MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  t1ficld Structured version   Visualization version   GIF version

Theorem t1ficld 23212
Description: In a T1 space, finite sets are closed. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypothesis
Ref Expression
ist0.1 𝑋 = 𝐽
Assertion
Ref Expression
t1ficld ((𝐽 ∈ Fre ∧ 𝐴𝑋𝐴 ∈ Fin) → 𝐴 ∈ (Clsd‘𝐽))

Proof of Theorem t1ficld
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iunid 5009 . 2 𝑥𝐴 {𝑥} = 𝐴
2 ist0.1 . . . . . 6 𝑋 = 𝐽
32ist1 23206 . . . . 5 (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋 {𝑥} ∈ (Clsd‘𝐽)))
43simplbi 497 . . . 4 (𝐽 ∈ Fre → 𝐽 ∈ Top)
543ad2ant1 1133 . . 3 ((𝐽 ∈ Fre ∧ 𝐴𝑋𝐴 ∈ Fin) → 𝐽 ∈ Top)
6 simp3 1138 . . 3 ((𝐽 ∈ Fre ∧ 𝐴𝑋𝐴 ∈ Fin) → 𝐴 ∈ Fin)
73simprbi 496 . . . . 5 (𝐽 ∈ Fre → ∀𝑥𝑋 {𝑥} ∈ (Clsd‘𝐽))
8 ssralv 4004 . . . . 5 (𝐴𝑋 → (∀𝑥𝑋 {𝑥} ∈ (Clsd‘𝐽) → ∀𝑥𝐴 {𝑥} ∈ (Clsd‘𝐽)))
97, 8mpan9 506 . . . 4 ((𝐽 ∈ Fre ∧ 𝐴𝑋) → ∀𝑥𝐴 {𝑥} ∈ (Clsd‘𝐽))
1093adant3 1132 . . 3 ((𝐽 ∈ Fre ∧ 𝐴𝑋𝐴 ∈ Fin) → ∀𝑥𝐴 {𝑥} ∈ (Clsd‘𝐽))
112iuncld 22930 . . 3 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 {𝑥} ∈ (Clsd‘𝐽)) → 𝑥𝐴 {𝑥} ∈ (Clsd‘𝐽))
125, 6, 10, 11syl3anc 1373 . 2 ((𝐽 ∈ Fre ∧ 𝐴𝑋𝐴 ∈ Fin) → 𝑥𝐴 {𝑥} ∈ (Clsd‘𝐽))
131, 12eqeltrrid 2833 1 ((𝐽 ∈ Fre ∧ 𝐴𝑋𝐴 ∈ Fin) → 𝐴 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wss 3903  {csn 4577   cuni 4858   ciun 4941  cfv 6482  Fincfn 8872  Topctop 22778  Clsdccld 22901  Frect1 23192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-om 7800  df-1st 7924  df-2nd 7925  df-1o 8388  df-2o 8389  df-en 8873  df-dom 8874  df-fin 8876  df-top 22779  df-cld 22904  df-t1 23199
This theorem is referenced by:  poimirlem30  37650
  Copyright terms: Public domain W3C validator