![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > grpcominv1 | Structured version Visualization version GIF version |
Description: If two elements commute, then they commute with each other's inverses (case of the first element commuting with the inverse of the second element). (Contributed by SN, 29-Jan-2025.) |
Ref | Expression |
---|---|
grpcominv.b | ⊢ 𝐵 = (Base‘𝐺) |
grpcominv.p | ⊢ + = (+g‘𝐺) |
grpcominv.n | ⊢ 𝑁 = (invg‘𝐺) |
grpcominv.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
grpcominv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
grpcominv.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
grpcominv.1 | ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
Ref | Expression |
---|---|
grpcominv1 | ⊢ (𝜑 → (𝑋 + (𝑁‘𝑌)) = ((𝑁‘𝑌) + 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpcominv.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
2 | grpcominv.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
3 | grpcominv.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
4 | grpcominv.n | . . . . . 6 ⊢ 𝑁 = (invg‘𝐺) | |
5 | grpcominv.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | 1, 4, 3, 5 | grpinvcld 18918 | . . . . 5 ⊢ (𝜑 → (𝑁‘𝑌) ∈ 𝐵) |
7 | grpcominv.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
8 | 1, 2, 3, 6, 5, 7 | grpassd 18875 | . . . 4 ⊢ (𝜑 → (((𝑁‘𝑌) + 𝑌) + 𝑋) = ((𝑁‘𝑌) + (𝑌 + 𝑋))) |
9 | eqid 2726 | . . . . . . 7 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
10 | 1, 2, 9, 4, 3, 5 | grplinvd 18924 | . . . . . 6 ⊢ (𝜑 → ((𝑁‘𝑌) + 𝑌) = (0g‘𝐺)) |
11 | 10 | oveq1d 7420 | . . . . 5 ⊢ (𝜑 → (((𝑁‘𝑌) + 𝑌) + 𝑋) = ((0g‘𝐺) + 𝑋)) |
12 | 1, 2, 9, 3, 7 | grplidd 18899 | . . . . 5 ⊢ (𝜑 → ((0g‘𝐺) + 𝑋) = 𝑋) |
13 | 11, 12 | eqtr2d 2767 | . . . 4 ⊢ (𝜑 → 𝑋 = (((𝑁‘𝑌) + 𝑌) + 𝑋)) |
14 | grpcominv.1 | . . . . 5 ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) | |
15 | 14 | oveq2d 7421 | . . . 4 ⊢ (𝜑 → ((𝑁‘𝑌) + (𝑋 + 𝑌)) = ((𝑁‘𝑌) + (𝑌 + 𝑋))) |
16 | 8, 13, 15 | 3eqtr4rd 2777 | . . 3 ⊢ (𝜑 → ((𝑁‘𝑌) + (𝑋 + 𝑌)) = 𝑋) |
17 | 1, 2, 3, 6, 7, 5 | grpassd 18875 | . . 3 ⊢ (𝜑 → (((𝑁‘𝑌) + 𝑋) + 𝑌) = ((𝑁‘𝑌) + (𝑋 + 𝑌))) |
18 | 1, 2, 4, 3, 7, 5 | grpasscan2d 41647 | . . 3 ⊢ (𝜑 → ((𝑋 + (𝑁‘𝑌)) + 𝑌) = 𝑋) |
19 | 16, 17, 18 | 3eqtr4rd 2777 | . 2 ⊢ (𝜑 → ((𝑋 + (𝑁‘𝑌)) + 𝑌) = (((𝑁‘𝑌) + 𝑋) + 𝑌)) |
20 | 1, 2, 3, 7, 6 | grpcld 18877 | . . 3 ⊢ (𝜑 → (𝑋 + (𝑁‘𝑌)) ∈ 𝐵) |
21 | 1, 2, 3, 6, 7 | grpcld 18877 | . . 3 ⊢ (𝜑 → ((𝑁‘𝑌) + 𝑋) ∈ 𝐵) |
22 | 1, 2 | grprcan 18903 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ ((𝑋 + (𝑁‘𝑌)) ∈ 𝐵 ∧ ((𝑁‘𝑌) + 𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (((𝑋 + (𝑁‘𝑌)) + 𝑌) = (((𝑁‘𝑌) + 𝑋) + 𝑌) ↔ (𝑋 + (𝑁‘𝑌)) = ((𝑁‘𝑌) + 𝑋))) |
23 | 3, 20, 21, 5, 22 | syl13anc 1369 | . 2 ⊢ (𝜑 → (((𝑋 + (𝑁‘𝑌)) + 𝑌) = (((𝑁‘𝑌) + 𝑋) + 𝑌) ↔ (𝑋 + (𝑁‘𝑌)) = ((𝑁‘𝑌) + 𝑋))) |
24 | 19, 23 | mpbid 231 | 1 ⊢ (𝜑 → (𝑋 + (𝑁‘𝑌)) = ((𝑁‘𝑌) + 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 ‘cfv 6537 (class class class)co 7405 Basecbs 17153 +gcplusg 17206 0gc0g 17394 Grpcgrp 18863 invgcminusg 18864 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-fv 6545 df-riota 7361 df-ov 7408 df-0g 17396 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18866 df-minusg 18867 |
This theorem is referenced by: grpcominv2 41649 |
Copyright terms: Public domain | W3C validator |