| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpmndd | Structured version Visualization version GIF version | ||
| Description: A group is a monoid. (Contributed by SN, 1-Jun-2024.) |
| Ref | Expression |
|---|---|
| grpmndd.1 | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| Ref | Expression |
|---|---|
| grpmndd | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmndd.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 2 | grpmnd 18872 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Mndcmnd 18661 Grpcgrp 18865 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-grp 18868 |
| This theorem is referenced by: grpmgmd 18893 hashfingrpnn 18904 xpsinv 18992 ghmgrp 18998 mulgdirlem 19037 ghmmhm 19158 gsumccatsymgsn 19356 symggen 19400 symgtrinv 19402 psgnunilem2 19425 psgneldm2 19434 psgnfitr 19447 lsmass 19599 frgpmhm 19695 frgpuplem 19702 frgpupf 19703 frgpup1 19705 isabld 19725 gsumzinv 19875 telgsumfzslem 19918 telgsumfzs 19919 dprdssv 19948 dprdfadd 19952 pgpfac1lem3a 20008 prdsrngd 20085 ringmnd 20152 unitabl 20293 unitsubm 20295 lmodvsmmulgdi 20803 rngqiprngimf1 21210 psgnghm 21489 psdmul 22053 psdmvr 22056 ply1chr 22193 rhmcomulmpl 22269 clmmulg 25001 dchrptlem3 27177 abliso 32977 gsummulgc2 33000 cyc3genpmlem 33108 elrgspnsubrunlem2 33199 quslsm 33376 evl1deg1 33545 evl1deg2 33546 evl1deg3 33547 vr1nz 33559 r1pquslmic 33576 lvecendof1f1o 33629 algextdeglem4 33710 algextdeglem5 33711 rtelextdg2lem 33716 aks6d1c6lem5 42165 rhmcomulpsr 42539 evlsbagval 42554 selvvvval 42573 evlselv 42575 gicabl 43088 mendring 43177 lmodvsmdi 48367 lincvalsng 48405 lincvalsc0 48410 linc0scn0 48412 linc1 48414 lincsum 48418 lincsumcl 48420 snlindsntor 48460 grptcmon 49582 grptcepi 49583 |
| Copyright terms: Public domain | W3C validator |