Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grpcominv1 Structured version   Visualization version   GIF version

Theorem grpcominv1 42503
Description: If two elements commute, then they commute with each other's inverses (case of the first element commuting with the inverse of the second element). (Contributed by SN, 29-Jan-2025.)
Hypotheses
Ref Expression
grpcominv.b 𝐵 = (Base‘𝐺)
grpcominv.p + = (+g𝐺)
grpcominv.n 𝑁 = (invg𝐺)
grpcominv.g (𝜑𝐺 ∈ Grp)
grpcominv.x (𝜑𝑋𝐵)
grpcominv.y (𝜑𝑌𝐵)
grpcominv.1 (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Assertion
Ref Expression
grpcominv1 (𝜑 → (𝑋 + (𝑁𝑌)) = ((𝑁𝑌) + 𝑋))

Proof of Theorem grpcominv1
StepHypRef Expression
1 grpcominv.b . . . . 5 𝐵 = (Base‘𝐺)
2 grpcominv.p . . . . 5 + = (+g𝐺)
3 grpcominv.g . . . . 5 (𝜑𝐺 ∈ Grp)
4 grpcominv.n . . . . . 6 𝑁 = (invg𝐺)
5 grpcominv.y . . . . . 6 (𝜑𝑌𝐵)
61, 4, 3, 5grpinvcld 18927 . . . . 5 (𝜑 → (𝑁𝑌) ∈ 𝐵)
7 grpcominv.x . . . . 5 (𝜑𝑋𝐵)
81, 2, 3, 6, 5, 7grpassd 18884 . . . 4 (𝜑 → (((𝑁𝑌) + 𝑌) + 𝑋) = ((𝑁𝑌) + (𝑌 + 𝑋)))
9 eqid 2730 . . . . . . 7 (0g𝐺) = (0g𝐺)
101, 2, 9, 4, 3, 5grplinvd 18933 . . . . . 6 (𝜑 → ((𝑁𝑌) + 𝑌) = (0g𝐺))
1110oveq1d 7405 . . . . 5 (𝜑 → (((𝑁𝑌) + 𝑌) + 𝑋) = ((0g𝐺) + 𝑋))
121, 2, 9, 3, 7grplidd 18908 . . . . 5 (𝜑 → ((0g𝐺) + 𝑋) = 𝑋)
1311, 12eqtr2d 2766 . . . 4 (𝜑𝑋 = (((𝑁𝑌) + 𝑌) + 𝑋))
14 grpcominv.1 . . . . 5 (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋))
1514oveq2d 7406 . . . 4 (𝜑 → ((𝑁𝑌) + (𝑋 + 𝑌)) = ((𝑁𝑌) + (𝑌 + 𝑋)))
168, 13, 153eqtr4rd 2776 . . 3 (𝜑 → ((𝑁𝑌) + (𝑋 + 𝑌)) = 𝑋)
171, 2, 3, 6, 7, 5grpassd 18884 . . 3 (𝜑 → (((𝑁𝑌) + 𝑋) + 𝑌) = ((𝑁𝑌) + (𝑋 + 𝑌)))
181, 2, 4, 3, 7, 5grpasscan2d 42502 . . 3 (𝜑 → ((𝑋 + (𝑁𝑌)) + 𝑌) = 𝑋)
1916, 17, 183eqtr4rd 2776 . 2 (𝜑 → ((𝑋 + (𝑁𝑌)) + 𝑌) = (((𝑁𝑌) + 𝑋) + 𝑌))
201, 2, 3, 7, 6grpcld 18886 . . 3 (𝜑 → (𝑋 + (𝑁𝑌)) ∈ 𝐵)
211, 2, 3, 6, 7grpcld 18886 . . 3 (𝜑 → ((𝑁𝑌) + 𝑋) ∈ 𝐵)
221, 2grprcan 18912 . . 3 ((𝐺 ∈ Grp ∧ ((𝑋 + (𝑁𝑌)) ∈ 𝐵 ∧ ((𝑁𝑌) + 𝑋) ∈ 𝐵𝑌𝐵)) → (((𝑋 + (𝑁𝑌)) + 𝑌) = (((𝑁𝑌) + 𝑋) + 𝑌) ↔ (𝑋 + (𝑁𝑌)) = ((𝑁𝑌) + 𝑋)))
233, 20, 21, 5, 22syl13anc 1374 . 2 (𝜑 → (((𝑋 + (𝑁𝑌)) + 𝑌) = (((𝑁𝑌) + 𝑋) + 𝑌) ↔ (𝑋 + (𝑁𝑌)) = ((𝑁𝑌) + 𝑋)))
2419, 23mpbid 232 1 (𝜑 → (𝑋 + (𝑁𝑌)) = ((𝑁𝑌) + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  0gc0g 17409  Grpcgrp 18872  invgcminusg 18873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-riota 7347  df-ov 7393  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876
This theorem is referenced by:  grpcominv2  42504
  Copyright terms: Public domain W3C validator