Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlsupr Structured version   Visualization version   GIF version

Theorem hlsupr 37327
Description: A Hilbert lattice has the superposition property. Theorem 13.2 in [Crawley] p. 107. (Contributed by NM, 30-Jan-2012.)
Hypotheses
Ref Expression
hlsupr.l = (le‘𝐾)
hlsupr.j = (join‘𝐾)
hlsupr.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
hlsupr (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → ∃𝑟𝐴 (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄)))
Distinct variable groups:   𝐴,𝑟   𝐾,𝑟   𝑃,𝑟   𝑄,𝑟
Allowed substitution hints:   (𝑟)   (𝑟)

Proof of Theorem hlsupr
StepHypRef Expression
1 eqid 2738 . . . 4 (Base‘𝐾) = (Base‘𝐾)
2 hlsupr.l . . . 4 = (le‘𝐾)
3 hlsupr.j . . . 4 = (join‘𝐾)
4 hlsupr.a . . . 4 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4hlsuprexch 37322 . . 3 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ((𝑃𝑄 → ∃𝑟𝐴 (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) ∧ ∀𝑟 ∈ (Base‘𝐾)((¬ 𝑃 𝑟𝑃 (𝑟 𝑄)) → 𝑄 (𝑟 𝑃))))
65simpld 494 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝑄 → ∃𝑟𝐴 (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))))
76imp 406 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → ∃𝑟𝐴 (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  joincjn 17944  Atomscatm 37204  HLchlt 37291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-cvlat 37263  df-hlat 37292
This theorem is referenced by:  hlsupr2  37328  atbtwnexOLDN  37388  atbtwnex  37389  cdlemb  37735  lhpexle2lem  37950  lhpexle3lem  37952  cdlemf1  38502  cdlemg35  38654
  Copyright terms: Public domain W3C validator