Step | Hyp | Ref
| Expression |
1 | | grpraddf1o.n |
. 2
⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝑥 + 𝑋)) |
2 | | grpraddf1o.b |
. . 3
⊢ 𝐵 = (Base‘𝐺) |
3 | | grpraddf1o.p |
. . 3
⊢ + =
(+g‘𝐺) |
4 | | simpll 766 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝐺 ∈ Grp) |
5 | | simpr 484 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
6 | | simplr 768 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
7 | 2, 3, 4, 5, 6 | grpcld 18987 |
. 2
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑥 + 𝑋) ∈ 𝐵) |
8 | | simpll 766 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → 𝐺 ∈ Grp) |
9 | | simpr 484 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
10 | | eqid 2740 |
. . . 4
⊢
(invg‘𝐺) = (invg‘𝐺) |
11 | | simplr 768 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
12 | 2, 10, 8, 11 | grpinvcld 19028 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → ((invg‘𝐺)‘𝑋) ∈ 𝐵) |
13 | 2, 3, 8, 9, 12 | grpcld 18987 |
. 2
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (𝑦 +
((invg‘𝐺)‘𝑋)) ∈ 𝐵) |
14 | | eqcom 2747 |
. . 3
⊢ (𝑥 = (𝑦 +
((invg‘𝐺)‘𝑋)) ↔ (𝑦 +
((invg‘𝐺)‘𝑋)) = 𝑥) |
15 | | simpll 766 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐺 ∈ Grp) |
16 | 13 | adantrl 715 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑦 +
((invg‘𝐺)‘𝑋)) ∈ 𝐵) |
17 | | simprl 770 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
18 | | simplr 768 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑋 ∈ 𝐵) |
19 | 2, 3 | grprcan 19013 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ ((𝑦 +
((invg‘𝐺)‘𝑋)) ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (((𝑦 +
((invg‘𝐺)‘𝑋)) + 𝑋) = (𝑥 + 𝑋) ↔ (𝑦 +
((invg‘𝐺)‘𝑋)) = 𝑥)) |
20 | 15, 16, 17, 18, 19 | syl13anc 1372 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (((𝑦 +
((invg‘𝐺)‘𝑋)) + 𝑋) = (𝑥 + 𝑋) ↔ (𝑦 +
((invg‘𝐺)‘𝑋)) = 𝑥)) |
21 | | simprr 772 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
22 | 12 | adantrl 715 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((invg‘𝐺)‘𝑋) ∈ 𝐵) |
23 | 2, 3, 15, 21, 22, 18 | grpassd 18985 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑦 +
((invg‘𝐺)‘𝑋)) + 𝑋) = (𝑦 +
(((invg‘𝐺)‘𝑋) + 𝑋))) |
24 | | eqid 2740 |
. . . . . . . . 9
⊢
(0g‘𝐺) = (0g‘𝐺) |
25 | 2, 3, 24, 10 | grplinv 19029 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (((invg‘𝐺)‘𝑋) + 𝑋) = (0g‘𝐺)) |
26 | 25 | adantr 480 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (((invg‘𝐺)‘𝑋) + 𝑋) = (0g‘𝐺)) |
27 | 26 | oveq2d 7464 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑦 +
(((invg‘𝐺)‘𝑋) + 𝑋)) = (𝑦 + (0g‘𝐺))) |
28 | 2, 3, 24 | grprid 19008 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵) → (𝑦 + (0g‘𝐺)) = 𝑦) |
29 | 28 | ad2ant2rl 748 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑦 + (0g‘𝐺)) = 𝑦) |
30 | 23, 27, 29 | 3eqtrd 2784 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑦 +
((invg‘𝐺)‘𝑋)) + 𝑋) = 𝑦) |
31 | 30 | eqeq1d 2742 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (((𝑦 +
((invg‘𝐺)‘𝑋)) + 𝑋) = (𝑥 + 𝑋) ↔ 𝑦 = (𝑥 + 𝑋))) |
32 | 20, 31 | bitr3d 281 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑦 +
((invg‘𝐺)‘𝑋)) = 𝑥 ↔ 𝑦 = (𝑥 + 𝑋))) |
33 | 14, 32 | bitrid 283 |
. 2
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 = (𝑦 +
((invg‘𝐺)‘𝑋)) ↔ 𝑦 = (𝑥 + 𝑋))) |
34 | 1, 7, 13, 33 | f1o2d 7704 |
1
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → 𝐹:𝐵–1-1-onto→𝐵) |