MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  t1ficld Structured version   Visualization version   GIF version

Theorem t1ficld 23220
Description: In a T1 space, finite sets are closed. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypothesis
Ref Expression
ist0.1 𝑋 = 𝐽
Assertion
Ref Expression
t1ficld ((𝐽 ∈ Fre ∧ 𝐴𝑋𝐴 ∈ Fin) → 𝐴 ∈ (Clsd‘𝐽))

Proof of Theorem t1ficld
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iunid 5026 . 2 𝑥𝐴 {𝑥} = 𝐴
2 ist0.1 . . . . . 6 𝑋 = 𝐽
32ist1 23214 . . . . 5 (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋 {𝑥} ∈ (Clsd‘𝐽)))
43simplbi 497 . . . 4 (𝐽 ∈ Fre → 𝐽 ∈ Top)
543ad2ant1 1133 . . 3 ((𝐽 ∈ Fre ∧ 𝐴𝑋𝐴 ∈ Fin) → 𝐽 ∈ Top)
6 simp3 1138 . . 3 ((𝐽 ∈ Fre ∧ 𝐴𝑋𝐴 ∈ Fin) → 𝐴 ∈ Fin)
73simprbi 496 . . . . 5 (𝐽 ∈ Fre → ∀𝑥𝑋 {𝑥} ∈ (Clsd‘𝐽))
8 ssralv 4017 . . . . 5 (𝐴𝑋 → (∀𝑥𝑋 {𝑥} ∈ (Clsd‘𝐽) → ∀𝑥𝐴 {𝑥} ∈ (Clsd‘𝐽)))
97, 8mpan9 506 . . . 4 ((𝐽 ∈ Fre ∧ 𝐴𝑋) → ∀𝑥𝐴 {𝑥} ∈ (Clsd‘𝐽))
1093adant3 1132 . . 3 ((𝐽 ∈ Fre ∧ 𝐴𝑋𝐴 ∈ Fin) → ∀𝑥𝐴 {𝑥} ∈ (Clsd‘𝐽))
112iuncld 22938 . . 3 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 {𝑥} ∈ (Clsd‘𝐽)) → 𝑥𝐴 {𝑥} ∈ (Clsd‘𝐽))
125, 6, 10, 11syl3anc 1373 . 2 ((𝐽 ∈ Fre ∧ 𝐴𝑋𝐴 ∈ Fin) → 𝑥𝐴 {𝑥} ∈ (Clsd‘𝐽))
131, 12eqeltrrid 2834 1 ((𝐽 ∈ Fre ∧ 𝐴𝑋𝐴 ∈ Fin) → 𝐴 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wss 3916  {csn 4591   cuni 4873   ciun 4957  cfv 6513  Fincfn 8920  Topctop 22786  Clsdccld 22909  Frect1 23200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-om 7845  df-1st 7970  df-2nd 7971  df-1o 8436  df-2o 8437  df-en 8921  df-dom 8922  df-fin 8924  df-top 22787  df-cld 22912  df-t1 23207
This theorem is referenced by:  poimirlem30  37639
  Copyright terms: Public domain W3C validator