Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grpcominv1 Structured version   Visualization version   GIF version

Theorem grpcominv1 42463
Description: If two elements commute, then they commute with each other's inverses (case of the first element commuting with the inverse of the second element). (Contributed by SN, 29-Jan-2025.)
Hypotheses
Ref Expression
grpcominv.b 𝐵 = (Base‘𝐺)
grpcominv.p + = (+g𝐺)
grpcominv.n 𝑁 = (invg𝐺)
grpcominv.g (𝜑𝐺 ∈ Grp)
grpcominv.x (𝜑𝑋𝐵)
grpcominv.y (𝜑𝑌𝐵)
grpcominv.1 (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Assertion
Ref Expression
grpcominv1 (𝜑 → (𝑋 + (𝑁𝑌)) = ((𝑁𝑌) + 𝑋))

Proof of Theorem grpcominv1
StepHypRef Expression
1 grpcominv.b . . . . 5 𝐵 = (Base‘𝐺)
2 grpcominv.p . . . . 5 + = (+g𝐺)
3 grpcominv.g . . . . 5 (𝜑𝐺 ∈ Grp)
4 grpcominv.n . . . . . 6 𝑁 = (invg𝐺)
5 grpcominv.y . . . . . 6 (𝜑𝑌𝐵)
61, 4, 3, 5grpinvcld 19028 . . . . 5 (𝜑 → (𝑁𝑌) ∈ 𝐵)
7 grpcominv.x . . . . 5 (𝜑𝑋𝐵)
81, 2, 3, 6, 5, 7grpassd 18985 . . . 4 (𝜑 → (((𝑁𝑌) + 𝑌) + 𝑋) = ((𝑁𝑌) + (𝑌 + 𝑋)))
9 eqid 2740 . . . . . . 7 (0g𝐺) = (0g𝐺)
101, 2, 9, 4, 3, 5grplinvd 19034 . . . . . 6 (𝜑 → ((𝑁𝑌) + 𝑌) = (0g𝐺))
1110oveq1d 7463 . . . . 5 (𝜑 → (((𝑁𝑌) + 𝑌) + 𝑋) = ((0g𝐺) + 𝑋))
121, 2, 9, 3, 7grplidd 19009 . . . . 5 (𝜑 → ((0g𝐺) + 𝑋) = 𝑋)
1311, 12eqtr2d 2781 . . . 4 (𝜑𝑋 = (((𝑁𝑌) + 𝑌) + 𝑋))
14 grpcominv.1 . . . . 5 (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋))
1514oveq2d 7464 . . . 4 (𝜑 → ((𝑁𝑌) + (𝑋 + 𝑌)) = ((𝑁𝑌) + (𝑌 + 𝑋)))
168, 13, 153eqtr4rd 2791 . . 3 (𝜑 → ((𝑁𝑌) + (𝑋 + 𝑌)) = 𝑋)
171, 2, 3, 6, 7, 5grpassd 18985 . . 3 (𝜑 → (((𝑁𝑌) + 𝑋) + 𝑌) = ((𝑁𝑌) + (𝑋 + 𝑌)))
181, 2, 4, 3, 7, 5grpasscan2d 42462 . . 3 (𝜑 → ((𝑋 + (𝑁𝑌)) + 𝑌) = 𝑋)
1916, 17, 183eqtr4rd 2791 . 2 (𝜑 → ((𝑋 + (𝑁𝑌)) + 𝑌) = (((𝑁𝑌) + 𝑋) + 𝑌))
201, 2, 3, 7, 6grpcld 18987 . . 3 (𝜑 → (𝑋 + (𝑁𝑌)) ∈ 𝐵)
211, 2, 3, 6, 7grpcld 18987 . . 3 (𝜑 → ((𝑁𝑌) + 𝑋) ∈ 𝐵)
221, 2grprcan 19013 . . 3 ((𝐺 ∈ Grp ∧ ((𝑋 + (𝑁𝑌)) ∈ 𝐵 ∧ ((𝑁𝑌) + 𝑋) ∈ 𝐵𝑌𝐵)) → (((𝑋 + (𝑁𝑌)) + 𝑌) = (((𝑁𝑌) + 𝑋) + 𝑌) ↔ (𝑋 + (𝑁𝑌)) = ((𝑁𝑌) + 𝑋)))
233, 20, 21, 5, 22syl13anc 1372 . 2 (𝜑 → (((𝑋 + (𝑁𝑌)) + 𝑌) = (((𝑁𝑌) + 𝑋) + 𝑌) ↔ (𝑋 + (𝑁𝑌)) = ((𝑁𝑌) + 𝑋)))
2419, 23mpbid 232 1 (𝜑 → (𝑋 + (𝑁𝑌)) = ((𝑁𝑌) + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  0gc0g 17499  Grpcgrp 18973  invgcminusg 18974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-riota 7404  df-ov 7451  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977
This theorem is referenced by:  grpcominv2  42464
  Copyright terms: Public domain W3C validator