Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpmndd | Structured version Visualization version GIF version |
Description: A group is a monoid. (Contributed by SN, 1-Jun-2024.) |
Ref | Expression |
---|---|
grpmndd.1 | ⊢ (𝜑 → 𝐺 ∈ Grp) |
Ref | Expression |
---|---|
grpmndd | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmndd.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
2 | grpmnd 18499 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Mndcmnd 18300 Grpcgrp 18492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-grp 18495 |
This theorem is referenced by: hashfingrpnn 18527 ghmgrp 18614 mulgdirlem 18649 ghmmhm 18759 gsumccatsymgsn 18949 symggen 18993 symgtrinv 18995 psgnunilem2 19018 psgneldm2 19027 psgnfitr 19040 lsmass 19190 frgpmhm 19286 frgpuplem 19293 frgpupf 19294 frgpup1 19296 isabld 19315 gsumzinv 19461 telgsumfzslem 19504 telgsumfzs 19505 dprdssv 19534 dprdfadd 19538 pgpfac1lem3a 19594 ringmnd 19708 unitabl 19825 unitsubm 19827 lmodvsmmulgdi 20073 psgnghm 20697 clmmulg 24170 dchrptlem3 26319 abliso 31207 cyc3genpmlem 31320 quslsm 31495 ply1chr 31571 evlsbagval 40198 gicabl 40840 mendring 40933 lmodvsmdi 45606 lincvalsng 45645 lincvalsc0 45650 linc0scn0 45652 linc1 45654 lincsum 45658 lincsumcl 45660 snlindsntor 45700 grptcmon 46263 grptcepi 46264 |
Copyright terms: Public domain | W3C validator |