68grplidd 18883 . . . . . . . . . 10 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → ((0g𝑅)(+g𝑅)𝑚) = 𝑚)
7165, 69, 703eqtr3d 2772 . . . . . . . . 9 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → (((invg𝑅)‘(𝑟(.r𝑅)𝑋))(+g𝑅)((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) = 𝑚)
7258, 71eqtrd 2764 . . . . . . . 8 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → (((invg𝑅)‘(𝑟(.r𝑅)𝑋))(+g𝑅)(1r𝑅)) = 𝑚)
7372, 67eqeltrd 2828 . . . . . . 7 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → (((invg𝑅)‘(𝑟(.r𝑅)𝑋))(+g𝑅)(1r𝑅)) ∈ 𝑀)
747, 61, 59, 45eqgval 19091 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑀 ⊆ (Base‘𝑅)) → ((𝑟(.r𝑅)𝑋)(𝑅 ~QG 𝑀)(1r𝑅) ↔ ((𝑟(.r𝑅)𝑋) ∈ (Base‘𝑅) ∧ (1r𝑅) ∈ (Base‘𝑅) ∧ (((invg𝑅)‘(𝑟(.r𝑅)𝑋))(+g𝑅)(1r𝑅)) ∈ 𝑀)))
7574biimpar 477 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑀 ⊆ (Base‘𝑅)) ∧ ((𝑟(.r𝑅)𝑋) ∈ (Base‘𝑅) ∧ (1r𝑅) ∈ (Base‘𝑅) ∧ (((invg𝑅)‘(𝑟(.r𝑅)𝑋))(+g𝑅)(1r𝑅)) ∈ 𝑀)) → (𝑟(.r𝑅)𝑋)(𝑅 ~QG 𝑀)(1r𝑅))
7621, 51, 52, 56, 73, 75syl23anc 1379 . . . . . 6 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → (𝑟(.r𝑅)𝑋)(𝑅 ~QG 𝑀)(1r𝑅))
7748, 76erthi 8704 . . . . 5 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → [(𝑟(.r𝑅)𝑋)](𝑅 ~QG 𝑀) = [(1r𝑅)](𝑅 ~QG 𝑀))
7841, 77eqtrd 2764 . . . 4 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → ([𝑟](𝑅 ~QG 𝑀)(.r𝑄)[𝑋](𝑅 ~QG 𝑀)) = [(1r𝑅)](𝑅 ~QG 𝑀))
795, 35, 53qus1 21216 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (2Ideal‘𝑅)) → (𝑄 ∈ Ring ∧ [(1r𝑅)](𝑅 ~QG 𝑀) = (1r𝑄)))
8079simprd 495 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (2Ideal‘𝑅)) → [(1r𝑅)](𝑅 ~QG 𝑀) = (1r𝑄))
8121, 38, 80syl2anc 584 . . . 4 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → [(1r𝑅)](𝑅 ~QG 𝑀) = (1r𝑄))
8278, 81eqtrd 2764 . . 3 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → ([𝑟](𝑅 ~QG 𝑀)(.r𝑄)[𝑋](𝑅 ~QG 𝑀)) = (1r𝑄))
8313, 16, 82rspcedvd 3587 . 2 ((((𝜑𝑟 ∈ (Base‘𝑅)) ∧ 𝑚𝑀) ∧ (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)) → ∃𝑣 ∈ (Base‘𝑄)(𝑣(.r𝑄)[𝑋](𝑅 ~QG 𝑀)) = (1r𝑄))
8439snssd 4769 . . . . . . 7 (𝜑 → {𝑋} ⊆ (Base‘𝑅))
8550, 84unssd 4151 . . . . . 6 (𝜑 → (𝑀 ∪ {𝑋}) ⊆ (Base‘𝑅))
86 eqid 2729 . . . . . . 7 (RSpan‘𝑅) = (RSpan‘𝑅)
8786, 7, 33rspcl 21177 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑀 ∪ {𝑋}) ⊆ (Base‘𝑅)) → ((RSpan‘𝑅)‘(𝑀 ∪ {𝑋})) ∈ (LIdeal‘𝑅))
8820, 85, 87syl2anc 584 . . . . 5 (𝜑 → ((RSpan‘𝑅)‘(𝑀 ∪ {𝑋})) ∈ (LIdeal‘𝑅))
8986, 7rspssid 21178 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑀 ∪ {𝑋}) ⊆ (Base‘𝑅)) → (𝑀 ∪ {𝑋}) ⊆ ((RSpan‘𝑅)‘(𝑀 ∪ {𝑋})))
9020, 85, 89syl2anc 584 . . . . . 6 (𝜑 → (𝑀 ∪ {𝑋}) ⊆ ((RSpan‘𝑅)‘(𝑀 ∪ {𝑋})))
9190unssad 4152 . . . . 5 (𝜑𝑀 ⊆ ((RSpan‘𝑅)‘(𝑀 ∪ {𝑋})))
9290unssbd 4153 . . . . . . 7 (𝜑 → {𝑋} ⊆ ((RSpan‘𝑅)‘(𝑀 ∪ {𝑋})))
93 snssg 4743 . . . . . . . 8 (𝑋 ∈ (Base‘𝑅) → (𝑋 ∈ ((RSpan‘𝑅)‘(𝑀 ∪ {𝑋})) ↔ {𝑋} ⊆ ((RSpan‘𝑅)‘(𝑀 ∪ {𝑋}))))
9493biimpar 477 . . . . . . 7 ((𝑋 ∈ (Base‘𝑅) ∧ {𝑋} ⊆ ((RSpan‘𝑅)‘(𝑀 ∪ {𝑋}))) → 𝑋 ∈ ((RSpan‘𝑅)‘(𝑀 ∪ {𝑋})))
9539, 92, 94syl2anc 584 . . . . . 6 (𝜑𝑋 ∈ ((RSpan‘𝑅)‘(𝑀 ∪ {𝑋})))
96 qsdrngilem.2 . . . . . 6 (𝜑 → ¬ 𝑋𝑀)
9795, 96eldifd 3922 . . . . 5 (𝜑𝑋 ∈ (((RSpan‘𝑅)‘(𝑀 ∪ {𝑋})) ∖ 𝑀))
987, 20, 22, 88, 91, 97mxidlmaxv 33432 . . . 4 (𝜑 → ((RSpan‘𝑅)‘(𝑀 ∪ {𝑋})) = (Base‘𝑅))
9955, 98eleqtrrd 2831 . . 3 (𝜑 → (1r𝑅) ∈ ((RSpan‘𝑅)‘(𝑀 ∪ {𝑋})))
10039, 96eldifd 3922 . . . 4 (𝜑𝑋 ∈ ((Base‘𝑅) ∖ 𝑀))
10186, 7, 60, 17, 20, 59, 24, 100elrspunsn 33393 . . 3 (𝜑 → ((1r𝑅) ∈ ((RSpan‘𝑅)‘(𝑀 ∪ {𝑋})) ↔ ∃𝑟 ∈ (Base‘𝑅)∃𝑚𝑀 (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚)))
10299, 101mpbid 232 . 2 (𝜑 → ∃𝑟 ∈ (Base‘𝑅)∃𝑚𝑀 (1r𝑅) = ((𝑟(.r𝑅)𝑋)(+g𝑅)𝑚))
10383, 102r19.29vva 3195 1 (𝜑 → ∃𝑣 ∈ (Base‘𝑄)(𝑣(.r𝑄)[𝑋](𝑅 ~QG 𝑀)) = (1r𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3444  cun 3909  cin 3910  wss 3911  {csn 4585   class class class wbr 5102  cfv 6499  (class class class)co 7369   Er wer 8645  [cec 8646   / cqs 8647  Basecbs 17155  +gcplusg 17196  .rcmulr 17197  0gc0g 17378   /s cqus 17444  Grpcgrp 18847  invgcminusg 18848  SubGrpcsubg 19034  NrmSGrpcnsg 19035   ~QG cqg 19036  1rcur 20101  Ringcrg 20153  opprcoppr 20256  NzRingcnzr 20432  LIdealclidl 21148  RSpancrsp 21149  2Idealc2idl 21191  MaxIdealcmxidl 33423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-ec 8650  df-qs 8654  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-imas 17447  df-qus 17448  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-nsg 19038  df-eqg 19039  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-oppr 20257  df-nzr 20433  df-subrg 20490  df-lmod 20800  df-lss 20870  df-lsp 20910  df-lmhm 20961  df-lbs 21014  df-sra 21112  df-rgmod 21113  df-lidl 21150  df-rsp 21151  df-2idl 21192  df-dsmm 21674  df-frlm 21689  df-uvc 21725  df-mxidl 33424
This theorem is referenced by:  qsdrngi  33459
  Copyright terms: Public domain W3C validator