Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlsupr Structured version   Visualization version   GIF version

Theorem hlsupr 39424
Description: A Hilbert lattice has the superposition property. Theorem 13.2 in [Crawley] p. 107. (Contributed by NM, 30-Jan-2012.)
Hypotheses
Ref Expression
hlsupr.l = (le‘𝐾)
hlsupr.j = (join‘𝐾)
hlsupr.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
hlsupr (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → ∃𝑟𝐴 (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄)))
Distinct variable groups:   𝐴,𝑟   𝐾,𝑟   𝑃,𝑟   𝑄,𝑟
Allowed substitution hints:   (𝑟)   (𝑟)

Proof of Theorem hlsupr
StepHypRef Expression
1 eqid 2731 . . . 4 (Base‘𝐾) = (Base‘𝐾)
2 hlsupr.l . . . 4 = (le‘𝐾)
3 hlsupr.j . . . 4 = (join‘𝐾)
4 hlsupr.a . . . 4 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4hlsuprexch 39419 . . 3 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ((𝑃𝑄 → ∃𝑟𝐴 (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) ∧ ∀𝑟 ∈ (Base‘𝐾)((¬ 𝑃 𝑟𝑃 (𝑟 𝑄)) → 𝑄 (𝑟 𝑃))))
65simpld 494 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝑄 → ∃𝑟𝐴 (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))))
76imp 406 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → ∃𝑟𝐴 (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056   class class class wbr 5091  cfv 6481  (class class class)co 7346  Basecbs 17117  lecple 17165  joincjn 18214  Atomscatm 39301  HLchlt 39388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-ov 7349  df-cvlat 39360  df-hlat 39389
This theorem is referenced by:  hlsupr2  39425  atbtwnexOLDN  39485  atbtwnex  39486  cdlemb  39832  lhpexle2lem  40047  lhpexle3lem  40049  cdlemf1  40599  cdlemg35  40751
  Copyright terms: Public domain W3C validator