MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  t1ficld Structured version   Visualization version   GIF version

Theorem t1ficld 22386
Description: In a T1 space, finite sets are closed. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypothesis
Ref Expression
ist0.1 𝑋 = 𝐽
Assertion
Ref Expression
t1ficld ((𝐽 ∈ Fre ∧ 𝐴𝑋𝐴 ∈ Fin) → 𝐴 ∈ (Clsd‘𝐽))

Proof of Theorem t1ficld
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iunid 4986 . 2 𝑥𝐴 {𝑥} = 𝐴
2 ist0.1 . . . . . 6 𝑋 = 𝐽
32ist1 22380 . . . . 5 (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋 {𝑥} ∈ (Clsd‘𝐽)))
43simplbi 497 . . . 4 (𝐽 ∈ Fre → 𝐽 ∈ Top)
543ad2ant1 1131 . . 3 ((𝐽 ∈ Fre ∧ 𝐴𝑋𝐴 ∈ Fin) → 𝐽 ∈ Top)
6 simp3 1136 . . 3 ((𝐽 ∈ Fre ∧ 𝐴𝑋𝐴 ∈ Fin) → 𝐴 ∈ Fin)
73simprbi 496 . . . . 5 (𝐽 ∈ Fre → ∀𝑥𝑋 {𝑥} ∈ (Clsd‘𝐽))
8 ssralv 3983 . . . . 5 (𝐴𝑋 → (∀𝑥𝑋 {𝑥} ∈ (Clsd‘𝐽) → ∀𝑥𝐴 {𝑥} ∈ (Clsd‘𝐽)))
97, 8mpan9 506 . . . 4 ((𝐽 ∈ Fre ∧ 𝐴𝑋) → ∀𝑥𝐴 {𝑥} ∈ (Clsd‘𝐽))
1093adant3 1130 . . 3 ((𝐽 ∈ Fre ∧ 𝐴𝑋𝐴 ∈ Fin) → ∀𝑥𝐴 {𝑥} ∈ (Clsd‘𝐽))
112iuncld 22104 . . 3 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 {𝑥} ∈ (Clsd‘𝐽)) → 𝑥𝐴 {𝑥} ∈ (Clsd‘𝐽))
125, 6, 10, 11syl3anc 1369 . 2 ((𝐽 ∈ Fre ∧ 𝐴𝑋𝐴 ∈ Fin) → 𝑥𝐴 {𝑥} ∈ (Clsd‘𝐽))
131, 12eqeltrrid 2844 1 ((𝐽 ∈ Fre ∧ 𝐴𝑋𝐴 ∈ Fin) → 𝐴 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wss 3883  {csn 4558   cuni 4836   ciun 4921  cfv 6418  Fincfn 8691  Topctop 21950  Clsdccld 22075  Frect1 22366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1st 7804  df-2nd 7805  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-fin 8695  df-top 21951  df-cld 22078  df-t1 22373
This theorem is referenced by:  poimirlem30  35734
  Copyright terms: Public domain W3C validator