![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpmndd | Structured version Visualization version GIF version |
Description: A group is a monoid. (Contributed by SN, 1-Jun-2024.) |
Ref | Expression |
---|---|
grpmndd.1 | ⊢ (𝜑 → 𝐺 ∈ Grp) |
Ref | Expression |
---|---|
grpmndd | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmndd.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
2 | grpmnd 18970 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 Mndcmnd 18759 Grpcgrp 18963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-iota 6515 df-fv 6570 df-ov 7433 df-grp 18966 |
This theorem is referenced by: grpmgmd 18991 hashfingrpnn 19002 xpsinv 19090 ghmgrp 19096 mulgdirlem 19135 ghmmhm 19256 gsumccatsymgsn 19458 symggen 19502 symgtrinv 19504 psgnunilem2 19527 psgneldm2 19536 psgnfitr 19549 lsmass 19701 frgpmhm 19797 frgpuplem 19804 frgpupf 19805 frgpup1 19807 isabld 19827 gsumzinv 19977 telgsumfzslem 20020 telgsumfzs 20021 dprdssv 20050 dprdfadd 20054 pgpfac1lem3a 20110 prdsrngd 20193 ringmnd 20260 unitabl 20400 unitsubm 20402 lmodvsmmulgdi 20911 rngqiprngimf1 21327 psgnghm 21615 psdmul 22187 ply1chr 22325 rhmcomulmpl 22401 clmmulg 25147 dchrptlem3 27324 abliso 33023 gsummulgc2 33045 cyc3genpmlem 33153 quslsm 33412 evl1deg1 33580 evl1deg2 33581 evl1deg3 33582 r1pquslmic 33610 lvecendof1f1o 33660 algextdeglem4 33725 algextdeglem5 33726 rtelextdg2lem 33731 aks6d1c6lem5 42158 rhmcomulpsr 42537 evlsbagval 42552 selvvvval 42571 evlselv 42573 gicabl 43087 mendring 43176 lmodvsmdi 48223 lincvalsng 48261 lincvalsc0 48266 linc0scn0 48268 linc1 48270 lincsum 48274 lincsumcl 48276 snlindsntor 48316 grptcmon 48901 grptcepi 48902 |
Copyright terms: Public domain | W3C validator |