![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > grpcominv1 | Structured version Visualization version GIF version |
Description: If two elements commute, then they commute with each other's inverses (case of the first element commuting with the inverse of the second element). (Contributed by SN, 29-Jan-2025.) |
Ref | Expression |
---|---|
grpcominv.b | ⊢ 𝐵 = (Base‘𝐺) |
grpcominv.p | ⊢ + = (+g‘𝐺) |
grpcominv.n | ⊢ 𝑁 = (invg‘𝐺) |
grpcominv.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
grpcominv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
grpcominv.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
grpcominv.1 | ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
Ref | Expression |
---|---|
grpcominv1 | ⊢ (𝜑 → (𝑋 + (𝑁‘𝑌)) = ((𝑁‘𝑌) + 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpcominv.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
2 | grpcominv.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
3 | grpcominv.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
4 | grpcominv.n | . . . . . 6 ⊢ 𝑁 = (invg‘𝐺) | |
5 | grpcominv.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | 1, 4, 3, 5 | grpinvcld 18947 | . . . . 5 ⊢ (𝜑 → (𝑁‘𝑌) ∈ 𝐵) |
7 | grpcominv.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
8 | 1, 2, 3, 6, 5, 7 | grpassd 18904 | . . . 4 ⊢ (𝜑 → (((𝑁‘𝑌) + 𝑌) + 𝑋) = ((𝑁‘𝑌) + (𝑌 + 𝑋))) |
9 | eqid 2725 | . . . . . . 7 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
10 | 1, 2, 9, 4, 3, 5 | grplinvd 18953 | . . . . . 6 ⊢ (𝜑 → ((𝑁‘𝑌) + 𝑌) = (0g‘𝐺)) |
11 | 10 | oveq1d 7430 | . . . . 5 ⊢ (𝜑 → (((𝑁‘𝑌) + 𝑌) + 𝑋) = ((0g‘𝐺) + 𝑋)) |
12 | 1, 2, 9, 3, 7 | grplidd 18928 | . . . . 5 ⊢ (𝜑 → ((0g‘𝐺) + 𝑋) = 𝑋) |
13 | 11, 12 | eqtr2d 2766 | . . . 4 ⊢ (𝜑 → 𝑋 = (((𝑁‘𝑌) + 𝑌) + 𝑋)) |
14 | grpcominv.1 | . . . . 5 ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) | |
15 | 14 | oveq2d 7431 | . . . 4 ⊢ (𝜑 → ((𝑁‘𝑌) + (𝑋 + 𝑌)) = ((𝑁‘𝑌) + (𝑌 + 𝑋))) |
16 | 8, 13, 15 | 3eqtr4rd 2776 | . . 3 ⊢ (𝜑 → ((𝑁‘𝑌) + (𝑋 + 𝑌)) = 𝑋) |
17 | 1, 2, 3, 6, 7, 5 | grpassd 18904 | . . 3 ⊢ (𝜑 → (((𝑁‘𝑌) + 𝑋) + 𝑌) = ((𝑁‘𝑌) + (𝑋 + 𝑌))) |
18 | 1, 2, 4, 3, 7, 5 | grpasscan2d 41802 | . . 3 ⊢ (𝜑 → ((𝑋 + (𝑁‘𝑌)) + 𝑌) = 𝑋) |
19 | 16, 17, 18 | 3eqtr4rd 2776 | . 2 ⊢ (𝜑 → ((𝑋 + (𝑁‘𝑌)) + 𝑌) = (((𝑁‘𝑌) + 𝑋) + 𝑌)) |
20 | 1, 2, 3, 7, 6 | grpcld 18906 | . . 3 ⊢ (𝜑 → (𝑋 + (𝑁‘𝑌)) ∈ 𝐵) |
21 | 1, 2, 3, 6, 7 | grpcld 18906 | . . 3 ⊢ (𝜑 → ((𝑁‘𝑌) + 𝑋) ∈ 𝐵) |
22 | 1, 2 | grprcan 18932 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ ((𝑋 + (𝑁‘𝑌)) ∈ 𝐵 ∧ ((𝑁‘𝑌) + 𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (((𝑋 + (𝑁‘𝑌)) + 𝑌) = (((𝑁‘𝑌) + 𝑋) + 𝑌) ↔ (𝑋 + (𝑁‘𝑌)) = ((𝑁‘𝑌) + 𝑋))) |
23 | 3, 20, 21, 5, 22 | syl13anc 1369 | . 2 ⊢ (𝜑 → (((𝑋 + (𝑁‘𝑌)) + 𝑌) = (((𝑁‘𝑌) + 𝑋) + 𝑌) ↔ (𝑋 + (𝑁‘𝑌)) = ((𝑁‘𝑌) + 𝑋))) |
24 | 19, 23 | mpbid 231 | 1 ⊢ (𝜑 → (𝑋 + (𝑁‘𝑌)) = ((𝑁‘𝑌) + 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 ‘cfv 6542 (class class class)co 7415 Basecbs 17177 +gcplusg 17230 0gc0g 17418 Grpcgrp 18892 invgcminusg 18893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-riota 7371 df-ov 7418 df-0g 17420 df-mgm 18597 df-sgrp 18676 df-mnd 18692 df-grp 18895 df-minusg 18896 |
This theorem is referenced by: grpcominv2 41804 |
Copyright terms: Public domain | W3C validator |