MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpraddf1o Structured version   Visualization version   GIF version

Theorem grpraddf1o 18911
Description: Right addition by a group element is a bijection on any group. (Contributed by SN, 28-Apr-2012.)
Hypotheses
Ref Expression
grpraddf1o.b 𝐵 = (Base‘𝐺)
grpraddf1o.p + = (+g𝐺)
grpraddf1o.n 𝐹 = (𝑥𝐵 ↦ (𝑥 + 𝑋))
Assertion
Ref Expression
grpraddf1o ((𝐺 ∈ Grp ∧ 𝑋𝐵) → 𝐹:𝐵1-1-onto𝐵)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥, +   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem grpraddf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 grpraddf1o.n . 2 𝐹 = (𝑥𝐵 ↦ (𝑥 + 𝑋))
2 grpraddf1o.b . . 3 𝐵 = (Base‘𝐺)
3 grpraddf1o.p . . 3 + = (+g𝐺)
4 simpll 766 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑥𝐵) → 𝐺 ∈ Grp)
5 simpr 484 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑥𝐵) → 𝑥𝐵)
6 simplr 768 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑥𝐵) → 𝑋𝐵)
72, 3, 4, 5, 6grpcld 18844 . 2 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑥𝐵) → (𝑥 + 𝑋) ∈ 𝐵)
8 simpll 766 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑦𝐵) → 𝐺 ∈ Grp)
9 simpr 484 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑦𝐵) → 𝑦𝐵)
10 eqid 2729 . . . 4 (invg𝐺) = (invg𝐺)
11 simplr 768 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑦𝐵) → 𝑋𝐵)
122, 10, 8, 11grpinvcld 18885 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑦𝐵) → ((invg𝐺)‘𝑋) ∈ 𝐵)
132, 3, 8, 9, 12grpcld 18844 . 2 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑦𝐵) → (𝑦 + ((invg𝐺)‘𝑋)) ∈ 𝐵)
14 eqcom 2736 . . 3 (𝑥 = (𝑦 + ((invg𝐺)‘𝑋)) ↔ (𝑦 + ((invg𝐺)‘𝑋)) = 𝑥)
15 simpll 766 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → 𝐺 ∈ Grp)
1613adantrl 716 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → (𝑦 + ((invg𝐺)‘𝑋)) ∈ 𝐵)
17 simprl 770 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
18 simplr 768 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → 𝑋𝐵)
192, 3grprcan 18870 . . . . 5 ((𝐺 ∈ Grp ∧ ((𝑦 + ((invg𝐺)‘𝑋)) ∈ 𝐵𝑥𝐵𝑋𝐵)) → (((𝑦 + ((invg𝐺)‘𝑋)) + 𝑋) = (𝑥 + 𝑋) ↔ (𝑦 + ((invg𝐺)‘𝑋)) = 𝑥))
2015, 16, 17, 18, 19syl13anc 1374 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → (((𝑦 + ((invg𝐺)‘𝑋)) + 𝑋) = (𝑥 + 𝑋) ↔ (𝑦 + ((invg𝐺)‘𝑋)) = 𝑥))
21 simprr 772 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
2212adantrl 716 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((invg𝐺)‘𝑋) ∈ 𝐵)
232, 3, 15, 21, 22, 18grpassd 18842 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑦 + ((invg𝐺)‘𝑋)) + 𝑋) = (𝑦 + (((invg𝐺)‘𝑋) + 𝑋)))
24 eqid 2729 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
252, 3, 24, 10grplinv 18886 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (((invg𝐺)‘𝑋) + 𝑋) = (0g𝐺))
2625adantr 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → (((invg𝐺)‘𝑋) + 𝑋) = (0g𝐺))
2726oveq2d 7369 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → (𝑦 + (((invg𝐺)‘𝑋) + 𝑋)) = (𝑦 + (0g𝐺)))
282, 3, 24grprid 18865 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → (𝑦 + (0g𝐺)) = 𝑦)
2928ad2ant2rl 749 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → (𝑦 + (0g𝐺)) = 𝑦)
3023, 27, 293eqtrd 2768 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑦 + ((invg𝐺)‘𝑋)) + 𝑋) = 𝑦)
3130eqeq1d 2731 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → (((𝑦 + ((invg𝐺)‘𝑋)) + 𝑋) = (𝑥 + 𝑋) ↔ 𝑦 = (𝑥 + 𝑋)))
3220, 31bitr3d 281 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑦 + ((invg𝐺)‘𝑋)) = 𝑥𝑦 = (𝑥 + 𝑋)))
3314, 32bitrid 283 . 2 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 = (𝑦 + ((invg𝐺)‘𝑋)) ↔ 𝑦 = (𝑥 + 𝑋)))
341, 7, 13, 33f1o2d 7607 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → 𝐹:𝐵1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cmpt 5176  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  0gc0g 17361  Grpcgrp 18830  invgcminusg 18831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator