Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemf1 Structured version   Visualization version   GIF version

Theorem cdlemf1 40555
Description: Part of Lemma F in [Crawley] p. 116. TODO: should this or part of it become a stand-alone theorem? (Contributed by NM, 12-Apr-2013.)
Hypotheses
Ref Expression
cdlemf1.l = (le‘𝐾)
cdlemf1.j = (join‘𝐾)
cdlemf1.a 𝐴 = (Atoms‘𝐾)
cdlemf1.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
cdlemf1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ∃𝑞𝐴 (𝑃𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑃 𝑞)))
Distinct variable groups:   𝐴,𝑞   𝐻,𝑞   𝐾,𝑞   ,𝑞   𝑃,𝑞   𝑈,𝑞   𝑊,𝑞
Allowed substitution hint:   (𝑞)

Proof of Theorem cdlemf1
StepHypRef Expression
1 simp1l 1198 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ HL)
2 simp3l 1202 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐴)
3 simp2l 1200 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑈𝐴)
4 simp2r 1201 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑈 𝑊)
5 simp3r 1203 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ¬ 𝑃 𝑊)
6 nbrne2 5127 . . . . 5 ((𝑈 𝑊 ∧ ¬ 𝑃 𝑊) → 𝑈𝑃)
76necomd 2980 . . . 4 ((𝑈 𝑊 ∧ ¬ 𝑃 𝑊) → 𝑃𝑈)
84, 5, 7syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝑈)
9 cdlemf1.l . . . 4 = (le‘𝐾)
10 cdlemf1.j . . . 4 = (join‘𝐾)
11 cdlemf1.a . . . 4 𝐴 = (Atoms‘𝐾)
129, 10, 11hlsupr 39380 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴) ∧ 𝑃𝑈) → ∃𝑞𝐴 (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈)))
131, 2, 3, 8, 12syl31anc 1375 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ∃𝑞𝐴 (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈)))
14 simp31 1210 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑞𝑃)
1514necomd 2980 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑃𝑞)
16 simp13r 1290 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → ¬ 𝑃 𝑊)
17 simp12r 1288 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑈 𝑊)
18 simp11l 1285 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝐾 ∈ HL)
1918hllatd 39357 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝐾 ∈ Lat)
20 eqid 2729 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘𝐾)
2120, 11atbase 39282 . . . . . . . . . . 11 (𝑞𝐴𝑞 ∈ (Base‘𝐾))
22213ad2ant2 1134 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑞 ∈ (Base‘𝐾))
23 simp12l 1287 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑈𝐴)
2420, 11atbase 39282 . . . . . . . . . . 11 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
2523, 24syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑈 ∈ (Base‘𝐾))
26 simp11r 1286 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑊𝐻)
27 cdlemf1.h . . . . . . . . . . . 12 𝐻 = (LHyp‘𝐾)
2820, 27lhpbase 39992 . . . . . . . . . . 11 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
2926, 28syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑊 ∈ (Base‘𝐾))
3020, 9, 10latjle12 18409 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑞 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑞 𝑊𝑈 𝑊) ↔ (𝑞 𝑈) 𝑊))
3119, 22, 25, 29, 30syl13anc 1374 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → ((𝑞 𝑊𝑈 𝑊) ↔ (𝑞 𝑈) 𝑊))
3231biimpd 229 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → ((𝑞 𝑊𝑈 𝑊) → (𝑞 𝑈) 𝑊))
3317, 32mpan2d 694 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → (𝑞 𝑊 → (𝑞 𝑈) 𝑊))
34 simp33 1212 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑞 (𝑃 𝑈))
35 hlcvl 39352 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ CvLat)
3618, 35syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝐾 ∈ CvLat)
37 simp2 1137 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑞𝐴)
38 simp13l 1289 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑃𝐴)
39 simp32 1211 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑞𝑈)
409, 10, 11cvlatexch2 39330 . . . . . . . . . 10 ((𝐾 ∈ CvLat ∧ (𝑞𝐴𝑃𝐴𝑈𝐴) ∧ 𝑞𝑈) → (𝑞 (𝑃 𝑈) → 𝑃 (𝑞 𝑈)))
4136, 37, 38, 23, 39, 40syl131anc 1385 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → (𝑞 (𝑃 𝑈) → 𝑃 (𝑞 𝑈)))
4234, 41mpd 15 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑃 (𝑞 𝑈))
4320, 11atbase 39282 . . . . . . . . . 10 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
4438, 43syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑃 ∈ (Base‘𝐾))
4520, 10, 11hlatjcl 39360 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑞𝐴𝑈𝐴) → (𝑞 𝑈) ∈ (Base‘𝐾))
4618, 37, 23, 45syl3anc 1373 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → (𝑞 𝑈) ∈ (Base‘𝐾))
4720, 9lattr 18403 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ (𝑞 𝑈) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑃 (𝑞 𝑈) ∧ (𝑞 𝑈) 𝑊) → 𝑃 𝑊))
4819, 44, 46, 29, 47syl13anc 1374 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → ((𝑃 (𝑞 𝑈) ∧ (𝑞 𝑈) 𝑊) → 𝑃 𝑊))
4942, 48mpand 695 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → ((𝑞 𝑈) 𝑊𝑃 𝑊))
5033, 49syld 47 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → (𝑞 𝑊𝑃 𝑊))
5116, 50mtod 198 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → ¬ 𝑞 𝑊)
529, 10, 11cvlatexch1 39329 . . . . . . 7 ((𝐾 ∈ CvLat ∧ (𝑞𝐴𝑈𝐴𝑃𝐴) ∧ 𝑞𝑃) → (𝑞 (𝑃 𝑈) → 𝑈 (𝑃 𝑞)))
5336, 37, 23, 38, 14, 52syl131anc 1385 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → (𝑞 (𝑃 𝑈) → 𝑈 (𝑃 𝑞)))
5434, 53mpd 15 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑈 (𝑃 𝑞))
5515, 51, 543jca 1128 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → (𝑃𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑃 𝑞)))
56553exp 1119 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑞𝐴 → ((𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈)) → (𝑃𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑃 𝑞)))))
5756reximdvai 3144 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (∃𝑞𝐴 (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈)) → ∃𝑞𝐴 (𝑃𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑃 𝑞))))
5813, 57mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ∃𝑞𝐴 (𝑃𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑃 𝑞)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  joincjn 18272  Latclat 18390  Atomscatm 39256  CvLatclc 39258  HLchlt 39343  LHypclh 39978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-lat 18391  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-lhyp 39982
This theorem is referenced by:  cdlemf2  40556  cdlemg5  40599
  Copyright terms: Public domain W3C validator