Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemf1 Structured version   Visualization version   GIF version

Theorem cdlemf1 40543
Description: Part of Lemma F in [Crawley] p. 116. TODO: should this or part of it become a stand-alone theorem? (Contributed by NM, 12-Apr-2013.)
Hypotheses
Ref Expression
cdlemf1.l = (le‘𝐾)
cdlemf1.j = (join‘𝐾)
cdlemf1.a 𝐴 = (Atoms‘𝐾)
cdlemf1.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
cdlemf1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ∃𝑞𝐴 (𝑃𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑃 𝑞)))
Distinct variable groups:   𝐴,𝑞   𝐻,𝑞   𝐾,𝑞   ,𝑞   𝑃,𝑞   𝑈,𝑞   𝑊,𝑞
Allowed substitution hint:   (𝑞)

Proof of Theorem cdlemf1
StepHypRef Expression
1 simp1l 1198 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ HL)
2 simp3l 1202 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐴)
3 simp2l 1200 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑈𝐴)
4 simp2r 1201 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑈 𝑊)
5 simp3r 1203 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ¬ 𝑃 𝑊)
6 nbrne2 5115 . . . . 5 ((𝑈 𝑊 ∧ ¬ 𝑃 𝑊) → 𝑈𝑃)
76necomd 2980 . . . 4 ((𝑈 𝑊 ∧ ¬ 𝑃 𝑊) → 𝑃𝑈)
84, 5, 7syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝑈)
9 cdlemf1.l . . . 4 = (le‘𝐾)
10 cdlemf1.j . . . 4 = (join‘𝐾)
11 cdlemf1.a . . . 4 𝐴 = (Atoms‘𝐾)
129, 10, 11hlsupr 39368 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴) ∧ 𝑃𝑈) → ∃𝑞𝐴 (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈)))
131, 2, 3, 8, 12syl31anc 1375 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ∃𝑞𝐴 (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈)))
14 simp31 1210 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑞𝑃)
1514necomd 2980 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑃𝑞)
16 simp13r 1290 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → ¬ 𝑃 𝑊)
17 simp12r 1288 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑈 𝑊)
18 simp11l 1285 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝐾 ∈ HL)
1918hllatd 39345 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝐾 ∈ Lat)
20 eqid 2729 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘𝐾)
2120, 11atbase 39270 . . . . . . . . . . 11 (𝑞𝐴𝑞 ∈ (Base‘𝐾))
22213ad2ant2 1134 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑞 ∈ (Base‘𝐾))
23 simp12l 1287 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑈𝐴)
2420, 11atbase 39270 . . . . . . . . . . 11 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
2523, 24syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑈 ∈ (Base‘𝐾))
26 simp11r 1286 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑊𝐻)
27 cdlemf1.h . . . . . . . . . . . 12 𝐻 = (LHyp‘𝐾)
2820, 27lhpbase 39980 . . . . . . . . . . 11 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
2926, 28syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑊 ∈ (Base‘𝐾))
3020, 9, 10latjle12 18374 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑞 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑞 𝑊𝑈 𝑊) ↔ (𝑞 𝑈) 𝑊))
3119, 22, 25, 29, 30syl13anc 1374 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → ((𝑞 𝑊𝑈 𝑊) ↔ (𝑞 𝑈) 𝑊))
3231biimpd 229 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → ((𝑞 𝑊𝑈 𝑊) → (𝑞 𝑈) 𝑊))
3317, 32mpan2d 694 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → (𝑞 𝑊 → (𝑞 𝑈) 𝑊))
34 simp33 1212 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑞 (𝑃 𝑈))
35 hlcvl 39340 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ CvLat)
3618, 35syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝐾 ∈ CvLat)
37 simp2 1137 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑞𝐴)
38 simp13l 1289 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑃𝐴)
39 simp32 1211 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑞𝑈)
409, 10, 11cvlatexch2 39318 . . . . . . . . . 10 ((𝐾 ∈ CvLat ∧ (𝑞𝐴𝑃𝐴𝑈𝐴) ∧ 𝑞𝑈) → (𝑞 (𝑃 𝑈) → 𝑃 (𝑞 𝑈)))
4136, 37, 38, 23, 39, 40syl131anc 1385 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → (𝑞 (𝑃 𝑈) → 𝑃 (𝑞 𝑈)))
4234, 41mpd 15 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑃 (𝑞 𝑈))
4320, 11atbase 39270 . . . . . . . . . 10 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
4438, 43syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑃 ∈ (Base‘𝐾))
4520, 10, 11hlatjcl 39348 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑞𝐴𝑈𝐴) → (𝑞 𝑈) ∈ (Base‘𝐾))
4618, 37, 23, 45syl3anc 1373 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → (𝑞 𝑈) ∈ (Base‘𝐾))
4720, 9lattr 18368 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ (𝑞 𝑈) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑃 (𝑞 𝑈) ∧ (𝑞 𝑈) 𝑊) → 𝑃 𝑊))
4819, 44, 46, 29, 47syl13anc 1374 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → ((𝑃 (𝑞 𝑈) ∧ (𝑞 𝑈) 𝑊) → 𝑃 𝑊))
4942, 48mpand 695 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → ((𝑞 𝑈) 𝑊𝑃 𝑊))
5033, 49syld 47 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → (𝑞 𝑊𝑃 𝑊))
5116, 50mtod 198 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → ¬ 𝑞 𝑊)
529, 10, 11cvlatexch1 39317 . . . . . . 7 ((𝐾 ∈ CvLat ∧ (𝑞𝐴𝑈𝐴𝑃𝐴) ∧ 𝑞𝑃) → (𝑞 (𝑃 𝑈) → 𝑈 (𝑃 𝑞)))
5336, 37, 23, 38, 14, 52syl131anc 1385 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → (𝑞 (𝑃 𝑈) → 𝑈 (𝑃 𝑞)))
5434, 53mpd 15 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑈 (𝑃 𝑞))
5515, 51, 543jca 1128 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → (𝑃𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑃 𝑞)))
56553exp 1119 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑞𝐴 → ((𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈)) → (𝑃𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑃 𝑞)))))
5756reximdvai 3140 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (∃𝑞𝐴 (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈)) → ∃𝑞𝐴 (𝑃𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑃 𝑞))))
5813, 57mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ∃𝑞𝐴 (𝑃𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑃 𝑞)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5095  cfv 6486  (class class class)co 7353  Basecbs 17138  lecple 17186  joincjn 18235  Latclat 18355  Atomscatm 39244  CvLatclc 39246  HLchlt 39331  LHypclh 39966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-lat 18356  df-covers 39247  df-ats 39248  df-atl 39279  df-cvlat 39303  df-hlat 39332  df-lhyp 39970
This theorem is referenced by:  cdlemf2  40544  cdlemg5  40587
  Copyright terms: Public domain W3C validator