Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlsupr Structured version   Visualization version   GIF version

Theorem hlsupr 39380
Description: A Hilbert lattice has the superposition property. Theorem 13.2 in [Crawley] p. 107. (Contributed by NM, 30-Jan-2012.)
Hypotheses
Ref Expression
hlsupr.l = (le‘𝐾)
hlsupr.j = (join‘𝐾)
hlsupr.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
hlsupr (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → ∃𝑟𝐴 (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄)))
Distinct variable groups:   𝐴,𝑟   𝐾,𝑟   𝑃,𝑟   𝑄,𝑟
Allowed substitution hints:   (𝑟)   (𝑟)

Proof of Theorem hlsupr
StepHypRef Expression
1 eqid 2729 . . . 4 (Base‘𝐾) = (Base‘𝐾)
2 hlsupr.l . . . 4 = (le‘𝐾)
3 hlsupr.j . . . 4 = (join‘𝐾)
4 hlsupr.a . . . 4 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4hlsuprexch 39375 . . 3 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ((𝑃𝑄 → ∃𝑟𝐴 (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) ∧ ∀𝑟 ∈ (Base‘𝐾)((¬ 𝑃 𝑟𝑃 (𝑟 𝑄)) → 𝑄 (𝑟 𝑃))))
65simpld 494 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝑄 → ∃𝑟𝐴 (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))))
76imp 406 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → ∃𝑟𝐴 (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  joincjn 18272  Atomscatm 39256  HLchlt 39343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390  df-cvlat 39315  df-hlat 39344
This theorem is referenced by:  hlsupr2  39381  atbtwnexOLDN  39441  atbtwnex  39442  cdlemb  39788  lhpexle2lem  40003  lhpexle3lem  40005  cdlemf1  40555  cdlemg35  40707
  Copyright terms: Public domain W3C validator