| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpmndd | Structured version Visualization version GIF version | ||
| Description: A group is a monoid. (Contributed by SN, 1-Jun-2024.) |
| Ref | Expression |
|---|---|
| grpmndd.1 | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| Ref | Expression |
|---|---|
| grpmndd | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmndd.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 2 | grpmnd 18928 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Mndcmnd 18717 Grpcgrp 18921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-ov 7413 df-grp 18924 |
| This theorem is referenced by: grpmgmd 18949 hashfingrpnn 18960 xpsinv 19048 ghmgrp 19054 mulgdirlem 19093 ghmmhm 19214 gsumccatsymgsn 19412 symggen 19456 symgtrinv 19458 psgnunilem2 19481 psgneldm2 19490 psgnfitr 19503 lsmass 19655 frgpmhm 19751 frgpuplem 19758 frgpupf 19759 frgpup1 19761 isabld 19781 gsumzinv 19931 telgsumfzslem 19974 telgsumfzs 19975 dprdssv 20004 dprdfadd 20008 pgpfac1lem3a 20064 prdsrngd 20141 ringmnd 20208 unitabl 20349 unitsubm 20351 lmodvsmmulgdi 20859 rngqiprngimf1 21266 psgnghm 21545 psdmul 22109 psdmvr 22112 ply1chr 22249 rhmcomulmpl 22325 clmmulg 25057 dchrptlem3 27234 abliso 33036 gsummulgc2 33059 cyc3genpmlem 33167 elrgspnsubrunlem2 33248 quslsm 33425 evl1deg1 33594 evl1deg2 33595 evl1deg3 33596 vr1nz 33608 r1pquslmic 33625 lvecendof1f1o 33678 algextdeglem4 33759 algextdeglem5 33760 rtelextdg2lem 33765 aks6d1c6lem5 42195 rhmcomulpsr 42541 evlsbagval 42556 selvvvval 42575 evlselv 42577 gicabl 43090 mendring 43179 lmodvsmdi 48321 lincvalsng 48359 lincvalsc0 48364 linc0scn0 48366 linc1 48368 lincsum 48372 lincsumcl 48374 snlindsntor 48414 grptcmon 49437 grptcepi 49438 |
| Copyright terms: Public domain | W3C validator |