| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > grpcominv1 | Structured version Visualization version GIF version | ||
| Description: If two elements commute, then they commute with each other's inverses (case of the first element commuting with the inverse of the second element). (Contributed by SN, 29-Jan-2025.) |
| Ref | Expression |
|---|---|
| grpcominv.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpcominv.p | ⊢ + = (+g‘𝐺) |
| grpcominv.n | ⊢ 𝑁 = (invg‘𝐺) |
| grpcominv.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| grpcominv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| grpcominv.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| grpcominv.1 | ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| Ref | Expression |
|---|---|
| grpcominv1 | ⊢ (𝜑 → (𝑋 + (𝑁‘𝑌)) = ((𝑁‘𝑌) + 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpcominv.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | grpcominv.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
| 3 | grpcominv.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 4 | grpcominv.n | . . . . . 6 ⊢ 𝑁 = (invg‘𝐺) | |
| 5 | grpcominv.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | 1, 4, 3, 5 | grpinvcld 18969 | . . . . 5 ⊢ (𝜑 → (𝑁‘𝑌) ∈ 𝐵) |
| 7 | grpcominv.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 8 | 1, 2, 3, 6, 5, 7 | grpassd 18926 | . . . 4 ⊢ (𝜑 → (((𝑁‘𝑌) + 𝑌) + 𝑋) = ((𝑁‘𝑌) + (𝑌 + 𝑋))) |
| 9 | eqid 2735 | . . . . . . 7 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 10 | 1, 2, 9, 4, 3, 5 | grplinvd 18975 | . . . . . 6 ⊢ (𝜑 → ((𝑁‘𝑌) + 𝑌) = (0g‘𝐺)) |
| 11 | 10 | oveq1d 7418 | . . . . 5 ⊢ (𝜑 → (((𝑁‘𝑌) + 𝑌) + 𝑋) = ((0g‘𝐺) + 𝑋)) |
| 12 | 1, 2, 9, 3, 7 | grplidd 18950 | . . . . 5 ⊢ (𝜑 → ((0g‘𝐺) + 𝑋) = 𝑋) |
| 13 | 11, 12 | eqtr2d 2771 | . . . 4 ⊢ (𝜑 → 𝑋 = (((𝑁‘𝑌) + 𝑌) + 𝑋)) |
| 14 | grpcominv.1 | . . . . 5 ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) | |
| 15 | 14 | oveq2d 7419 | . . . 4 ⊢ (𝜑 → ((𝑁‘𝑌) + (𝑋 + 𝑌)) = ((𝑁‘𝑌) + (𝑌 + 𝑋))) |
| 16 | 8, 13, 15 | 3eqtr4rd 2781 | . . 3 ⊢ (𝜑 → ((𝑁‘𝑌) + (𝑋 + 𝑌)) = 𝑋) |
| 17 | 1, 2, 3, 6, 7, 5 | grpassd 18926 | . . 3 ⊢ (𝜑 → (((𝑁‘𝑌) + 𝑋) + 𝑌) = ((𝑁‘𝑌) + (𝑋 + 𝑌))) |
| 18 | 1, 2, 4, 3, 7, 5 | grpasscan2d 42477 | . . 3 ⊢ (𝜑 → ((𝑋 + (𝑁‘𝑌)) + 𝑌) = 𝑋) |
| 19 | 16, 17, 18 | 3eqtr4rd 2781 | . 2 ⊢ (𝜑 → ((𝑋 + (𝑁‘𝑌)) + 𝑌) = (((𝑁‘𝑌) + 𝑋) + 𝑌)) |
| 20 | 1, 2, 3, 7, 6 | grpcld 18928 | . . 3 ⊢ (𝜑 → (𝑋 + (𝑁‘𝑌)) ∈ 𝐵) |
| 21 | 1, 2, 3, 6, 7 | grpcld 18928 | . . 3 ⊢ (𝜑 → ((𝑁‘𝑌) + 𝑋) ∈ 𝐵) |
| 22 | 1, 2 | grprcan 18954 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ ((𝑋 + (𝑁‘𝑌)) ∈ 𝐵 ∧ ((𝑁‘𝑌) + 𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (((𝑋 + (𝑁‘𝑌)) + 𝑌) = (((𝑁‘𝑌) + 𝑋) + 𝑌) ↔ (𝑋 + (𝑁‘𝑌)) = ((𝑁‘𝑌) + 𝑋))) |
| 23 | 3, 20, 21, 5, 22 | syl13anc 1374 | . 2 ⊢ (𝜑 → (((𝑋 + (𝑁‘𝑌)) + 𝑌) = (((𝑁‘𝑌) + 𝑋) + 𝑌) ↔ (𝑋 + (𝑁‘𝑌)) = ((𝑁‘𝑌) + 𝑋))) |
| 24 | 19, 23 | mpbid 232 | 1 ⊢ (𝜑 → (𝑋 + (𝑁‘𝑌)) = ((𝑁‘𝑌) + 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 +gcplusg 17269 0gc0g 17451 Grpcgrp 18914 invgcminusg 18915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-fv 6538 df-riota 7360 df-ov 7406 df-0g 17453 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-grp 18917 df-minusg 18918 |
| This theorem is referenced by: grpcominv2 42479 |
| Copyright terms: Public domain | W3C validator |