MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmmo Structured version   Visualization version   GIF version

Theorem lmmo 22133
Description: A sequence in a Hausdorff space converges to at most one limit. Part of Lemma 1.4-2(a) of [Kreyszig] p. 26. (Contributed by NM, 31-Jan-2008.) (Proof shortened by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmmo.1 (𝜑𝐽 ∈ Haus)
lmmo.4 (𝜑𝐹(⇝𝑡𝐽)𝐴)
lmmo.5 (𝜑𝐹(⇝𝑡𝐽)𝐵)
Assertion
Ref Expression
lmmo (𝜑𝐴 = 𝐵)

Proof of Theorem lmmo
Dummy variables 𝑗 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 an4 656 . . . . . . . . 9 (((𝑥𝐽𝑦𝐽) ∧ (𝐴𝑥𝐵𝑦)) ↔ ((𝑥𝐽𝐴𝑥) ∧ (𝑦𝐽𝐵𝑦)))
2 nnuz 12365 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
3 simprr 773 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐽𝐴𝑥)) → 𝐴𝑥)
4 1zzd 12096 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐽𝐴𝑥)) → 1 ∈ ℤ)
5 lmmo.4 . . . . . . . . . . . . . 14 (𝜑𝐹(⇝𝑡𝐽)𝐴)
65adantr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐽𝐴𝑥)) → 𝐹(⇝𝑡𝐽)𝐴)
7 simprl 771 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐽𝐴𝑥)) → 𝑥𝐽)
82, 3, 4, 6, 7lmcvg 22015 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐽𝐴𝑥)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥)
98ex 416 . . . . . . . . . . 11 (𝜑 → ((𝑥𝐽𝐴𝑥) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥))
10 simprr 773 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐽𝐵𝑦)) → 𝐵𝑦)
11 1zzd 12096 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐽𝐵𝑦)) → 1 ∈ ℤ)
12 lmmo.5 . . . . . . . . . . . . . 14 (𝜑𝐹(⇝𝑡𝐽)𝐵)
1312adantr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐽𝐵𝑦)) → 𝐹(⇝𝑡𝐽)𝐵)
14 simprl 771 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐽𝐵𝑦)) → 𝑦𝐽)
152, 10, 11, 13, 14lmcvg 22015 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝐽𝐵𝑦)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑦)
1615ex 416 . . . . . . . . . . 11 (𝜑 → ((𝑦𝐽𝐵𝑦) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑦))
179, 16anim12d 612 . . . . . . . . . 10 (𝜑 → (((𝑥𝐽𝐴𝑥) ∧ (𝑦𝐽𝐵𝑦)) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑦)))
182rexanuz2 14801 . . . . . . . . . . 11 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦) ↔ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑦))
19 nnz 12087 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
20 uzid 12341 . . . . . . . . . . . . . 14 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
21 ne0i 4223 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ𝑗) → (ℤ𝑗) ≠ ∅)
2219, 20, 213syl 18 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (ℤ𝑗) ≠ ∅)
23 r19.2z 4381 . . . . . . . . . . . . . 14 (((ℤ𝑗) ≠ ∅ ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦)) → ∃𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦))
24 elin 3859 . . . . . . . . . . . . . . . 16 ((𝐹𝑘) ∈ (𝑥𝑦) ↔ ((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦))
25 n0i 4222 . . . . . . . . . . . . . . . 16 ((𝐹𝑘) ∈ (𝑥𝑦) → ¬ (𝑥𝑦) = ∅)
2624, 25sylbir 238 . . . . . . . . . . . . . . 15 (((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦) → ¬ (𝑥𝑦) = ∅)
2726rexlimivw 3192 . . . . . . . . . . . . . 14 (∃𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦) → ¬ (𝑥𝑦) = ∅)
2823, 27syl 17 . . . . . . . . . . . . 13 (((ℤ𝑗) ≠ ∅ ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦)) → ¬ (𝑥𝑦) = ∅)
2922, 28sylan 583 . . . . . . . . . . . 12 ((𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦)) → ¬ (𝑥𝑦) = ∅)
3029rexlimiva 3191 . . . . . . . . . . 11 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦) → ¬ (𝑥𝑦) = ∅)
3118, 30sylbir 238 . . . . . . . . . 10 ((∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑦) → ¬ (𝑥𝑦) = ∅)
3217, 31syl6 35 . . . . . . . . 9 (𝜑 → (((𝑥𝐽𝐴𝑥) ∧ (𝑦𝐽𝐵𝑦)) → ¬ (𝑥𝑦) = ∅))
331, 32syl5bi 245 . . . . . . . 8 (𝜑 → (((𝑥𝐽𝑦𝐽) ∧ (𝐴𝑥𝐵𝑦)) → ¬ (𝑥𝑦) = ∅))
3433expdimp 456 . . . . . . 7 ((𝜑 ∧ (𝑥𝐽𝑦𝐽)) → ((𝐴𝑥𝐵𝑦) → ¬ (𝑥𝑦) = ∅))
35 imnan 403 . . . . . . 7 (((𝐴𝑥𝐵𝑦) → ¬ (𝑥𝑦) = ∅) ↔ ¬ ((𝐴𝑥𝐵𝑦) ∧ (𝑥𝑦) = ∅))
3634, 35sylib 221 . . . . . 6 ((𝜑 ∧ (𝑥𝐽𝑦𝐽)) → ¬ ((𝐴𝑥𝐵𝑦) ∧ (𝑥𝑦) = ∅))
37 df-3an 1090 . . . . . 6 ((𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅) ↔ ((𝐴𝑥𝐵𝑦) ∧ (𝑥𝑦) = ∅))
3836, 37sylnibr 332 . . . . 5 ((𝜑 ∧ (𝑥𝐽𝑦𝐽)) → ¬ (𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅))
3938anassrs 471 . . . 4 (((𝜑𝑥𝐽) ∧ 𝑦𝐽) → ¬ (𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅))
4039nrexdv 3180 . . 3 ((𝜑𝑥𝐽) → ¬ ∃𝑦𝐽 (𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅))
4140nrexdv 3180 . 2 (𝜑 → ¬ ∃𝑥𝐽𝑦𝐽 (𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅))
42 lmmo.1 . . . 4 (𝜑𝐽 ∈ Haus)
43 haustop 22084 . . . . . . 7 (𝐽 ∈ Haus → 𝐽 ∈ Top)
4442, 43syl 17 . . . . . 6 (𝜑𝐽 ∈ Top)
45 toptopon2 21671 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
4644, 45sylib 221 . . . . 5 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
47 lmcl 22050 . . . . 5 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐹(⇝𝑡𝐽)𝐴) → 𝐴 𝐽)
4846, 5, 47syl2anc 587 . . . 4 (𝜑𝐴 𝐽)
49 lmcl 22050 . . . . 5 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐹(⇝𝑡𝐽)𝐵) → 𝐵 𝐽)
5046, 12, 49syl2anc 587 . . . 4 (𝜑𝐵 𝐽)
51 eqid 2738 . . . . . 6 𝐽 = 𝐽
5251hausnei 22081 . . . . 5 ((𝐽 ∈ Haus ∧ (𝐴 𝐽𝐵 𝐽𝐴𝐵)) → ∃𝑥𝐽𝑦𝐽 (𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅))
53523exp2 1355 . . . 4 (𝐽 ∈ Haus → (𝐴 𝐽 → (𝐵 𝐽 → (𝐴𝐵 → ∃𝑥𝐽𝑦𝐽 (𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅)))))
5442, 48, 50, 53syl3c 66 . . 3 (𝜑 → (𝐴𝐵 → ∃𝑥𝐽𝑦𝐽 (𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅)))
5554necon1bd 2952 . 2 (𝜑 → (¬ ∃𝑥𝐽𝑦𝐽 (𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅) → 𝐴 = 𝐵))
5641, 55mpd 15 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2114  wne 2934  wral 3053  wrex 3054  cin 3842  c0 4211   cuni 4796   class class class wbr 5030  cfv 6339  1c1 10618  cn 11718  cz 12064  cuz 12326  Topctop 21646  TopOnctopon 21663  𝑡clm 21979  Hauscha 22061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7481  ax-cnex 10673  ax-resscn 10674  ax-1cn 10675  ax-icn 10676  ax-addcl 10677  ax-addrcl 10678  ax-mulcl 10679  ax-mulrcl 10680  ax-mulcom 10681  ax-addass 10682  ax-mulass 10683  ax-distr 10684  ax-i2m1 10685  ax-1ne0 10686  ax-1rid 10687  ax-rnegex 10688  ax-rrecex 10689  ax-cnre 10690  ax-pre-lttri 10691  ax-pre-lttrn 10692  ax-pre-ltadd 10693  ax-pre-mulgt0 10694
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7129  df-ov 7175  df-oprab 7176  df-mpo 7177  df-om 7602  df-1st 7716  df-2nd 7717  df-wrecs 7978  df-recs 8039  df-rdg 8077  df-er 8322  df-pm 8442  df-en 8558  df-dom 8559  df-sdom 8560  df-pnf 10757  df-mnf 10758  df-xr 10759  df-ltxr 10760  df-le 10761  df-sub 10952  df-neg 10953  df-nn 11719  df-z 12065  df-uz 12327  df-top 21647  df-topon 21664  df-lm 21982  df-haus 22068
This theorem is referenced by:  lmfun  22134  occllem  29240  nlelchi  29998  hmopidmchi  30088  xlimuni  42958
  Copyright terms: Public domain W3C validator