Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpmndd | Structured version Visualization version GIF version |
Description: A group is a monoid. (Contributed by SN, 1-Jun-2024.) |
Ref | Expression |
---|---|
grpmndd.1 | ⊢ (𝜑 → 𝐺 ∈ Grp) |
Ref | Expression |
---|---|
grpmndd | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmndd.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
2 | grpmnd 18584 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Mndcmnd 18385 Grpcgrp 18577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-grp 18580 |
This theorem is referenced by: hashfingrpnn 18612 ghmgrp 18699 mulgdirlem 18734 ghmmhm 18844 gsumccatsymgsn 19034 symggen 19078 symgtrinv 19080 psgnunilem2 19103 psgneldm2 19112 psgnfitr 19125 lsmass 19275 frgpmhm 19371 frgpuplem 19378 frgpupf 19379 frgpup1 19381 isabld 19400 gsumzinv 19546 telgsumfzslem 19589 telgsumfzs 19590 dprdssv 19619 dprdfadd 19623 pgpfac1lem3a 19679 ringmnd 19793 unitabl 19910 unitsubm 19912 lmodvsmmulgdi 20158 psgnghm 20785 clmmulg 24264 dchrptlem3 26414 abliso 31305 cyc3genpmlem 31418 quslsm 31593 ply1chr 31669 evlsbagval 40275 gicabl 40924 mendring 41017 lmodvsmdi 45718 lincvalsng 45757 lincvalsc0 45762 linc0scn0 45764 linc1 45766 lincsum 45770 lincsumcl 45772 snlindsntor 45812 grptcmon 46377 grptcepi 46378 |
Copyright terms: Public domain | W3C validator |