Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > t1ficld | Structured version Visualization version GIF version |
Description: In a T1 space, finite sets are closed. (Contributed by Mario Carneiro, 25-Dec-2016.) |
Ref | Expression |
---|---|
ist0.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
t1ficld | ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ⊆ 𝑋 ∧ 𝐴 ∈ Fin) → 𝐴 ∈ (Clsd‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunid 4990 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = 𝐴 | |
2 | ist0.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 2 | ist1 22472 | . . . . 5 ⊢ (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 {𝑥} ∈ (Clsd‘𝐽))) |
4 | 3 | simplbi 498 | . . . 4 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Top) |
5 | 4 | 3ad2ant1 1132 | . . 3 ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ⊆ 𝑋 ∧ 𝐴 ∈ Fin) → 𝐽 ∈ Top) |
6 | simp3 1137 | . . 3 ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ⊆ 𝑋 ∧ 𝐴 ∈ Fin) → 𝐴 ∈ Fin) | |
7 | 3 | simprbi 497 | . . . . 5 ⊢ (𝐽 ∈ Fre → ∀𝑥 ∈ 𝑋 {𝑥} ∈ (Clsd‘𝐽)) |
8 | ssralv 3987 | . . . . 5 ⊢ (𝐴 ⊆ 𝑋 → (∀𝑥 ∈ 𝑋 {𝑥} ∈ (Clsd‘𝐽) → ∀𝑥 ∈ 𝐴 {𝑥} ∈ (Clsd‘𝐽))) | |
9 | 7, 8 | mpan9 507 | . . . 4 ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ⊆ 𝑋) → ∀𝑥 ∈ 𝐴 {𝑥} ∈ (Clsd‘𝐽)) |
10 | 9 | 3adant3 1131 | . . 3 ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ⊆ 𝑋 ∧ 𝐴 ∈ Fin) → ∀𝑥 ∈ 𝐴 {𝑥} ∈ (Clsd‘𝐽)) |
11 | 2 | iuncld 22196 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 {𝑥} ∈ (Clsd‘𝐽)) → ∪ 𝑥 ∈ 𝐴 {𝑥} ∈ (Clsd‘𝐽)) |
12 | 5, 6, 10, 11 | syl3anc 1370 | . 2 ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ⊆ 𝑋 ∧ 𝐴 ∈ Fin) → ∪ 𝑥 ∈ 𝐴 {𝑥} ∈ (Clsd‘𝐽)) |
13 | 1, 12 | eqeltrrid 2844 | 1 ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ⊆ 𝑋 ∧ 𝐴 ∈ Fin) → 𝐴 ∈ (Clsd‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ⊆ wss 3887 {csn 4561 ∪ cuni 4839 ∪ ciun 4924 ‘cfv 6433 Fincfn 8733 Topctop 22042 Clsdccld 22167 Frect1 22458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-om 7713 df-1st 7831 df-2nd 7832 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-fin 8737 df-top 22043 df-cld 22170 df-t1 22465 |
This theorem is referenced by: poimirlem30 35807 |
Copyright terms: Public domain | W3C validator |