MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmmo Structured version   Visualization version   GIF version

Theorem lmmo 23293
Description: A sequence in a Hausdorff space converges to at most one limit. Part of Lemma 1.4-2(a) of [Kreyszig] p. 26. (Contributed by NM, 31-Jan-2008.) (Proof shortened by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmmo.1 (𝜑𝐽 ∈ Haus)
lmmo.4 (𝜑𝐹(⇝𝑡𝐽)𝐴)
lmmo.5 (𝜑𝐹(⇝𝑡𝐽)𝐵)
Assertion
Ref Expression
lmmo (𝜑𝐴 = 𝐵)

Proof of Theorem lmmo
Dummy variables 𝑗 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 an4 656 . . . . . . . . 9 (((𝑥𝐽𝑦𝐽) ∧ (𝐴𝑥𝐵𝑦)) ↔ ((𝑥𝐽𝐴𝑥) ∧ (𝑦𝐽𝐵𝑦)))
2 nnuz 12772 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
3 simprr 772 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐽𝐴𝑥)) → 𝐴𝑥)
4 1zzd 12500 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐽𝐴𝑥)) → 1 ∈ ℤ)
5 lmmo.4 . . . . . . . . . . . . . 14 (𝜑𝐹(⇝𝑡𝐽)𝐴)
65adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐽𝐴𝑥)) → 𝐹(⇝𝑡𝐽)𝐴)
7 simprl 770 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐽𝐴𝑥)) → 𝑥𝐽)
82, 3, 4, 6, 7lmcvg 23175 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐽𝐴𝑥)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥)
98ex 412 . . . . . . . . . . 11 (𝜑 → ((𝑥𝐽𝐴𝑥) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥))
10 simprr 772 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐽𝐵𝑦)) → 𝐵𝑦)
11 1zzd 12500 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐽𝐵𝑦)) → 1 ∈ ℤ)
12 lmmo.5 . . . . . . . . . . . . . 14 (𝜑𝐹(⇝𝑡𝐽)𝐵)
1312adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐽𝐵𝑦)) → 𝐹(⇝𝑡𝐽)𝐵)
14 simprl 770 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐽𝐵𝑦)) → 𝑦𝐽)
152, 10, 11, 13, 14lmcvg 23175 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝐽𝐵𝑦)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑦)
1615ex 412 . . . . . . . . . . 11 (𝜑 → ((𝑦𝐽𝐵𝑦) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑦))
179, 16anim12d 609 . . . . . . . . . 10 (𝜑 → (((𝑥𝐽𝐴𝑥) ∧ (𝑦𝐽𝐵𝑦)) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑦)))
182rexanuz2 15254 . . . . . . . . . . 11 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦) ↔ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑦))
19 nnz 12486 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
20 uzid 12744 . . . . . . . . . . . . . 14 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
21 ne0i 4291 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ𝑗) → (ℤ𝑗) ≠ ∅)
2219, 20, 213syl 18 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (ℤ𝑗) ≠ ∅)
23 r19.2z 4445 . . . . . . . . . . . . . 14 (((ℤ𝑗) ≠ ∅ ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦)) → ∃𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦))
24 elin 3918 . . . . . . . . . . . . . . . 16 ((𝐹𝑘) ∈ (𝑥𝑦) ↔ ((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦))
25 n0i 4290 . . . . . . . . . . . . . . . 16 ((𝐹𝑘) ∈ (𝑥𝑦) → ¬ (𝑥𝑦) = ∅)
2624, 25sylbir 235 . . . . . . . . . . . . . . 15 (((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦) → ¬ (𝑥𝑦) = ∅)
2726rexlimivw 3129 . . . . . . . . . . . . . 14 (∃𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦) → ¬ (𝑥𝑦) = ∅)
2823, 27syl 17 . . . . . . . . . . . . 13 (((ℤ𝑗) ≠ ∅ ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦)) → ¬ (𝑥𝑦) = ∅)
2922, 28sylan 580 . . . . . . . . . . . 12 ((𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦)) → ¬ (𝑥𝑦) = ∅)
3029rexlimiva 3125 . . . . . . . . . . 11 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦) → ¬ (𝑥𝑦) = ∅)
3118, 30sylbir 235 . . . . . . . . . 10 ((∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑦) → ¬ (𝑥𝑦) = ∅)
3217, 31syl6 35 . . . . . . . . 9 (𝜑 → (((𝑥𝐽𝐴𝑥) ∧ (𝑦𝐽𝐵𝑦)) → ¬ (𝑥𝑦) = ∅))
331, 32biimtrid 242 . . . . . . . 8 (𝜑 → (((𝑥𝐽𝑦𝐽) ∧ (𝐴𝑥𝐵𝑦)) → ¬ (𝑥𝑦) = ∅))
3433expdimp 452 . . . . . . 7 ((𝜑 ∧ (𝑥𝐽𝑦𝐽)) → ((𝐴𝑥𝐵𝑦) → ¬ (𝑥𝑦) = ∅))
35 imnan 399 . . . . . . 7 (((𝐴𝑥𝐵𝑦) → ¬ (𝑥𝑦) = ∅) ↔ ¬ ((𝐴𝑥𝐵𝑦) ∧ (𝑥𝑦) = ∅))
3634, 35sylib 218 . . . . . 6 ((𝜑 ∧ (𝑥𝐽𝑦𝐽)) → ¬ ((𝐴𝑥𝐵𝑦) ∧ (𝑥𝑦) = ∅))
37 df-3an 1088 . . . . . 6 ((𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅) ↔ ((𝐴𝑥𝐵𝑦) ∧ (𝑥𝑦) = ∅))
3836, 37sylnibr 329 . . . . 5 ((𝜑 ∧ (𝑥𝐽𝑦𝐽)) → ¬ (𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅))
3938anassrs 467 . . . 4 (((𝜑𝑥𝐽) ∧ 𝑦𝐽) → ¬ (𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅))
4039nrexdv 3127 . . 3 ((𝜑𝑥𝐽) → ¬ ∃𝑦𝐽 (𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅))
4140nrexdv 3127 . 2 (𝜑 → ¬ ∃𝑥𝐽𝑦𝐽 (𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅))
42 lmmo.1 . . . 4 (𝜑𝐽 ∈ Haus)
43 haustop 23244 . . . . . . 7 (𝐽 ∈ Haus → 𝐽 ∈ Top)
4442, 43syl 17 . . . . . 6 (𝜑𝐽 ∈ Top)
45 toptopon2 22831 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
4644, 45sylib 218 . . . . 5 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
47 lmcl 23210 . . . . 5 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐹(⇝𝑡𝐽)𝐴) → 𝐴 𝐽)
4846, 5, 47syl2anc 584 . . . 4 (𝜑𝐴 𝐽)
49 lmcl 23210 . . . . 5 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐹(⇝𝑡𝐽)𝐵) → 𝐵 𝐽)
5046, 12, 49syl2anc 584 . . . 4 (𝜑𝐵 𝐽)
51 eqid 2731 . . . . . 6 𝐽 = 𝐽
5251hausnei 23241 . . . . 5 ((𝐽 ∈ Haus ∧ (𝐴 𝐽𝐵 𝐽𝐴𝐵)) → ∃𝑥𝐽𝑦𝐽 (𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅))
53523exp2 1355 . . . 4 (𝐽 ∈ Haus → (𝐴 𝐽 → (𝐵 𝐽 → (𝐴𝐵 → ∃𝑥𝐽𝑦𝐽 (𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅)))))
5442, 48, 50, 53syl3c 66 . . 3 (𝜑 → (𝐴𝐵 → ∃𝑥𝐽𝑦𝐽 (𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅)))
5554necon1bd 2946 . 2 (𝜑 → (¬ ∃𝑥𝐽𝑦𝐽 (𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅) → 𝐴 = 𝐵))
5641, 55mpd 15 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  cin 3901  c0 4283   cuni 4859   class class class wbr 5091  cfv 6481  1c1 11004  cn 12122  cz 12465  cuz 12729  Topctop 22806  TopOnctopon 22823  𝑡clm 23139  Hauscha 23221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-z 12466  df-uz 12730  df-top 22807  df-topon 22824  df-lm 23142  df-haus 23228
This theorem is referenced by:  lmfun  23294  occllem  31278  nlelchi  32036  hmopidmchi  32126  xlimuni  45890
  Copyright terms: Public domain W3C validator