| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpmndd | Structured version Visualization version GIF version | ||
| Description: A group is a monoid. (Contributed by SN, 1-Jun-2024.) |
| Ref | Expression |
|---|---|
| grpmndd.1 | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| Ref | Expression |
|---|---|
| grpmndd | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmndd.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 2 | grpmnd 18837 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Mndcmnd 18626 Grpcgrp 18830 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 df-grp 18833 |
| This theorem is referenced by: grpmgmd 18858 hashfingrpnn 18869 xpsinv 18957 ghmgrp 18963 mulgdirlem 19002 ghmmhm 19123 gsumccatsymgsn 19323 symggen 19367 symgtrinv 19369 psgnunilem2 19392 psgneldm2 19401 psgnfitr 19414 lsmass 19566 frgpmhm 19662 frgpuplem 19669 frgpupf 19670 frgpup1 19672 isabld 19692 gsumzinv 19842 telgsumfzslem 19885 telgsumfzs 19886 dprdssv 19915 dprdfadd 19919 pgpfac1lem3a 19975 prdsrngd 20079 ringmnd 20146 unitabl 20287 unitsubm 20289 lmodvsmmulgdi 20818 rngqiprngimf1 21225 psgnghm 21505 psdmul 22069 psdmvr 22072 ply1chr 22209 rhmcomulmpl 22285 clmmulg 25017 dchrptlem3 27193 abliso 33003 gsummulgc2 33026 cyc3genpmlem 33106 elrgspnsubrunlem2 33198 quslsm 33352 evl1deg1 33521 evl1deg2 33522 evl1deg3 33523 vr1nz 33535 r1pquslmic 33552 lvecendof1f1o 33605 algextdeglem4 33686 algextdeglem5 33687 rtelextdg2lem 33692 aks6d1c6lem5 42150 rhmcomulpsr 42524 evlsbagval 42539 selvvvval 42558 evlselv 42560 gicabl 43072 mendring 43161 lmodvsmdi 48351 lincvalsng 48389 lincvalsc0 48394 linc0scn0 48396 linc1 48398 lincsum 48402 lincsumcl 48404 snlindsntor 48444 grptcmon 49566 grptcepi 49567 |
| Copyright terms: Public domain | W3C validator |