Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlsupr | Structured version Visualization version GIF version |
Description: A Hilbert lattice has the superposition property. Theorem 13.2 in [Crawley] p. 107. (Contributed by NM, 30-Jan-2012.) |
Ref | Expression |
---|---|
hlsupr.l | ⊢ ≤ = (le‘𝐾) |
hlsupr.j | ⊢ ∨ = (join‘𝐾) |
hlsupr.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
hlsupr | ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ (𝑃 ∨ 𝑄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | hlsupr.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | hlsupr.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
4 | hlsupr.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | 1, 2, 3, 4 | hlsuprexch 37169 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ((𝑃 ≠ 𝑄 → ∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ (𝑃 ∨ 𝑄))) ∧ ∀𝑟 ∈ (Base‘𝐾)((¬ 𝑃 ≤ 𝑟 ∧ 𝑃 ≤ (𝑟 ∨ 𝑄)) → 𝑄 ≤ (𝑟 ∨ 𝑃)))) |
6 | 5 | simpld 498 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 → ∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ (𝑃 ∨ 𝑄)))) |
7 | 6 | imp 410 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ (𝑃 ∨ 𝑄))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2112 ≠ wne 2943 ∀wral 3064 ∃wrex 3065 class class class wbr 5070 ‘cfv 6401 (class class class)co 7235 Basecbs 16793 lecple 16842 joincjn 17851 Atomscatm 37051 HLchlt 37138 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6359 df-fv 6409 df-ov 7238 df-cvlat 37110 df-hlat 37139 |
This theorem is referenced by: hlsupr2 37175 atbtwnexOLDN 37235 atbtwnex 37236 cdlemb 37582 lhpexle2lem 37797 lhpexle3lem 37799 cdlemf1 38349 cdlemg35 38501 |
Copyright terms: Public domain | W3C validator |