|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlsupr | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice has the superposition property. Theorem 13.2 in [Crawley] p. 107. (Contributed by NM, 30-Jan-2012.) | 
| Ref | Expression | 
|---|---|
| hlsupr.l | ⊢ ≤ = (le‘𝐾) | 
| hlsupr.j | ⊢ ∨ = (join‘𝐾) | 
| hlsupr.a | ⊢ 𝐴 = (Atoms‘𝐾) | 
| Ref | Expression | 
|---|---|
| hlsupr | ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ (𝑃 ∨ 𝑄))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2737 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | hlsupr.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 3 | hlsupr.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 4 | hlsupr.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | 1, 2, 3, 4 | hlsuprexch 39383 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ((𝑃 ≠ 𝑄 → ∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ (𝑃 ∨ 𝑄))) ∧ ∀𝑟 ∈ (Base‘𝐾)((¬ 𝑃 ≤ 𝑟 ∧ 𝑃 ≤ (𝑟 ∨ 𝑄)) → 𝑄 ≤ (𝑟 ∨ 𝑃)))) | 
| 6 | 5 | simpld 494 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 → ∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ (𝑃 ∨ 𝑄)))) | 
| 7 | 6 | imp 406 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ (𝑃 ∨ 𝑄))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 lecple 17304 joincjn 18357 Atomscatm 39264 HLchlt 39351 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-iota 6514 df-fv 6569 df-ov 7434 df-cvlat 39323 df-hlat 39352 | 
| This theorem is referenced by: hlsupr2 39389 atbtwnexOLDN 39449 atbtwnex 39450 cdlemb 39796 lhpexle2lem 40011 lhpexle3lem 40013 cdlemf1 40563 cdlemg35 40715 | 
| Copyright terms: Public domain | W3C validator |