MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpraddf1o Structured version   Visualization version   GIF version

Theorem grpraddf1o 19045
Description: Right addition by a group element is a bijection on any group. (Contributed by SN, 28-Apr-2012.)
Hypotheses
Ref Expression
grpraddf1o.b 𝐵 = (Base‘𝐺)
grpraddf1o.p + = (+g𝐺)
grpraddf1o.n 𝐹 = (𝑥𝐵 ↦ (𝑥 + 𝑋))
Assertion
Ref Expression
grpraddf1o ((𝐺 ∈ Grp ∧ 𝑋𝐵) → 𝐹:𝐵1-1-onto𝐵)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥, +   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem grpraddf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 grpraddf1o.n . 2 𝐹 = (𝑥𝐵 ↦ (𝑥 + 𝑋))
2 grpraddf1o.b . . 3 𝐵 = (Base‘𝐺)
3 grpraddf1o.p . . 3 + = (+g𝐺)
4 simpll 767 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑥𝐵) → 𝐺 ∈ Grp)
5 simpr 484 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑥𝐵) → 𝑥𝐵)
6 simplr 769 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑥𝐵) → 𝑋𝐵)
72, 3, 4, 5, 6grpcld 18978 . 2 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑥𝐵) → (𝑥 + 𝑋) ∈ 𝐵)
8 simpll 767 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑦𝐵) → 𝐺 ∈ Grp)
9 simpr 484 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑦𝐵) → 𝑦𝐵)
10 eqid 2735 . . . 4 (invg𝐺) = (invg𝐺)
11 simplr 769 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑦𝐵) → 𝑋𝐵)
122, 10, 8, 11grpinvcld 19019 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑦𝐵) → ((invg𝐺)‘𝑋) ∈ 𝐵)
132, 3, 8, 9, 12grpcld 18978 . 2 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑦𝐵) → (𝑦 + ((invg𝐺)‘𝑋)) ∈ 𝐵)
14 eqcom 2742 . . 3 (𝑥 = (𝑦 + ((invg𝐺)‘𝑋)) ↔ (𝑦 + ((invg𝐺)‘𝑋)) = 𝑥)
15 simpll 767 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → 𝐺 ∈ Grp)
1613adantrl 716 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → (𝑦 + ((invg𝐺)‘𝑋)) ∈ 𝐵)
17 simprl 771 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
18 simplr 769 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → 𝑋𝐵)
192, 3grprcan 19004 . . . . 5 ((𝐺 ∈ Grp ∧ ((𝑦 + ((invg𝐺)‘𝑋)) ∈ 𝐵𝑥𝐵𝑋𝐵)) → (((𝑦 + ((invg𝐺)‘𝑋)) + 𝑋) = (𝑥 + 𝑋) ↔ (𝑦 + ((invg𝐺)‘𝑋)) = 𝑥))
2015, 16, 17, 18, 19syl13anc 1371 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → (((𝑦 + ((invg𝐺)‘𝑋)) + 𝑋) = (𝑥 + 𝑋) ↔ (𝑦 + ((invg𝐺)‘𝑋)) = 𝑥))
21 simprr 773 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
2212adantrl 716 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((invg𝐺)‘𝑋) ∈ 𝐵)
232, 3, 15, 21, 22, 18grpassd 18976 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑦 + ((invg𝐺)‘𝑋)) + 𝑋) = (𝑦 + (((invg𝐺)‘𝑋) + 𝑋)))
24 eqid 2735 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
252, 3, 24, 10grplinv 19020 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (((invg𝐺)‘𝑋) + 𝑋) = (0g𝐺))
2625adantr 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → (((invg𝐺)‘𝑋) + 𝑋) = (0g𝐺))
2726oveq2d 7447 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → (𝑦 + (((invg𝐺)‘𝑋) + 𝑋)) = (𝑦 + (0g𝐺)))
282, 3, 24grprid 18999 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → (𝑦 + (0g𝐺)) = 𝑦)
2928ad2ant2rl 749 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → (𝑦 + (0g𝐺)) = 𝑦)
3023, 27, 293eqtrd 2779 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑦 + ((invg𝐺)‘𝑋)) + 𝑋) = 𝑦)
3130eqeq1d 2737 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → (((𝑦 + ((invg𝐺)‘𝑋)) + 𝑋) = (𝑥 + 𝑋) ↔ 𝑦 = (𝑥 + 𝑋)))
3220, 31bitr3d 281 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑦 + ((invg𝐺)‘𝑋)) = 𝑥𝑦 = (𝑥 + 𝑋)))
3314, 32bitrid 283 . 2 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 = (𝑦 + ((invg𝐺)‘𝑋)) ↔ 𝑦 = (𝑥 + 𝑋)))
341, 7, 13, 33f1o2d 7687 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → 𝐹:𝐵1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  cmpt 5231  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  0gc0g 17486  Grpcgrp 18964  invgcminusg 18965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator