![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlsupr | Structured version Visualization version GIF version |
Description: A Hilbert lattice has the superposition property. Theorem 13.2 in [Crawley] p. 107. (Contributed by NM, 30-Jan-2012.) |
Ref | Expression |
---|---|
hlsupr.l | β’ β€ = (leβπΎ) |
hlsupr.j | β’ β¨ = (joinβπΎ) |
hlsupr.a | β’ π΄ = (AtomsβπΎ) |
Ref | Expression |
---|---|
hlsupr | β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ π β π) β βπ β π΄ (π β π β§ π β π β§ π β€ (π β¨ π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . 4 β’ (BaseβπΎ) = (BaseβπΎ) | |
2 | hlsupr.l | . . . 4 β’ β€ = (leβπΎ) | |
3 | hlsupr.j | . . . 4 β’ β¨ = (joinβπΎ) | |
4 | hlsupr.a | . . . 4 β’ π΄ = (AtomsβπΎ) | |
5 | 1, 2, 3, 4 | hlsuprexch 38240 | . . 3 β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β ((π β π β βπ β π΄ (π β π β§ π β π β§ π β€ (π β¨ π))) β§ βπ β (BaseβπΎ)((Β¬ π β€ π β§ π β€ (π β¨ π)) β π β€ (π β¨ π)))) |
6 | 5 | simpld 495 | . 2 β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β (π β π β βπ β π΄ (π β π β§ π β π β§ π β€ (π β¨ π)))) |
7 | 6 | imp 407 | 1 β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ π β π) β βπ β π΄ (π β π β§ π β π β§ π β€ (π β¨ π))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 β wne 2940 βwral 3061 βwrex 3070 class class class wbr 5147 βcfv 6540 (class class class)co 7405 Basecbs 17140 lecple 17200 joincjn 18260 Atomscatm 38121 HLchlt 38208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-iota 6492 df-fv 6548 df-ov 7408 df-cvlat 38180 df-hlat 38209 |
This theorem is referenced by: hlsupr2 38246 atbtwnexOLDN 38306 atbtwnex 38307 cdlemb 38653 lhpexle2lem 38868 lhpexle3lem 38870 cdlemf1 39420 cdlemg35 39572 |
Copyright terms: Public domain | W3C validator |