| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpmndd | Structured version Visualization version GIF version | ||
| Description: A group is a monoid. (Contributed by SN, 1-Jun-2024.) |
| Ref | Expression |
|---|---|
| grpmndd.1 | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| Ref | Expression |
|---|---|
| grpmndd | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmndd.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 2 | grpmnd 18879 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Mndcmnd 18668 Grpcgrp 18872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-grp 18875 |
| This theorem is referenced by: grpmgmd 18900 hashfingrpnn 18911 xpsinv 18999 ghmgrp 19005 mulgdirlem 19044 ghmmhm 19165 gsumccatsymgsn 19363 symggen 19407 symgtrinv 19409 psgnunilem2 19432 psgneldm2 19441 psgnfitr 19454 lsmass 19606 frgpmhm 19702 frgpuplem 19709 frgpupf 19710 frgpup1 19712 isabld 19732 gsumzinv 19882 telgsumfzslem 19925 telgsumfzs 19926 dprdssv 19955 dprdfadd 19959 pgpfac1lem3a 20015 prdsrngd 20092 ringmnd 20159 unitabl 20300 unitsubm 20302 lmodvsmmulgdi 20810 rngqiprngimf1 21217 psgnghm 21496 psdmul 22060 psdmvr 22063 ply1chr 22200 rhmcomulmpl 22276 clmmulg 25008 dchrptlem3 27184 abliso 32984 gsummulgc2 33007 cyc3genpmlem 33115 elrgspnsubrunlem2 33206 quslsm 33383 evl1deg1 33552 evl1deg2 33553 evl1deg3 33554 vr1nz 33566 r1pquslmic 33583 lvecendof1f1o 33636 algextdeglem4 33717 algextdeglem5 33718 rtelextdg2lem 33723 aks6d1c6lem5 42172 rhmcomulpsr 42546 evlsbagval 42561 selvvvval 42580 evlselv 42582 gicabl 43095 mendring 43184 lmodvsmdi 48371 lincvalsng 48409 lincvalsc0 48414 linc0scn0 48416 linc1 48418 lincsum 48422 lincsumcl 48424 snlindsntor 48464 grptcmon 49586 grptcepi 49587 |
| Copyright terms: Public domain | W3C validator |