Proof of Theorem cdlemf1
Step | Hyp | Ref
| Expression |
1 | | simp1l 1196 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐾 ∈ HL) |
2 | | simp3l 1200 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑃 ∈ 𝐴) |
3 | | simp2l 1198 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑈 ∈ 𝐴) |
4 | | simp2r 1199 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑈 ≤ 𝑊) |
5 | | simp3r 1201 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ¬ 𝑃 ≤ 𝑊) |
6 | | nbrne2 5094 |
. . . . 5
⊢ ((𝑈 ≤ 𝑊 ∧ ¬ 𝑃 ≤ 𝑊) → 𝑈 ≠ 𝑃) |
7 | 6 | necomd 2999 |
. . . 4
⊢ ((𝑈 ≤ 𝑊 ∧ ¬ 𝑃 ≤ 𝑊) → 𝑃 ≠ 𝑈) |
8 | 4, 5, 7 | syl2anc 584 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑃 ≠ 𝑈) |
9 | | cdlemf1.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
10 | | cdlemf1.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
11 | | cdlemf1.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
12 | 9, 10, 11 | hlsupr 37400 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴) ∧ 𝑃 ≠ 𝑈) → ∃𝑞 ∈ 𝐴 (𝑞 ≠ 𝑃 ∧ 𝑞 ≠ 𝑈 ∧ 𝑞 ≤ (𝑃 ∨ 𝑈))) |
13 | 1, 2, 3, 8, 12 | syl31anc 1372 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ∃𝑞 ∈ 𝐴 (𝑞 ≠ 𝑃 ∧ 𝑞 ≠ 𝑈 ∧ 𝑞 ≤ (𝑃 ∨ 𝑈))) |
14 | | simp31 1208 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑞 ∈ 𝐴 ∧ (𝑞 ≠ 𝑃 ∧ 𝑞 ≠ 𝑈 ∧ 𝑞 ≤ (𝑃 ∨ 𝑈))) → 𝑞 ≠ 𝑃) |
15 | 14 | necomd 2999 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑞 ∈ 𝐴 ∧ (𝑞 ≠ 𝑃 ∧ 𝑞 ≠ 𝑈 ∧ 𝑞 ≤ (𝑃 ∨ 𝑈))) → 𝑃 ≠ 𝑞) |
16 | | simp13r 1288 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑞 ∈ 𝐴 ∧ (𝑞 ≠ 𝑃 ∧ 𝑞 ≠ 𝑈 ∧ 𝑞 ≤ (𝑃 ∨ 𝑈))) → ¬ 𝑃 ≤ 𝑊) |
17 | | simp12r 1286 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑞 ∈ 𝐴 ∧ (𝑞 ≠ 𝑃 ∧ 𝑞 ≠ 𝑈 ∧ 𝑞 ≤ (𝑃 ∨ 𝑈))) → 𝑈 ≤ 𝑊) |
18 | | simp11l 1283 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑞 ∈ 𝐴 ∧ (𝑞 ≠ 𝑃 ∧ 𝑞 ≠ 𝑈 ∧ 𝑞 ≤ (𝑃 ∨ 𝑈))) → 𝐾 ∈ HL) |
19 | 18 | hllatd 37378 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑞 ∈ 𝐴 ∧ (𝑞 ≠ 𝑃 ∧ 𝑞 ≠ 𝑈 ∧ 𝑞 ≤ (𝑃 ∨ 𝑈))) → 𝐾 ∈ Lat) |
20 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(Base‘𝐾) =
(Base‘𝐾) |
21 | 20, 11 | atbase 37303 |
. . . . . . . . . . 11
⊢ (𝑞 ∈ 𝐴 → 𝑞 ∈ (Base‘𝐾)) |
22 | 21 | 3ad2ant2 1133 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑞 ∈ 𝐴 ∧ (𝑞 ≠ 𝑃 ∧ 𝑞 ≠ 𝑈 ∧ 𝑞 ≤ (𝑃 ∨ 𝑈))) → 𝑞 ∈ (Base‘𝐾)) |
23 | | simp12l 1285 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑞 ∈ 𝐴 ∧ (𝑞 ≠ 𝑃 ∧ 𝑞 ≠ 𝑈 ∧ 𝑞 ≤ (𝑃 ∨ 𝑈))) → 𝑈 ∈ 𝐴) |
24 | 20, 11 | atbase 37303 |
. . . . . . . . . . 11
⊢ (𝑈 ∈ 𝐴 → 𝑈 ∈ (Base‘𝐾)) |
25 | 23, 24 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑞 ∈ 𝐴 ∧ (𝑞 ≠ 𝑃 ∧ 𝑞 ≠ 𝑈 ∧ 𝑞 ≤ (𝑃 ∨ 𝑈))) → 𝑈 ∈ (Base‘𝐾)) |
26 | | simp11r 1284 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑞 ∈ 𝐴 ∧ (𝑞 ≠ 𝑃 ∧ 𝑞 ≠ 𝑈 ∧ 𝑞 ≤ (𝑃 ∨ 𝑈))) → 𝑊 ∈ 𝐻) |
27 | | cdlemf1.h |
. . . . . . . . . . . 12
⊢ 𝐻 = (LHyp‘𝐾) |
28 | 20, 27 | lhpbase 38012 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
29 | 26, 28 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑞 ∈ 𝐴 ∧ (𝑞 ≠ 𝑃 ∧ 𝑞 ≠ 𝑈 ∧ 𝑞 ≤ (𝑃 ∨ 𝑈))) → 𝑊 ∈ (Base‘𝐾)) |
30 | 20, 9, 10 | latjle12 18168 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ (𝑞 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑞 ≤ 𝑊 ∧ 𝑈 ≤ 𝑊) ↔ (𝑞 ∨ 𝑈) ≤ 𝑊)) |
31 | 19, 22, 25, 29, 30 | syl13anc 1371 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑞 ∈ 𝐴 ∧ (𝑞 ≠ 𝑃 ∧ 𝑞 ≠ 𝑈 ∧ 𝑞 ≤ (𝑃 ∨ 𝑈))) → ((𝑞 ≤ 𝑊 ∧ 𝑈 ≤ 𝑊) ↔ (𝑞 ∨ 𝑈) ≤ 𝑊)) |
32 | 31 | biimpd 228 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑞 ∈ 𝐴 ∧ (𝑞 ≠ 𝑃 ∧ 𝑞 ≠ 𝑈 ∧ 𝑞 ≤ (𝑃 ∨ 𝑈))) → ((𝑞 ≤ 𝑊 ∧ 𝑈 ≤ 𝑊) → (𝑞 ∨ 𝑈) ≤ 𝑊)) |
33 | 17, 32 | mpan2d 691 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑞 ∈ 𝐴 ∧ (𝑞 ≠ 𝑃 ∧ 𝑞 ≠ 𝑈 ∧ 𝑞 ≤ (𝑃 ∨ 𝑈))) → (𝑞 ≤ 𝑊 → (𝑞 ∨ 𝑈) ≤ 𝑊)) |
34 | | simp33 1210 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑞 ∈ 𝐴 ∧ (𝑞 ≠ 𝑃 ∧ 𝑞 ≠ 𝑈 ∧ 𝑞 ≤ (𝑃 ∨ 𝑈))) → 𝑞 ≤ (𝑃 ∨ 𝑈)) |
35 | | hlcvl 37373 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) |
36 | 18, 35 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑞 ∈ 𝐴 ∧ (𝑞 ≠ 𝑃 ∧ 𝑞 ≠ 𝑈 ∧ 𝑞 ≤ (𝑃 ∨ 𝑈))) → 𝐾 ∈ CvLat) |
37 | | simp2 1136 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑞 ∈ 𝐴 ∧ (𝑞 ≠ 𝑃 ∧ 𝑞 ≠ 𝑈 ∧ 𝑞 ≤ (𝑃 ∨ 𝑈))) → 𝑞 ∈ 𝐴) |
38 | | simp13l 1287 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑞 ∈ 𝐴 ∧ (𝑞 ≠ 𝑃 ∧ 𝑞 ≠ 𝑈 ∧ 𝑞 ≤ (𝑃 ∨ 𝑈))) → 𝑃 ∈ 𝐴) |
39 | | simp32 1209 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑞 ∈ 𝐴 ∧ (𝑞 ≠ 𝑃 ∧ 𝑞 ≠ 𝑈 ∧ 𝑞 ≤ (𝑃 ∨ 𝑈))) → 𝑞 ≠ 𝑈) |
40 | 9, 10, 11 | cvlatexch2 37351 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ CvLat ∧ (𝑞 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴) ∧ 𝑞 ≠ 𝑈) → (𝑞 ≤ (𝑃 ∨ 𝑈) → 𝑃 ≤ (𝑞 ∨ 𝑈))) |
41 | 36, 37, 38, 23, 39, 40 | syl131anc 1382 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑞 ∈ 𝐴 ∧ (𝑞 ≠ 𝑃 ∧ 𝑞 ≠ 𝑈 ∧ 𝑞 ≤ (𝑃 ∨ 𝑈))) → (𝑞 ≤ (𝑃 ∨ 𝑈) → 𝑃 ≤ (𝑞 ∨ 𝑈))) |
42 | 34, 41 | mpd 15 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑞 ∈ 𝐴 ∧ (𝑞 ≠ 𝑃 ∧ 𝑞 ≠ 𝑈 ∧ 𝑞 ≤ (𝑃 ∨ 𝑈))) → 𝑃 ≤ (𝑞 ∨ 𝑈)) |
43 | 20, 11 | atbase 37303 |
. . . . . . . . . 10
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
44 | 38, 43 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑞 ∈ 𝐴 ∧ (𝑞 ≠ 𝑃 ∧ 𝑞 ≠ 𝑈 ∧ 𝑞 ≤ (𝑃 ∨ 𝑈))) → 𝑃 ∈ (Base‘𝐾)) |
45 | 20, 10, 11 | hlatjcl 37381 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑞 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴) → (𝑞 ∨ 𝑈) ∈ (Base‘𝐾)) |
46 | 18, 37, 23, 45 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑞 ∈ 𝐴 ∧ (𝑞 ≠ 𝑃 ∧ 𝑞 ≠ 𝑈 ∧ 𝑞 ≤ (𝑃 ∨ 𝑈))) → (𝑞 ∨ 𝑈) ∈ (Base‘𝐾)) |
47 | 20, 9 | lattr 18162 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ (𝑞 ∨ 𝑈) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑃 ≤ (𝑞 ∨ 𝑈) ∧ (𝑞 ∨ 𝑈) ≤ 𝑊) → 𝑃 ≤ 𝑊)) |
48 | 19, 44, 46, 29, 47 | syl13anc 1371 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑞 ∈ 𝐴 ∧ (𝑞 ≠ 𝑃 ∧ 𝑞 ≠ 𝑈 ∧ 𝑞 ≤ (𝑃 ∨ 𝑈))) → ((𝑃 ≤ (𝑞 ∨ 𝑈) ∧ (𝑞 ∨ 𝑈) ≤ 𝑊) → 𝑃 ≤ 𝑊)) |
49 | 42, 48 | mpand 692 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑞 ∈ 𝐴 ∧ (𝑞 ≠ 𝑃 ∧ 𝑞 ≠ 𝑈 ∧ 𝑞 ≤ (𝑃 ∨ 𝑈))) → ((𝑞 ∨ 𝑈) ≤ 𝑊 → 𝑃 ≤ 𝑊)) |
50 | 33, 49 | syld 47 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑞 ∈ 𝐴 ∧ (𝑞 ≠ 𝑃 ∧ 𝑞 ≠ 𝑈 ∧ 𝑞 ≤ (𝑃 ∨ 𝑈))) → (𝑞 ≤ 𝑊 → 𝑃 ≤ 𝑊)) |
51 | 16, 50 | mtod 197 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑞 ∈ 𝐴 ∧ (𝑞 ≠ 𝑃 ∧ 𝑞 ≠ 𝑈 ∧ 𝑞 ≤ (𝑃 ∨ 𝑈))) → ¬ 𝑞 ≤ 𝑊) |
52 | 9, 10, 11 | cvlatexch1 37350 |
. . . . . . 7
⊢ ((𝐾 ∈ CvLat ∧ (𝑞 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ 𝑞 ≠ 𝑃) → (𝑞 ≤ (𝑃 ∨ 𝑈) → 𝑈 ≤ (𝑃 ∨ 𝑞))) |
53 | 36, 37, 23, 38, 14, 52 | syl131anc 1382 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑞 ∈ 𝐴 ∧ (𝑞 ≠ 𝑃 ∧ 𝑞 ≠ 𝑈 ∧ 𝑞 ≤ (𝑃 ∨ 𝑈))) → (𝑞 ≤ (𝑃 ∨ 𝑈) → 𝑈 ≤ (𝑃 ∨ 𝑞))) |
54 | 34, 53 | mpd 15 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑞 ∈ 𝐴 ∧ (𝑞 ≠ 𝑃 ∧ 𝑞 ≠ 𝑈 ∧ 𝑞 ≤ (𝑃 ∨ 𝑈))) → 𝑈 ≤ (𝑃 ∨ 𝑞)) |
55 | 15, 51, 54 | 3jca 1127 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝑞 ∈ 𝐴 ∧ (𝑞 ≠ 𝑃 ∧ 𝑞 ≠ 𝑈 ∧ 𝑞 ≤ (𝑃 ∨ 𝑈))) → (𝑃 ≠ 𝑞 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑈 ≤ (𝑃 ∨ 𝑞))) |
56 | 55 | 3exp 1118 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑞 ∈ 𝐴 → ((𝑞 ≠ 𝑃 ∧ 𝑞 ≠ 𝑈 ∧ 𝑞 ≤ (𝑃 ∨ 𝑈)) → (𝑃 ≠ 𝑞 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑈 ≤ (𝑃 ∨ 𝑞))))) |
57 | 56 | reximdvai 3200 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (∃𝑞 ∈ 𝐴 (𝑞 ≠ 𝑃 ∧ 𝑞 ≠ 𝑈 ∧ 𝑞 ≤ (𝑃 ∨ 𝑈)) → ∃𝑞 ∈ 𝐴 (𝑃 ≠ 𝑞 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑈 ≤ (𝑃 ∨ 𝑞)))) |
58 | 13, 57 | mpd 15 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ∃𝑞 ∈ 𝐴 (𝑃 ≠ 𝑞 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑈 ≤ (𝑃 ∨ 𝑞))) |