Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpmndd | Structured version Visualization version GIF version |
Description: A group is a monoid. (Contributed by SN, 1-Jun-2024.) |
Ref | Expression |
---|---|
grpmndd.1 | ⊢ (𝜑 → 𝐺 ∈ Grp) |
Ref | Expression |
---|---|
grpmndd | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmndd.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
2 | grpmnd 18372 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 Mndcmnd 18173 Grpcgrp 18365 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-iota 6338 df-fv 6388 df-ov 7216 df-grp 18368 |
This theorem is referenced by: hashfingrpnn 18400 ghmgrp 18487 mulgdirlem 18522 ghmmhm 18632 gsumccatsymgsn 18818 symggen 18862 symgtrinv 18864 psgnunilem2 18887 psgneldm2 18896 psgnfitr 18909 lsmass 19059 frgpmhm 19155 frgpuplem 19162 frgpupf 19163 frgpup1 19165 isabld 19184 gsumzinv 19330 telgsumfzslem 19373 telgsumfzs 19374 dprdssv 19403 dprdfadd 19407 pgpfac1lem3a 19463 ringmnd 19572 unitabl 19686 unitsubm 19688 lmodvsmmulgdi 19934 psgnghm 20542 clmmulg 23998 dchrptlem3 26147 abliso 31024 cyc3genpmlem 31137 quslsm 31307 ply1chr 31383 evlsbagval 39985 gicabl 40627 mendring 40720 lmodvsmdi 45391 lincvalsng 45430 lincvalsc0 45435 linc0scn0 45437 linc1 45439 lincsum 45443 lincsumcl 45445 snlindsntor 45485 grptcmon 46048 grptcepi 46049 |
Copyright terms: Public domain | W3C validator |