| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpmndd | Structured version Visualization version GIF version | ||
| Description: A group is a monoid. (Contributed by SN, 1-Jun-2024.) |
| Ref | Expression |
|---|---|
| grpmndd.1 | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| Ref | Expression |
|---|---|
| grpmndd | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmndd.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 2 | grpmnd 18845 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2110 Mndcmnd 18634 Grpcgrp 18838 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-iota 6433 df-fv 6485 df-ov 7344 df-grp 18841 |
| This theorem is referenced by: grpmgmd 18866 hashfingrpnn 18877 xpsinv 18965 ghmgrp 18971 mulgdirlem 19010 ghmmhm 19131 gsumccatsymgsn 19331 symggen 19375 symgtrinv 19377 psgnunilem2 19400 psgneldm2 19409 psgnfitr 19422 lsmass 19574 frgpmhm 19670 frgpuplem 19677 frgpupf 19678 frgpup1 19680 isabld 19700 gsumzinv 19850 telgsumfzslem 19893 telgsumfzs 19894 dprdssv 19923 dprdfadd 19927 pgpfac1lem3a 19983 prdsrngd 20087 ringmnd 20154 unitabl 20295 unitsubm 20297 lmodvsmmulgdi 20823 rngqiprngimf1 21230 psgnghm 21510 psdmul 22074 psdmvr 22077 ply1chr 22214 rhmcomulmpl 22290 clmmulg 25021 dchrptlem3 27197 abliso 33007 gsummulgc2 33030 cyc3genpmlem 33110 elrgspnsubrunlem2 33205 gsumind 33300 quslsm 33360 evl1deg1 33529 evl1deg2 33530 evl1deg3 33531 vr1nz 33544 r1pquslmic 33561 mplvrpmmhm 33566 lvecendof1f1o 33636 extdgfialglem1 33695 algextdeglem4 33723 algextdeglem5 33724 rtelextdg2lem 33729 aks6d1c6lem5 42189 rhmcomulpsr 42563 evlsbagval 42578 selvvvval 42597 evlselv 42599 gicabl 43111 mendring 43200 lmodvsmdi 48389 lincvalsng 48427 lincvalsc0 48432 linc0scn0 48434 linc1 48436 lincsum 48440 lincsumcl 48442 snlindsntor 48482 grptcmon 49604 grptcepi 49605 |
| Copyright terms: Public domain | W3C validator |