Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg35 Structured version   Visualization version   GIF version

Theorem cdlemg35 40700
Description: TODO: Fix comment. TODO: should we have a more general version of hlsupr 39373 to avoid the conditions? (Contributed by NM, 31-May-2013.)
Hypotheses
Ref Expression
cdlemg35.l = (le‘𝐾)
cdlemg35.j = (join‘𝐾)
cdlemg35.m = (meet‘𝐾)
cdlemg35.a 𝐴 = (Atoms‘𝐾)
cdlemg35.h 𝐻 = (LHyp‘𝐾)
cdlemg35.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg35.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg35 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ∃𝑣𝐴 (𝑣 𝑊 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺))))
Distinct variable groups:   𝑣,𝐴   𝑣,𝐹   𝑣,𝐺   𝑣,𝐻   𝑣,𝐾   𝑣,   𝑣,𝑃   𝑣,𝑅   𝑣,𝑇   𝑣,𝑊
Allowed substitution hints:   (𝑣)   (𝑣)

Proof of Theorem cdlemg35
StepHypRef Expression
1 simp1l 1198 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐾 ∈ HL)
2 simp1 1136 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simp21 1207 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
4 simp22 1208 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐹𝑇)
5 simp31 1210 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐹𝑃) ≠ 𝑃)
6 cdlemg35.l . . . . 5 = (le‘𝐾)
7 cdlemg35.a . . . . 5 𝐴 = (Atoms‘𝐾)
8 cdlemg35.h . . . . 5 𝐻 = (LHyp‘𝐾)
9 cdlemg35.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
10 cdlemg35.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
116, 7, 8, 9, 10trlat 40156 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
122, 3, 4, 5, 11syl112anc 1376 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐹) ∈ 𝐴)
13 simp23 1209 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐺𝑇)
14 simp32 1211 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐺𝑃) ≠ 𝑃)
156, 7, 8, 9, 10trlat 40156 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑇 ∧ (𝐺𝑃) ≠ 𝑃)) → (𝑅𝐺) ∈ 𝐴)
162, 3, 13, 14, 15syl112anc 1376 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐺) ∈ 𝐴)
17 simp33 1212 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐹) ≠ (𝑅𝐺))
18 cdlemg35.j . . . 4 = (join‘𝐾)
196, 18, 7hlsupr 39373 . . 3 (((𝐾 ∈ HL ∧ (𝑅𝐹) ∈ 𝐴 ∧ (𝑅𝐺) ∈ 𝐴) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → ∃𝑣𝐴 (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺))))
201, 12, 16, 17, 19syl31anc 1375 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ∃𝑣𝐴 (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺))))
21 eqid 2729 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
22 simp11l 1285 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → 𝐾 ∈ HL)
2322hllatd 39350 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → 𝐾 ∈ Lat)
2421, 7atbase 39275 . . . . . . 7 (𝑣𝐴𝑣 ∈ (Base‘𝐾))
25243ad2ant2 1134 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → 𝑣 ∈ (Base‘𝐾))
26 simp11 1204 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
27 simp122 1307 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → 𝐹𝑇)
2821, 8, 9, 10trlcl 40151 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ (Base‘𝐾))
2926, 27, 28syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → (𝑅𝐹) ∈ (Base‘𝐾))
30 simp123 1308 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → 𝐺𝑇)
3121, 8, 9, 10trlcl 40151 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ (Base‘𝐾))
3226, 30, 31syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → (𝑅𝐺) ∈ (Base‘𝐾))
3321, 18latjcl 18380 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑅𝐹) ∈ (Base‘𝐾) ∧ (𝑅𝐺) ∈ (Base‘𝐾)) → ((𝑅𝐹) (𝑅𝐺)) ∈ (Base‘𝐾))
3423, 29, 32, 33syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → ((𝑅𝐹) (𝑅𝐺)) ∈ (Base‘𝐾))
35 simp11r 1286 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → 𝑊𝐻)
3621, 8lhpbase 39985 . . . . . . 7 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
3735, 36syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → 𝑊 ∈ (Base‘𝐾))
38 simp33 1212 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → 𝑣 ((𝑅𝐹) (𝑅𝐺)))
396, 8, 9, 10trlle 40171 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) 𝑊)
4026, 27, 39syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → (𝑅𝐹) 𝑊)
416, 8, 9, 10trlle 40171 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) 𝑊)
4226, 30, 41syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → (𝑅𝐺) 𝑊)
4321, 6, 18latjle12 18391 . . . . . . . 8 ((𝐾 ∈ Lat ∧ ((𝑅𝐹) ∈ (Base‘𝐾) ∧ (𝑅𝐺) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → (((𝑅𝐹) 𝑊 ∧ (𝑅𝐺) 𝑊) ↔ ((𝑅𝐹) (𝑅𝐺)) 𝑊))
4423, 29, 32, 37, 43syl13anc 1374 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → (((𝑅𝐹) 𝑊 ∧ (𝑅𝐺) 𝑊) ↔ ((𝑅𝐹) (𝑅𝐺)) 𝑊))
4540, 42, 44mpbi2and 712 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → ((𝑅𝐹) (𝑅𝐺)) 𝑊)
4621, 6, 23, 25, 34, 37, 38, 45lattrd 18387 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → 𝑣 𝑊)
47 simp31 1210 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → 𝑣 ≠ (𝑅𝐹))
48 simp32 1211 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → 𝑣 ≠ (𝑅𝐺))
4946, 47, 48jca32 515 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → (𝑣 𝑊 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺))))
50493expia 1121 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴) → ((𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺))) → (𝑣 𝑊 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)))))
5150reximdva 3146 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (∃𝑣𝐴 (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺))) → ∃𝑣𝐴 (𝑣 𝑊 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)))))
5220, 51mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ∃𝑣𝐴 (𝑣 𝑊 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  joincjn 18252  meetcmee 18253  Latclat 18372  Atomscatm 39249  HLchlt 39336  LHypclh 39971  LTrncltrn 40088  trLctrl 40145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-map 8778  df-proset 18235  df-poset 18254  df-plt 18269  df-lub 18285  df-glb 18286  df-join 18287  df-meet 18288  df-p0 18364  df-p1 18365  df-lat 18373  df-clat 18440  df-oposet 39162  df-ol 39164  df-oml 39165  df-covers 39252  df-ats 39253  df-atl 39284  df-cvlat 39308  df-hlat 39337  df-lhyp 39975  df-laut 39976  df-ldil 40091  df-ltrn 40092  df-trl 40146
This theorem is referenced by:  cdlemg36  40701
  Copyright terms: Public domain W3C validator