MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmmo Structured version   Visualization version   GIF version

Theorem lmmo 23283
Description: A sequence in a Hausdorff space converges to at most one limit. Part of Lemma 1.4-2(a) of [Kreyszig] p. 26. (Contributed by NM, 31-Jan-2008.) (Proof shortened by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmmo.1 (𝜑𝐽 ∈ Haus)
lmmo.4 (𝜑𝐹(⇝𝑡𝐽)𝐴)
lmmo.5 (𝜑𝐹(⇝𝑡𝐽)𝐵)
Assertion
Ref Expression
lmmo (𝜑𝐴 = 𝐵)

Proof of Theorem lmmo
Dummy variables 𝑗 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 an4 655 . . . . . . . . 9 (((𝑥𝐽𝑦𝐽) ∧ (𝐴𝑥𝐵𝑦)) ↔ ((𝑥𝐽𝐴𝑥) ∧ (𝑦𝐽𝐵𝑦)))
2 nnuz 12895 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
3 simprr 772 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐽𝐴𝑥)) → 𝐴𝑥)
4 1zzd 12623 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐽𝐴𝑥)) → 1 ∈ ℤ)
5 lmmo.4 . . . . . . . . . . . . . 14 (𝜑𝐹(⇝𝑡𝐽)𝐴)
65adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐽𝐴𝑥)) → 𝐹(⇝𝑡𝐽)𝐴)
7 simprl 770 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐽𝐴𝑥)) → 𝑥𝐽)
82, 3, 4, 6, 7lmcvg 23165 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐽𝐴𝑥)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥)
98ex 412 . . . . . . . . . . 11 (𝜑 → ((𝑥𝐽𝐴𝑥) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥))
10 simprr 772 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐽𝐵𝑦)) → 𝐵𝑦)
11 1zzd 12623 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐽𝐵𝑦)) → 1 ∈ ℤ)
12 lmmo.5 . . . . . . . . . . . . . 14 (𝜑𝐹(⇝𝑡𝐽)𝐵)
1312adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐽𝐵𝑦)) → 𝐹(⇝𝑡𝐽)𝐵)
14 simprl 770 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐽𝐵𝑦)) → 𝑦𝐽)
152, 10, 11, 13, 14lmcvg 23165 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝐽𝐵𝑦)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑦)
1615ex 412 . . . . . . . . . . 11 (𝜑 → ((𝑦𝐽𝐵𝑦) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑦))
179, 16anim12d 608 . . . . . . . . . 10 (𝜑 → (((𝑥𝐽𝐴𝑥) ∧ (𝑦𝐽𝐵𝑦)) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑦)))
182rexanuz2 15328 . . . . . . . . . . 11 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦) ↔ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑦))
19 nnz 12609 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
20 uzid 12867 . . . . . . . . . . . . . 14 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
21 ne0i 4335 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ𝑗) → (ℤ𝑗) ≠ ∅)
2219, 20, 213syl 18 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (ℤ𝑗) ≠ ∅)
23 r19.2z 4495 . . . . . . . . . . . . . 14 (((ℤ𝑗) ≠ ∅ ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦)) → ∃𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦))
24 elin 3963 . . . . . . . . . . . . . . . 16 ((𝐹𝑘) ∈ (𝑥𝑦) ↔ ((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦))
25 n0i 4334 . . . . . . . . . . . . . . . 16 ((𝐹𝑘) ∈ (𝑥𝑦) → ¬ (𝑥𝑦) = ∅)
2624, 25sylbir 234 . . . . . . . . . . . . . . 15 (((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦) → ¬ (𝑥𝑦) = ∅)
2726rexlimivw 3148 . . . . . . . . . . . . . 14 (∃𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦) → ¬ (𝑥𝑦) = ∅)
2823, 27syl 17 . . . . . . . . . . . . 13 (((ℤ𝑗) ≠ ∅ ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦)) → ¬ (𝑥𝑦) = ∅)
2922, 28sylan 579 . . . . . . . . . . . 12 ((𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦)) → ¬ (𝑥𝑦) = ∅)
3029rexlimiva 3144 . . . . . . . . . . 11 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦) → ¬ (𝑥𝑦) = ∅)
3118, 30sylbir 234 . . . . . . . . . 10 ((∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑦) → ¬ (𝑥𝑦) = ∅)
3217, 31syl6 35 . . . . . . . . 9 (𝜑 → (((𝑥𝐽𝐴𝑥) ∧ (𝑦𝐽𝐵𝑦)) → ¬ (𝑥𝑦) = ∅))
331, 32biimtrid 241 . . . . . . . 8 (𝜑 → (((𝑥𝐽𝑦𝐽) ∧ (𝐴𝑥𝐵𝑦)) → ¬ (𝑥𝑦) = ∅))
3433expdimp 452 . . . . . . 7 ((𝜑 ∧ (𝑥𝐽𝑦𝐽)) → ((𝐴𝑥𝐵𝑦) → ¬ (𝑥𝑦) = ∅))
35 imnan 399 . . . . . . 7 (((𝐴𝑥𝐵𝑦) → ¬ (𝑥𝑦) = ∅) ↔ ¬ ((𝐴𝑥𝐵𝑦) ∧ (𝑥𝑦) = ∅))
3634, 35sylib 217 . . . . . 6 ((𝜑 ∧ (𝑥𝐽𝑦𝐽)) → ¬ ((𝐴𝑥𝐵𝑦) ∧ (𝑥𝑦) = ∅))
37 df-3an 1087 . . . . . 6 ((𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅) ↔ ((𝐴𝑥𝐵𝑦) ∧ (𝑥𝑦) = ∅))
3836, 37sylnibr 329 . . . . 5 ((𝜑 ∧ (𝑥𝐽𝑦𝐽)) → ¬ (𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅))
3938anassrs 467 . . . 4 (((𝜑𝑥𝐽) ∧ 𝑦𝐽) → ¬ (𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅))
4039nrexdv 3146 . . 3 ((𝜑𝑥𝐽) → ¬ ∃𝑦𝐽 (𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅))
4140nrexdv 3146 . 2 (𝜑 → ¬ ∃𝑥𝐽𝑦𝐽 (𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅))
42 lmmo.1 . . . 4 (𝜑𝐽 ∈ Haus)
43 haustop 23234 . . . . . . 7 (𝐽 ∈ Haus → 𝐽 ∈ Top)
4442, 43syl 17 . . . . . 6 (𝜑𝐽 ∈ Top)
45 toptopon2 22819 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
4644, 45sylib 217 . . . . 5 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
47 lmcl 23200 . . . . 5 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐹(⇝𝑡𝐽)𝐴) → 𝐴 𝐽)
4846, 5, 47syl2anc 583 . . . 4 (𝜑𝐴 𝐽)
49 lmcl 23200 . . . . 5 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐹(⇝𝑡𝐽)𝐵) → 𝐵 𝐽)
5046, 12, 49syl2anc 583 . . . 4 (𝜑𝐵 𝐽)
51 eqid 2728 . . . . . 6 𝐽 = 𝐽
5251hausnei 23231 . . . . 5 ((𝐽 ∈ Haus ∧ (𝐴 𝐽𝐵 𝐽𝐴𝐵)) → ∃𝑥𝐽𝑦𝐽 (𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅))
53523exp2 1352 . . . 4 (𝐽 ∈ Haus → (𝐴 𝐽 → (𝐵 𝐽 → (𝐴𝐵 → ∃𝑥𝐽𝑦𝐽 (𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅)))))
5442, 48, 50, 53syl3c 66 . . 3 (𝜑 → (𝐴𝐵 → ∃𝑥𝐽𝑦𝐽 (𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅)))
5554necon1bd 2955 . 2 (𝜑 → (¬ ∃𝑥𝐽𝑦𝐽 (𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅) → 𝐴 = 𝐵))
5641, 55mpd 15 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2937  wral 3058  wrex 3067  cin 3946  c0 4323   cuni 4908   class class class wbr 5148  cfv 6548  1c1 11139  cn 12242  cz 12588  cuz 12852  Topctop 22794  TopOnctopon 22811  𝑡clm 23129  Hauscha 23211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-er 8724  df-pm 8847  df-en 8964  df-dom 8965  df-sdom 8966  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-z 12589  df-uz 12853  df-top 22795  df-topon 22812  df-lm 23132  df-haus 23218
This theorem is referenced by:  lmfun  23284  occllem  31112  nlelchi  31870  hmopidmchi  31960  xlimuni  45241
  Copyright terms: Public domain W3C validator