![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpmndd | Structured version Visualization version GIF version |
Description: A group is a monoid. (Contributed by SN, 1-Jun-2024.) |
Ref | Expression |
---|---|
grpmndd.1 | ⊢ (𝜑 → 𝐺 ∈ Grp) |
Ref | Expression |
---|---|
grpmndd | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmndd.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
2 | grpmnd 18980 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Mndcmnd 18772 Grpcgrp 18973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-grp 18976 |
This theorem is referenced by: grpmgmd 19001 hashfingrpnn 19012 xpsinv 19100 ghmgrp 19106 mulgdirlem 19145 ghmmhm 19266 gsumccatsymgsn 19468 symggen 19512 symgtrinv 19514 psgnunilem2 19537 psgneldm2 19546 psgnfitr 19559 lsmass 19711 frgpmhm 19807 frgpuplem 19814 frgpupf 19815 frgpup1 19817 isabld 19837 gsumzinv 19987 telgsumfzslem 20030 telgsumfzs 20031 dprdssv 20060 dprdfadd 20064 pgpfac1lem3a 20120 prdsrngd 20203 ringmnd 20270 unitabl 20410 unitsubm 20412 lmodvsmmulgdi 20917 rngqiprngimf1 21333 psgnghm 21621 psdmul 22193 ply1chr 22331 rhmcomulmpl 22407 clmmulg 25153 dchrptlem3 27328 abliso 33022 cyc3genpmlem 33144 quslsm 33398 evl1deg1 33566 evl1deg2 33567 evl1deg3 33568 r1pquslmic 33596 lvecendof1f1o 33646 algextdeglem4 33711 algextdeglem5 33712 rtelextdg2lem 33717 aks6d1c6lem5 42134 rhmcomulpsr 42506 evlsbagval 42521 selvvvval 42540 evlselv 42542 gicabl 43056 mendring 43149 lmodvsmdi 48107 lincvalsng 48145 lincvalsc0 48150 linc0scn0 48152 linc1 48154 lincsum 48158 lincsumcl 48160 snlindsntor 48200 grptcmon 48763 grptcepi 48764 |
Copyright terms: Public domain | W3C validator |