Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlsupr Structured version   Visualization version   GIF version

Theorem hlsupr 39388
Description: A Hilbert lattice has the superposition property. Theorem 13.2 in [Crawley] p. 107. (Contributed by NM, 30-Jan-2012.)
Hypotheses
Ref Expression
hlsupr.l = (le‘𝐾)
hlsupr.j = (join‘𝐾)
hlsupr.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
hlsupr (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → ∃𝑟𝐴 (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄)))
Distinct variable groups:   𝐴,𝑟   𝐾,𝑟   𝑃,𝑟   𝑄,𝑟
Allowed substitution hints:   (𝑟)   (𝑟)

Proof of Theorem hlsupr
StepHypRef Expression
1 eqid 2737 . . . 4 (Base‘𝐾) = (Base‘𝐾)
2 hlsupr.l . . . 4 = (le‘𝐾)
3 hlsupr.j . . . 4 = (join‘𝐾)
4 hlsupr.a . . . 4 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4hlsuprexch 39383 . . 3 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ((𝑃𝑄 → ∃𝑟𝐴 (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) ∧ ∀𝑟 ∈ (Base‘𝐾)((¬ 𝑃 𝑟𝑃 (𝑟 𝑄)) → 𝑄 (𝑟 𝑃))))
65simpld 494 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝑄 → ∃𝑟𝐴 (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))))
76imp 406 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → ∃𝑟𝐴 (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070   class class class wbr 5143  cfv 6561  (class class class)co 7431  Basecbs 17247  lecple 17304  joincjn 18357  Atomscatm 39264  HLchlt 39351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-iota 6514  df-fv 6569  df-ov 7434  df-cvlat 39323  df-hlat 39352
This theorem is referenced by:  hlsupr2  39389  atbtwnexOLDN  39449  atbtwnex  39450  cdlemb  39796  lhpexle2lem  40011  lhpexle3lem  40013  cdlemf1  40563  cdlemg35  40715
  Copyright terms: Public domain W3C validator