Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemf1 Structured version   Visualization version   GIF version

Theorem cdlemf1 40544
Description: Part of Lemma F in [Crawley] p. 116. TODO: should this or part of it become a stand-alone theorem? (Contributed by NM, 12-Apr-2013.)
Hypotheses
Ref Expression
cdlemf1.l = (le‘𝐾)
cdlemf1.j = (join‘𝐾)
cdlemf1.a 𝐴 = (Atoms‘𝐾)
cdlemf1.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
cdlemf1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ∃𝑞𝐴 (𝑃𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑃 𝑞)))
Distinct variable groups:   𝐴,𝑞   𝐻,𝑞   𝐾,𝑞   ,𝑞   𝑃,𝑞   𝑈,𝑞   𝑊,𝑞
Allowed substitution hint:   (𝑞)

Proof of Theorem cdlemf1
StepHypRef Expression
1 simp1l 1196 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ HL)
2 simp3l 1200 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐴)
3 simp2l 1198 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑈𝐴)
4 simp2r 1199 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑈 𝑊)
5 simp3r 1201 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ¬ 𝑃 𝑊)
6 nbrne2 5168 . . . . 5 ((𝑈 𝑊 ∧ ¬ 𝑃 𝑊) → 𝑈𝑃)
76necomd 2994 . . . 4 ((𝑈 𝑊 ∧ ¬ 𝑃 𝑊) → 𝑃𝑈)
84, 5, 7syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝑈)
9 cdlemf1.l . . . 4 = (le‘𝐾)
10 cdlemf1.j . . . 4 = (join‘𝐾)
11 cdlemf1.a . . . 4 𝐴 = (Atoms‘𝐾)
129, 10, 11hlsupr 39369 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴) ∧ 𝑃𝑈) → ∃𝑞𝐴 (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈)))
131, 2, 3, 8, 12syl31anc 1372 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ∃𝑞𝐴 (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈)))
14 simp31 1208 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑞𝑃)
1514necomd 2994 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑃𝑞)
16 simp13r 1288 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → ¬ 𝑃 𝑊)
17 simp12r 1286 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑈 𝑊)
18 simp11l 1283 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝐾 ∈ HL)
1918hllatd 39346 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝐾 ∈ Lat)
20 eqid 2735 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘𝐾)
2120, 11atbase 39271 . . . . . . . . . . 11 (𝑞𝐴𝑞 ∈ (Base‘𝐾))
22213ad2ant2 1133 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑞 ∈ (Base‘𝐾))
23 simp12l 1285 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑈𝐴)
2420, 11atbase 39271 . . . . . . . . . . 11 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
2523, 24syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑈 ∈ (Base‘𝐾))
26 simp11r 1284 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑊𝐻)
27 cdlemf1.h . . . . . . . . . . . 12 𝐻 = (LHyp‘𝐾)
2820, 27lhpbase 39981 . . . . . . . . . . 11 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
2926, 28syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑊 ∈ (Base‘𝐾))
3020, 9, 10latjle12 18508 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑞 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑞 𝑊𝑈 𝑊) ↔ (𝑞 𝑈) 𝑊))
3119, 22, 25, 29, 30syl13anc 1371 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → ((𝑞 𝑊𝑈 𝑊) ↔ (𝑞 𝑈) 𝑊))
3231biimpd 229 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → ((𝑞 𝑊𝑈 𝑊) → (𝑞 𝑈) 𝑊))
3317, 32mpan2d 694 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → (𝑞 𝑊 → (𝑞 𝑈) 𝑊))
34 simp33 1210 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑞 (𝑃 𝑈))
35 hlcvl 39341 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ CvLat)
3618, 35syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝐾 ∈ CvLat)
37 simp2 1136 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑞𝐴)
38 simp13l 1287 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑃𝐴)
39 simp32 1209 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑞𝑈)
409, 10, 11cvlatexch2 39319 . . . . . . . . . 10 ((𝐾 ∈ CvLat ∧ (𝑞𝐴𝑃𝐴𝑈𝐴) ∧ 𝑞𝑈) → (𝑞 (𝑃 𝑈) → 𝑃 (𝑞 𝑈)))
4136, 37, 38, 23, 39, 40syl131anc 1382 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → (𝑞 (𝑃 𝑈) → 𝑃 (𝑞 𝑈)))
4234, 41mpd 15 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑃 (𝑞 𝑈))
4320, 11atbase 39271 . . . . . . . . . 10 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
4438, 43syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑃 ∈ (Base‘𝐾))
4520, 10, 11hlatjcl 39349 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑞𝐴𝑈𝐴) → (𝑞 𝑈) ∈ (Base‘𝐾))
4618, 37, 23, 45syl3anc 1370 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → (𝑞 𝑈) ∈ (Base‘𝐾))
4720, 9lattr 18502 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ (𝑞 𝑈) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑃 (𝑞 𝑈) ∧ (𝑞 𝑈) 𝑊) → 𝑃 𝑊))
4819, 44, 46, 29, 47syl13anc 1371 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → ((𝑃 (𝑞 𝑈) ∧ (𝑞 𝑈) 𝑊) → 𝑃 𝑊))
4942, 48mpand 695 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → ((𝑞 𝑈) 𝑊𝑃 𝑊))
5033, 49syld 47 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → (𝑞 𝑊𝑃 𝑊))
5116, 50mtod 198 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → ¬ 𝑞 𝑊)
529, 10, 11cvlatexch1 39318 . . . . . . 7 ((𝐾 ∈ CvLat ∧ (𝑞𝐴𝑈𝐴𝑃𝐴) ∧ 𝑞𝑃) → (𝑞 (𝑃 𝑈) → 𝑈 (𝑃 𝑞)))
5336, 37, 23, 38, 14, 52syl131anc 1382 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → (𝑞 (𝑃 𝑈) → 𝑈 (𝑃 𝑞)))
5434, 53mpd 15 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑈 (𝑃 𝑞))
5515, 51, 543jca 1127 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → (𝑃𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑃 𝑞)))
56553exp 1118 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑞𝐴 → ((𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈)) → (𝑃𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑃 𝑞)))))
5756reximdvai 3163 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (∃𝑞𝐴 (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈)) → ∃𝑞𝐴 (𝑃𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑃 𝑞))))
5813, 57mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ∃𝑞𝐴 (𝑃𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑃 𝑞)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wrex 3068   class class class wbr 5148  cfv 6563  (class class class)co 7431  Basecbs 17245  lecple 17305  joincjn 18369  Latclat 18489  Atomscatm 39245  CvLatclc 39247  HLchlt 39332  LHypclh 39967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-proset 18352  df-poset 18371  df-plt 18388  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-lat 18490  df-covers 39248  df-ats 39249  df-atl 39280  df-cvlat 39304  df-hlat 39333  df-lhyp 39971
This theorem is referenced by:  cdlemf2  40545  cdlemg5  40588
  Copyright terms: Public domain W3C validator