| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpmndd | Structured version Visualization version GIF version | ||
| Description: A group is a monoid. (Contributed by SN, 1-Jun-2024.) |
| Ref | Expression |
|---|---|
| grpmndd.1 | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| Ref | Expression |
|---|---|
| grpmndd | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmndd.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 2 | grpmnd 18863 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 Mndcmnd 18652 Grpcgrp 18856 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 df-ov 7358 df-grp 18859 |
| This theorem is referenced by: grpmgmd 18884 hashfingrpnn 18895 xpsinv 18983 ghmgrp 18989 mulgdirlem 19028 ghmmhm 19148 gsumccatsymgsn 19348 symggen 19392 symgtrinv 19394 psgnunilem2 19417 psgneldm2 19426 psgnfitr 19439 lsmass 19591 frgpmhm 19687 frgpuplem 19694 frgpupf 19695 frgpup1 19697 isabld 19717 gsumzinv 19867 telgsumfzslem 19910 telgsumfzs 19911 dprdssv 19940 dprdfadd 19944 pgpfac1lem3a 20000 prdsrngd 20104 ringmnd 20171 unitabl 20312 unitsubm 20314 lmodvsmmulgdi 20840 rngqiprngimf1 21247 psgnghm 21527 psdmul 22091 psdmvr 22094 ply1chr 22231 rhmcomulmpl 22307 clmmulg 25038 dchrptlem3 27214 abliso 33028 gsummulgc2 33051 cyc3genpmlem 33131 elrgspnsubrunlem2 33226 gsumind 33321 quslsm 33381 evl1deg1 33550 evl1deg2 33551 evl1deg3 33552 vr1nz 33565 r1pquslmic 33582 mplvrpmmhm 33587 lvecendof1f1o 33657 extdgfialglem1 33716 algextdeglem4 33744 algextdeglem5 33745 rtelextdg2lem 33750 aks6d1c6lem5 42280 rhmcomulpsr 42659 evlsbagval 42674 selvvvval 42693 evlselv 42695 gicabl 43206 mendring 43295 lmodvsmdi 48493 lincvalsng 48531 lincvalsc0 48536 linc0scn0 48538 linc1 48540 lincsum 48544 lincsumcl 48546 snlindsntor 48586 grptcmon 49708 grptcepi 49709 |
| Copyright terms: Public domain | W3C validator |