Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grpcominv1 Structured version   Visualization version   GIF version

Theorem grpcominv1 42540
Description: If two elements commute, then they commute with each other's inverses (case of the first element commuting with the inverse of the second element). (Contributed by SN, 29-Jan-2025.)
Hypotheses
Ref Expression
grpcominv.b 𝐵 = (Base‘𝐺)
grpcominv.p + = (+g𝐺)
grpcominv.n 𝑁 = (invg𝐺)
grpcominv.g (𝜑𝐺 ∈ Grp)
grpcominv.x (𝜑𝑋𝐵)
grpcominv.y (𝜑𝑌𝐵)
grpcominv.1 (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Assertion
Ref Expression
grpcominv1 (𝜑 → (𝑋 + (𝑁𝑌)) = ((𝑁𝑌) + 𝑋))

Proof of Theorem grpcominv1
StepHypRef Expression
1 grpcominv.b . . . . 5 𝐵 = (Base‘𝐺)
2 grpcominv.p . . . . 5 + = (+g𝐺)
3 grpcominv.g . . . . 5 (𝜑𝐺 ∈ Grp)
4 grpcominv.n . . . . . 6 𝑁 = (invg𝐺)
5 grpcominv.y . . . . . 6 (𝜑𝑌𝐵)
61, 4, 3, 5grpinvcld 18898 . . . . 5 (𝜑 → (𝑁𝑌) ∈ 𝐵)
7 grpcominv.x . . . . 5 (𝜑𝑋𝐵)
81, 2, 3, 6, 5, 7grpassd 18855 . . . 4 (𝜑 → (((𝑁𝑌) + 𝑌) + 𝑋) = ((𝑁𝑌) + (𝑌 + 𝑋)))
9 eqid 2731 . . . . . . 7 (0g𝐺) = (0g𝐺)
101, 2, 9, 4, 3, 5grplinvd 18904 . . . . . 6 (𝜑 → ((𝑁𝑌) + 𝑌) = (0g𝐺))
1110oveq1d 7361 . . . . 5 (𝜑 → (((𝑁𝑌) + 𝑌) + 𝑋) = ((0g𝐺) + 𝑋))
121, 2, 9, 3, 7grplidd 18879 . . . . 5 (𝜑 → ((0g𝐺) + 𝑋) = 𝑋)
1311, 12eqtr2d 2767 . . . 4 (𝜑𝑋 = (((𝑁𝑌) + 𝑌) + 𝑋))
14 grpcominv.1 . . . . 5 (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋))
1514oveq2d 7362 . . . 4 (𝜑 → ((𝑁𝑌) + (𝑋 + 𝑌)) = ((𝑁𝑌) + (𝑌 + 𝑋)))
168, 13, 153eqtr4rd 2777 . . 3 (𝜑 → ((𝑁𝑌) + (𝑋 + 𝑌)) = 𝑋)
171, 2, 3, 6, 7, 5grpassd 18855 . . 3 (𝜑 → (((𝑁𝑌) + 𝑋) + 𝑌) = ((𝑁𝑌) + (𝑋 + 𝑌)))
181, 2, 4, 3, 7, 5grpasscan2d 42539 . . 3 (𝜑 → ((𝑋 + (𝑁𝑌)) + 𝑌) = 𝑋)
1916, 17, 183eqtr4rd 2777 . 2 (𝜑 → ((𝑋 + (𝑁𝑌)) + 𝑌) = (((𝑁𝑌) + 𝑋) + 𝑌))
201, 2, 3, 7, 6grpcld 18857 . . 3 (𝜑 → (𝑋 + (𝑁𝑌)) ∈ 𝐵)
211, 2, 3, 6, 7grpcld 18857 . . 3 (𝜑 → ((𝑁𝑌) + 𝑋) ∈ 𝐵)
221, 2grprcan 18883 . . 3 ((𝐺 ∈ Grp ∧ ((𝑋 + (𝑁𝑌)) ∈ 𝐵 ∧ ((𝑁𝑌) + 𝑋) ∈ 𝐵𝑌𝐵)) → (((𝑋 + (𝑁𝑌)) + 𝑌) = (((𝑁𝑌) + 𝑋) + 𝑌) ↔ (𝑋 + (𝑁𝑌)) = ((𝑁𝑌) + 𝑋)))
233, 20, 21, 5, 22syl13anc 1374 . 2 (𝜑 → (((𝑋 + (𝑁𝑌)) + 𝑌) = (((𝑁𝑌) + 𝑋) + 𝑌) ↔ (𝑋 + (𝑁𝑌)) = ((𝑁𝑌) + 𝑋)))
2419, 23mpbid 232 1 (𝜑 → (𝑋 + (𝑁𝑌)) = ((𝑁𝑌) + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  Basecbs 17117  +gcplusg 17158  0gc0g 17340  Grpcgrp 18843  invgcminusg 18844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-riota 7303  df-ov 7349  df-0g 17342  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-grp 18846  df-minusg 18847
This theorem is referenced by:  grpcominv2  42541
  Copyright terms: Public domain W3C validator