Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg35 Structured version   Visualization version   GIF version

Theorem cdlemg35 38932
Description: TODO: Fix comment. TODO: should we have a more general version of hlsupr 37605 to avoid the conditions? (Contributed by NM, 31-May-2013.)
Hypotheses
Ref Expression
cdlemg35.l = (le‘𝐾)
cdlemg35.j = (join‘𝐾)
cdlemg35.m = (meet‘𝐾)
cdlemg35.a 𝐴 = (Atoms‘𝐾)
cdlemg35.h 𝐻 = (LHyp‘𝐾)
cdlemg35.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg35.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg35 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ∃𝑣𝐴 (𝑣 𝑊 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺))))
Distinct variable groups:   𝑣,𝐴   𝑣,𝐹   𝑣,𝐺   𝑣,𝐻   𝑣,𝐾   𝑣,   𝑣,𝑃   𝑣,𝑅   𝑣,𝑇   𝑣,𝑊
Allowed substitution hints:   (𝑣)   (𝑣)

Proof of Theorem cdlemg35
StepHypRef Expression
1 simp1l 1196 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐾 ∈ HL)
2 simp1 1135 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simp21 1205 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
4 simp22 1206 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐹𝑇)
5 simp31 1208 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐹𝑃) ≠ 𝑃)
6 cdlemg35.l . . . . 5 = (le‘𝐾)
7 cdlemg35.a . . . . 5 𝐴 = (Atoms‘𝐾)
8 cdlemg35.h . . . . 5 𝐻 = (LHyp‘𝐾)
9 cdlemg35.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
10 cdlemg35.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
116, 7, 8, 9, 10trlat 38388 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
122, 3, 4, 5, 11syl112anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐹) ∈ 𝐴)
13 simp23 1207 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐺𝑇)
14 simp32 1209 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐺𝑃) ≠ 𝑃)
156, 7, 8, 9, 10trlat 38388 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑇 ∧ (𝐺𝑃) ≠ 𝑃)) → (𝑅𝐺) ∈ 𝐴)
162, 3, 13, 14, 15syl112anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐺) ∈ 𝐴)
17 simp33 1210 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐹) ≠ (𝑅𝐺))
18 cdlemg35.j . . . 4 = (join‘𝐾)
196, 18, 7hlsupr 37605 . . 3 (((𝐾 ∈ HL ∧ (𝑅𝐹) ∈ 𝐴 ∧ (𝑅𝐺) ∈ 𝐴) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → ∃𝑣𝐴 (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺))))
201, 12, 16, 17, 19syl31anc 1372 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ∃𝑣𝐴 (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺))))
21 eqid 2737 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
22 simp11l 1283 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → 𝐾 ∈ HL)
2322hllatd 37582 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → 𝐾 ∈ Lat)
2421, 7atbase 37507 . . . . . . 7 (𝑣𝐴𝑣 ∈ (Base‘𝐾))
25243ad2ant2 1133 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → 𝑣 ∈ (Base‘𝐾))
26 simp11 1202 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
27 simp122 1305 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → 𝐹𝑇)
2821, 8, 9, 10trlcl 38383 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ (Base‘𝐾))
2926, 27, 28syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → (𝑅𝐹) ∈ (Base‘𝐾))
30 simp123 1306 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → 𝐺𝑇)
3121, 8, 9, 10trlcl 38383 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ (Base‘𝐾))
3226, 30, 31syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → (𝑅𝐺) ∈ (Base‘𝐾))
3321, 18latjcl 18227 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑅𝐹) ∈ (Base‘𝐾) ∧ (𝑅𝐺) ∈ (Base‘𝐾)) → ((𝑅𝐹) (𝑅𝐺)) ∈ (Base‘𝐾))
3423, 29, 32, 33syl3anc 1370 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → ((𝑅𝐹) (𝑅𝐺)) ∈ (Base‘𝐾))
35 simp11r 1284 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → 𝑊𝐻)
3621, 8lhpbase 38217 . . . . . . 7 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
3735, 36syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → 𝑊 ∈ (Base‘𝐾))
38 simp33 1210 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → 𝑣 ((𝑅𝐹) (𝑅𝐺)))
396, 8, 9, 10trlle 38403 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) 𝑊)
4026, 27, 39syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → (𝑅𝐹) 𝑊)
416, 8, 9, 10trlle 38403 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) 𝑊)
4226, 30, 41syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → (𝑅𝐺) 𝑊)
4321, 6, 18latjle12 18238 . . . . . . . 8 ((𝐾 ∈ Lat ∧ ((𝑅𝐹) ∈ (Base‘𝐾) ∧ (𝑅𝐺) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → (((𝑅𝐹) 𝑊 ∧ (𝑅𝐺) 𝑊) ↔ ((𝑅𝐹) (𝑅𝐺)) 𝑊))
4423, 29, 32, 37, 43syl13anc 1371 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → (((𝑅𝐹) 𝑊 ∧ (𝑅𝐺) 𝑊) ↔ ((𝑅𝐹) (𝑅𝐺)) 𝑊))
4540, 42, 44mpbi2and 709 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → ((𝑅𝐹) (𝑅𝐺)) 𝑊)
4621, 6, 23, 25, 34, 37, 38, 45lattrd 18234 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → 𝑣 𝑊)
47 simp31 1208 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → 𝑣 ≠ (𝑅𝐹))
48 simp32 1209 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → 𝑣 ≠ (𝑅𝐺))
4946, 47, 48jca32 516 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → (𝑣 𝑊 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺))))
50493expia 1120 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴) → ((𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺))) → (𝑣 𝑊 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)))))
5150reximdva 3162 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (∃𝑣𝐴 (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺))) → ∃𝑣𝐴 (𝑣 𝑊 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)))))
5220, 51mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ∃𝑣𝐴 (𝑣 𝑊 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wne 2941  wrex 3071   class class class wbr 5087  cfv 6465  (class class class)co 7315  Basecbs 16982  lecple 17039  joincjn 18099  meetcmee 18100  Latclat 18219  Atomscatm 37481  HLchlt 37568  LHypclh 38203  LTrncltrn 38320  trLctrl 38377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7628
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-id 5507  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7272  df-ov 7318  df-oprab 7319  df-mpo 7320  df-map 8665  df-proset 18083  df-poset 18101  df-plt 18118  df-lub 18134  df-glb 18135  df-join 18136  df-meet 18137  df-p0 18213  df-p1 18214  df-lat 18220  df-clat 18287  df-oposet 37394  df-ol 37396  df-oml 37397  df-covers 37484  df-ats 37485  df-atl 37516  df-cvlat 37540  df-hlat 37569  df-lhyp 38207  df-laut 38208  df-ldil 38323  df-ltrn 38324  df-trl 38378
This theorem is referenced by:  cdlemg36  38933
  Copyright terms: Public domain W3C validator