![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlsupr | Structured version Visualization version GIF version |
Description: A Hilbert lattice has the superposition property. Theorem 13.2 in [Crawley] p. 107. (Contributed by NM, 30-Jan-2012.) |
Ref | Expression |
---|---|
hlsupr.l | ⊢ ≤ = (le‘𝐾) |
hlsupr.j | ⊢ ∨ = (join‘𝐾) |
hlsupr.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
hlsupr | ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ (𝑃 ∨ 𝑄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2724 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | hlsupr.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | hlsupr.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
4 | hlsupr.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | 1, 2, 3, 4 | hlsuprexch 38746 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ((𝑃 ≠ 𝑄 → ∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ (𝑃 ∨ 𝑄))) ∧ ∀𝑟 ∈ (Base‘𝐾)((¬ 𝑃 ≤ 𝑟 ∧ 𝑃 ≤ (𝑟 ∨ 𝑄)) → 𝑄 ≤ (𝑟 ∨ 𝑃)))) |
6 | 5 | simpld 494 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 → ∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ (𝑃 ∨ 𝑄)))) |
7 | 6 | imp 406 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ (𝑃 ∨ 𝑄))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 ∀wral 3053 ∃wrex 3062 class class class wbr 5139 ‘cfv 6534 (class class class)co 7402 Basecbs 17145 lecple 17205 joincjn 18268 Atomscatm 38627 HLchlt 38714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-iota 6486 df-fv 6542 df-ov 7405 df-cvlat 38686 df-hlat 38715 |
This theorem is referenced by: hlsupr2 38752 atbtwnexOLDN 38812 atbtwnex 38813 cdlemb 39159 lhpexle2lem 39374 lhpexle3lem 39376 cdlemf1 39926 cdlemg35 40078 |
Copyright terms: Public domain | W3C validator |