![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > t1ficld | Structured version Visualization version GIF version |
Description: In a T1 space, finite sets are closed. (Contributed by Mario Carneiro, 25-Dec-2016.) |
Ref | Expression |
---|---|
ist0.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
t1ficld | ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ⊆ 𝑋 ∧ 𝐴 ∈ Fin) → 𝐴 ∈ (Clsd‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunid 5068 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = 𝐴 | |
2 | ist0.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 2 | ist1 23316 | . . . . 5 ⊢ (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 {𝑥} ∈ (Clsd‘𝐽))) |
4 | 3 | simplbi 496 | . . . 4 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Top) |
5 | 4 | 3ad2ant1 1130 | . . 3 ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ⊆ 𝑋 ∧ 𝐴 ∈ Fin) → 𝐽 ∈ Top) |
6 | simp3 1135 | . . 3 ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ⊆ 𝑋 ∧ 𝐴 ∈ Fin) → 𝐴 ∈ Fin) | |
7 | 3 | simprbi 495 | . . . . 5 ⊢ (𝐽 ∈ Fre → ∀𝑥 ∈ 𝑋 {𝑥} ∈ (Clsd‘𝐽)) |
8 | ssralv 4048 | . . . . 5 ⊢ (𝐴 ⊆ 𝑋 → (∀𝑥 ∈ 𝑋 {𝑥} ∈ (Clsd‘𝐽) → ∀𝑥 ∈ 𝐴 {𝑥} ∈ (Clsd‘𝐽))) | |
9 | 7, 8 | mpan9 505 | . . . 4 ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ⊆ 𝑋) → ∀𝑥 ∈ 𝐴 {𝑥} ∈ (Clsd‘𝐽)) |
10 | 9 | 3adant3 1129 | . . 3 ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ⊆ 𝑋 ∧ 𝐴 ∈ Fin) → ∀𝑥 ∈ 𝐴 {𝑥} ∈ (Clsd‘𝐽)) |
11 | 2 | iuncld 23040 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 {𝑥} ∈ (Clsd‘𝐽)) → ∪ 𝑥 ∈ 𝐴 {𝑥} ∈ (Clsd‘𝐽)) |
12 | 5, 6, 10, 11 | syl3anc 1368 | . 2 ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ⊆ 𝑋 ∧ 𝐴 ∈ Fin) → ∪ 𝑥 ∈ 𝐴 {𝑥} ∈ (Clsd‘𝐽)) |
13 | 1, 12 | eqeltrrid 2831 | 1 ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ⊆ 𝑋 ∧ 𝐴 ∈ Fin) → 𝐴 ∈ (Clsd‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ∀wral 3051 ⊆ wss 3947 {csn 4633 ∪ cuni 4913 ∪ ciun 5001 ‘cfv 6554 Fincfn 8974 Topctop 22886 Clsdccld 23011 Frect1 23302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-iin 5004 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-om 7877 df-1st 8003 df-2nd 8004 df-1o 8496 df-2o 8497 df-en 8975 df-dom 8976 df-fin 8978 df-top 22887 df-cld 23014 df-t1 23309 |
This theorem is referenced by: poimirlem30 37351 |
Copyright terms: Public domain | W3C validator |