| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > grpcominv1 | Structured version Visualization version GIF version | ||
| Description: If two elements commute, then they commute with each other's inverses (case of the first element commuting with the inverse of the second element). (Contributed by SN, 29-Jan-2025.) |
| Ref | Expression |
|---|---|
| grpcominv.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpcominv.p | ⊢ + = (+g‘𝐺) |
| grpcominv.n | ⊢ 𝑁 = (invg‘𝐺) |
| grpcominv.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| grpcominv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| grpcominv.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| grpcominv.1 | ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| Ref | Expression |
|---|---|
| grpcominv1 | ⊢ (𝜑 → (𝑋 + (𝑁‘𝑌)) = ((𝑁‘𝑌) + 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpcominv.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | grpcominv.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
| 3 | grpcominv.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 4 | grpcominv.n | . . . . . 6 ⊢ 𝑁 = (invg‘𝐺) | |
| 5 | grpcominv.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | 1, 4, 3, 5 | grpinvcld 18898 | . . . . 5 ⊢ (𝜑 → (𝑁‘𝑌) ∈ 𝐵) |
| 7 | grpcominv.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 8 | 1, 2, 3, 6, 5, 7 | grpassd 18855 | . . . 4 ⊢ (𝜑 → (((𝑁‘𝑌) + 𝑌) + 𝑋) = ((𝑁‘𝑌) + (𝑌 + 𝑋))) |
| 9 | eqid 2731 | . . . . . . 7 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 10 | 1, 2, 9, 4, 3, 5 | grplinvd 18904 | . . . . . 6 ⊢ (𝜑 → ((𝑁‘𝑌) + 𝑌) = (0g‘𝐺)) |
| 11 | 10 | oveq1d 7361 | . . . . 5 ⊢ (𝜑 → (((𝑁‘𝑌) + 𝑌) + 𝑋) = ((0g‘𝐺) + 𝑋)) |
| 12 | 1, 2, 9, 3, 7 | grplidd 18879 | . . . . 5 ⊢ (𝜑 → ((0g‘𝐺) + 𝑋) = 𝑋) |
| 13 | 11, 12 | eqtr2d 2767 | . . . 4 ⊢ (𝜑 → 𝑋 = (((𝑁‘𝑌) + 𝑌) + 𝑋)) |
| 14 | grpcominv.1 | . . . . 5 ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) | |
| 15 | 14 | oveq2d 7362 | . . . 4 ⊢ (𝜑 → ((𝑁‘𝑌) + (𝑋 + 𝑌)) = ((𝑁‘𝑌) + (𝑌 + 𝑋))) |
| 16 | 8, 13, 15 | 3eqtr4rd 2777 | . . 3 ⊢ (𝜑 → ((𝑁‘𝑌) + (𝑋 + 𝑌)) = 𝑋) |
| 17 | 1, 2, 3, 6, 7, 5 | grpassd 18855 | . . 3 ⊢ (𝜑 → (((𝑁‘𝑌) + 𝑋) + 𝑌) = ((𝑁‘𝑌) + (𝑋 + 𝑌))) |
| 18 | 1, 2, 4, 3, 7, 5 | grpasscan2d 42539 | . . 3 ⊢ (𝜑 → ((𝑋 + (𝑁‘𝑌)) + 𝑌) = 𝑋) |
| 19 | 16, 17, 18 | 3eqtr4rd 2777 | . 2 ⊢ (𝜑 → ((𝑋 + (𝑁‘𝑌)) + 𝑌) = (((𝑁‘𝑌) + 𝑋) + 𝑌)) |
| 20 | 1, 2, 3, 7, 6 | grpcld 18857 | . . 3 ⊢ (𝜑 → (𝑋 + (𝑁‘𝑌)) ∈ 𝐵) |
| 21 | 1, 2, 3, 6, 7 | grpcld 18857 | . . 3 ⊢ (𝜑 → ((𝑁‘𝑌) + 𝑋) ∈ 𝐵) |
| 22 | 1, 2 | grprcan 18883 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ ((𝑋 + (𝑁‘𝑌)) ∈ 𝐵 ∧ ((𝑁‘𝑌) + 𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (((𝑋 + (𝑁‘𝑌)) + 𝑌) = (((𝑁‘𝑌) + 𝑋) + 𝑌) ↔ (𝑋 + (𝑁‘𝑌)) = ((𝑁‘𝑌) + 𝑋))) |
| 23 | 3, 20, 21, 5, 22 | syl13anc 1374 | . 2 ⊢ (𝜑 → (((𝑋 + (𝑁‘𝑌)) + 𝑌) = (((𝑁‘𝑌) + 𝑋) + 𝑌) ↔ (𝑋 + (𝑁‘𝑌)) = ((𝑁‘𝑌) + 𝑋))) |
| 24 | 19, 23 | mpbid 232 | 1 ⊢ (𝜑 → (𝑋 + (𝑁‘𝑌)) = ((𝑁‘𝑌) + 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 +gcplusg 17158 0gc0g 17340 Grpcgrp 18843 invgcminusg 18844 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-riota 7303 df-ov 7349 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-grp 18846 df-minusg 18847 |
| This theorem is referenced by: grpcominv2 42541 |
| Copyright terms: Public domain | W3C validator |