| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > t1ficld | Structured version Visualization version GIF version | ||
| Description: In a T1 space, finite sets are closed. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| Ref | Expression |
|---|---|
| ist0.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| t1ficld | ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ⊆ 𝑋 ∧ 𝐴 ∈ Fin) → 𝐴 ∈ (Clsd‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunid 5026 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = 𝐴 | |
| 2 | ist0.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | 2 | ist1 23214 | . . . . 5 ⊢ (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 {𝑥} ∈ (Clsd‘𝐽))) |
| 4 | 3 | simplbi 497 | . . . 4 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Top) |
| 5 | 4 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ⊆ 𝑋 ∧ 𝐴 ∈ Fin) → 𝐽 ∈ Top) |
| 6 | simp3 1138 | . . 3 ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ⊆ 𝑋 ∧ 𝐴 ∈ Fin) → 𝐴 ∈ Fin) | |
| 7 | 3 | simprbi 496 | . . . . 5 ⊢ (𝐽 ∈ Fre → ∀𝑥 ∈ 𝑋 {𝑥} ∈ (Clsd‘𝐽)) |
| 8 | ssralv 4017 | . . . . 5 ⊢ (𝐴 ⊆ 𝑋 → (∀𝑥 ∈ 𝑋 {𝑥} ∈ (Clsd‘𝐽) → ∀𝑥 ∈ 𝐴 {𝑥} ∈ (Clsd‘𝐽))) | |
| 9 | 7, 8 | mpan9 506 | . . . 4 ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ⊆ 𝑋) → ∀𝑥 ∈ 𝐴 {𝑥} ∈ (Clsd‘𝐽)) |
| 10 | 9 | 3adant3 1132 | . . 3 ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ⊆ 𝑋 ∧ 𝐴 ∈ Fin) → ∀𝑥 ∈ 𝐴 {𝑥} ∈ (Clsd‘𝐽)) |
| 11 | 2 | iuncld 22938 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 {𝑥} ∈ (Clsd‘𝐽)) → ∪ 𝑥 ∈ 𝐴 {𝑥} ∈ (Clsd‘𝐽)) |
| 12 | 5, 6, 10, 11 | syl3anc 1373 | . 2 ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ⊆ 𝑋 ∧ 𝐴 ∈ Fin) → ∪ 𝑥 ∈ 𝐴 {𝑥} ∈ (Clsd‘𝐽)) |
| 13 | 1, 12 | eqeltrrid 2834 | 1 ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ⊆ 𝑋 ∧ 𝐴 ∈ Fin) → 𝐴 ∈ (Clsd‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3916 {csn 4591 ∪ cuni 4873 ∪ ciun 4957 ‘cfv 6513 Fincfn 8920 Topctop 22786 Clsdccld 22909 Frect1 23200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-iin 4960 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-om 7845 df-1st 7970 df-2nd 7971 df-1o 8436 df-2o 8437 df-en 8921 df-dom 8922 df-fin 8924 df-top 22787 df-cld 22912 df-t1 23207 |
| This theorem is referenced by: poimirlem30 37639 |
| Copyright terms: Public domain | W3C validator |