MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpraddf1o Structured version   Visualization version   GIF version

Theorem grpraddf1o 19001
Description: Right addition by a group element is a bijection on any group. (Contributed by SN, 28-Apr-2012.)
Hypotheses
Ref Expression
grpraddf1o.b 𝐵 = (Base‘𝐺)
grpraddf1o.p + = (+g𝐺)
grpraddf1o.n 𝐹 = (𝑥𝐵 ↦ (𝑥 + 𝑋))
Assertion
Ref Expression
grpraddf1o ((𝐺 ∈ Grp ∧ 𝑋𝐵) → 𝐹:𝐵1-1-onto𝐵)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥, +   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem grpraddf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 grpraddf1o.n . 2 𝐹 = (𝑥𝐵 ↦ (𝑥 + 𝑋))
2 grpraddf1o.b . . 3 𝐵 = (Base‘𝐺)
3 grpraddf1o.p . . 3 + = (+g𝐺)
4 simpll 765 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑥𝐵) → 𝐺 ∈ Grp)
5 simpr 483 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑥𝐵) → 𝑥𝐵)
6 simplr 767 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑥𝐵) → 𝑋𝐵)
72, 3, 4, 5, 6grpcld 18934 . 2 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑥𝐵) → (𝑥 + 𝑋) ∈ 𝐵)
8 simpll 765 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑦𝐵) → 𝐺 ∈ Grp)
9 simpr 483 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑦𝐵) → 𝑦𝐵)
10 eqid 2726 . . . 4 (invg𝐺) = (invg𝐺)
11 simplr 767 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑦𝐵) → 𝑋𝐵)
122, 10, 8, 11grpinvcld 18975 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑦𝐵) → ((invg𝐺)‘𝑋) ∈ 𝐵)
132, 3, 8, 9, 12grpcld 18934 . 2 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑦𝐵) → (𝑦 + ((invg𝐺)‘𝑋)) ∈ 𝐵)
14 eqcom 2733 . . 3 (𝑥 = (𝑦 + ((invg𝐺)‘𝑋)) ↔ (𝑦 + ((invg𝐺)‘𝑋)) = 𝑥)
15 simpll 765 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → 𝐺 ∈ Grp)
1613adantrl 714 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → (𝑦 + ((invg𝐺)‘𝑋)) ∈ 𝐵)
17 simprl 769 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
18 simplr 767 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → 𝑋𝐵)
192, 3grprcan 18960 . . . . 5 ((𝐺 ∈ Grp ∧ ((𝑦 + ((invg𝐺)‘𝑋)) ∈ 𝐵𝑥𝐵𝑋𝐵)) → (((𝑦 + ((invg𝐺)‘𝑋)) + 𝑋) = (𝑥 + 𝑋) ↔ (𝑦 + ((invg𝐺)‘𝑋)) = 𝑥))
2015, 16, 17, 18, 19syl13anc 1369 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → (((𝑦 + ((invg𝐺)‘𝑋)) + 𝑋) = (𝑥 + 𝑋) ↔ (𝑦 + ((invg𝐺)‘𝑋)) = 𝑥))
21 simprr 771 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
2212adantrl 714 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((invg𝐺)‘𝑋) ∈ 𝐵)
232, 3, 15, 21, 22, 18grpassd 18932 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑦 + ((invg𝐺)‘𝑋)) + 𝑋) = (𝑦 + (((invg𝐺)‘𝑋) + 𝑋)))
24 eqid 2726 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
252, 3, 24, 10grplinv 18976 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (((invg𝐺)‘𝑋) + 𝑋) = (0g𝐺))
2625adantr 479 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → (((invg𝐺)‘𝑋) + 𝑋) = (0g𝐺))
2726oveq2d 7429 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → (𝑦 + (((invg𝐺)‘𝑋) + 𝑋)) = (𝑦 + (0g𝐺)))
282, 3, 24grprid 18955 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → (𝑦 + (0g𝐺)) = 𝑦)
2928ad2ant2rl 747 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → (𝑦 + (0g𝐺)) = 𝑦)
3023, 27, 293eqtrd 2770 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑦 + ((invg𝐺)‘𝑋)) + 𝑋) = 𝑦)
3130eqeq1d 2728 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → (((𝑦 + ((invg𝐺)‘𝑋)) + 𝑋) = (𝑥 + 𝑋) ↔ 𝑦 = (𝑥 + 𝑋)))
3220, 31bitr3d 280 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑦 + ((invg𝐺)‘𝑋)) = 𝑥𝑦 = (𝑥 + 𝑋)))
3314, 32bitrid 282 . 2 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 = (𝑦 + ((invg𝐺)‘𝑋)) ↔ 𝑦 = (𝑥 + 𝑋)))
341, 7, 13, 33f1o2d 7669 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → 𝐹:𝐵1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  cmpt 5226  1-1-ontowf1o 6542  cfv 6543  (class class class)co 7413  Basecbs 17205  +gcplusg 17258  0gc0g 17446  Grpcgrp 18920  invgcminusg 18921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-0g 17448  df-mgm 18625  df-sgrp 18704  df-mnd 18720  df-grp 18923  df-minusg 18924
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator