Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg35 Structured version   Visualization version   GIF version

Theorem cdlemg35 40696
Description: TODO: Fix comment. TODO: should we have a more general version of hlsupr 39369 to avoid the conditions? (Contributed by NM, 31-May-2013.)
Hypotheses
Ref Expression
cdlemg35.l = (le‘𝐾)
cdlemg35.j = (join‘𝐾)
cdlemg35.m = (meet‘𝐾)
cdlemg35.a 𝐴 = (Atoms‘𝐾)
cdlemg35.h 𝐻 = (LHyp‘𝐾)
cdlemg35.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg35.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg35 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ∃𝑣𝐴 (𝑣 𝑊 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺))))
Distinct variable groups:   𝑣,𝐴   𝑣,𝐹   𝑣,𝐺   𝑣,𝐻   𝑣,𝐾   𝑣,   𝑣,𝑃   𝑣,𝑅   𝑣,𝑇   𝑣,𝑊
Allowed substitution hints:   (𝑣)   (𝑣)

Proof of Theorem cdlemg35
StepHypRef Expression
1 simp1l 1196 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐾 ∈ HL)
2 simp1 1135 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simp21 1205 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
4 simp22 1206 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐹𝑇)
5 simp31 1208 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐹𝑃) ≠ 𝑃)
6 cdlemg35.l . . . . 5 = (le‘𝐾)
7 cdlemg35.a . . . . 5 𝐴 = (Atoms‘𝐾)
8 cdlemg35.h . . . . 5 𝐻 = (LHyp‘𝐾)
9 cdlemg35.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
10 cdlemg35.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
116, 7, 8, 9, 10trlat 40152 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
122, 3, 4, 5, 11syl112anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐹) ∈ 𝐴)
13 simp23 1207 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐺𝑇)
14 simp32 1209 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐺𝑃) ≠ 𝑃)
156, 7, 8, 9, 10trlat 40152 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑇 ∧ (𝐺𝑃) ≠ 𝑃)) → (𝑅𝐺) ∈ 𝐴)
162, 3, 13, 14, 15syl112anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐺) ∈ 𝐴)
17 simp33 1210 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐹) ≠ (𝑅𝐺))
18 cdlemg35.j . . . 4 = (join‘𝐾)
196, 18, 7hlsupr 39369 . . 3 (((𝐾 ∈ HL ∧ (𝑅𝐹) ∈ 𝐴 ∧ (𝑅𝐺) ∈ 𝐴) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → ∃𝑣𝐴 (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺))))
201, 12, 16, 17, 19syl31anc 1372 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ∃𝑣𝐴 (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺))))
21 eqid 2735 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
22 simp11l 1283 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → 𝐾 ∈ HL)
2322hllatd 39346 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → 𝐾 ∈ Lat)
2421, 7atbase 39271 . . . . . . 7 (𝑣𝐴𝑣 ∈ (Base‘𝐾))
25243ad2ant2 1133 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → 𝑣 ∈ (Base‘𝐾))
26 simp11 1202 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
27 simp122 1305 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → 𝐹𝑇)
2821, 8, 9, 10trlcl 40147 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ (Base‘𝐾))
2926, 27, 28syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → (𝑅𝐹) ∈ (Base‘𝐾))
30 simp123 1306 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → 𝐺𝑇)
3121, 8, 9, 10trlcl 40147 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ (Base‘𝐾))
3226, 30, 31syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → (𝑅𝐺) ∈ (Base‘𝐾))
3321, 18latjcl 18497 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑅𝐹) ∈ (Base‘𝐾) ∧ (𝑅𝐺) ∈ (Base‘𝐾)) → ((𝑅𝐹) (𝑅𝐺)) ∈ (Base‘𝐾))
3423, 29, 32, 33syl3anc 1370 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → ((𝑅𝐹) (𝑅𝐺)) ∈ (Base‘𝐾))
35 simp11r 1284 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → 𝑊𝐻)
3621, 8lhpbase 39981 . . . . . . 7 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
3735, 36syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → 𝑊 ∈ (Base‘𝐾))
38 simp33 1210 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → 𝑣 ((𝑅𝐹) (𝑅𝐺)))
396, 8, 9, 10trlle 40167 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) 𝑊)
4026, 27, 39syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → (𝑅𝐹) 𝑊)
416, 8, 9, 10trlle 40167 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) 𝑊)
4226, 30, 41syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → (𝑅𝐺) 𝑊)
4321, 6, 18latjle12 18508 . . . . . . . 8 ((𝐾 ∈ Lat ∧ ((𝑅𝐹) ∈ (Base‘𝐾) ∧ (𝑅𝐺) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → (((𝑅𝐹) 𝑊 ∧ (𝑅𝐺) 𝑊) ↔ ((𝑅𝐹) (𝑅𝐺)) 𝑊))
4423, 29, 32, 37, 43syl13anc 1371 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → (((𝑅𝐹) 𝑊 ∧ (𝑅𝐺) 𝑊) ↔ ((𝑅𝐹) (𝑅𝐺)) 𝑊))
4540, 42, 44mpbi2and 712 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → ((𝑅𝐹) (𝑅𝐺)) 𝑊)
4621, 6, 23, 25, 34, 37, 38, 45lattrd 18504 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → 𝑣 𝑊)
47 simp31 1208 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → 𝑣 ≠ (𝑅𝐹))
48 simp32 1209 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → 𝑣 ≠ (𝑅𝐺))
4946, 47, 48jca32 515 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺)))) → (𝑣 𝑊 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺))))
50493expia 1120 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑣𝐴) → ((𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺))) → (𝑣 𝑊 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)))))
5150reximdva 3166 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (∃𝑣𝐴 (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺) ∧ 𝑣 ((𝑅𝐹) (𝑅𝐺))) → ∃𝑣𝐴 (𝑣 𝑊 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)))))
5220, 51mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ∃𝑣𝐴 (𝑣 𝑊 ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wrex 3068   class class class wbr 5148  cfv 6563  (class class class)co 7431  Basecbs 17245  lecple 17305  joincjn 18369  meetcmee 18370  Latclat 18489  Atomscatm 39245  HLchlt 39332  LHypclh 39967  LTrncltrn 40084  trLctrl 40141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867  df-proset 18352  df-poset 18371  df-plt 18388  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-p1 18484  df-lat 18490  df-clat 18557  df-oposet 39158  df-ol 39160  df-oml 39161  df-covers 39248  df-ats 39249  df-atl 39280  df-cvlat 39304  df-hlat 39333  df-lhyp 39971  df-laut 39972  df-ldil 40087  df-ltrn 40088  df-trl 40142
This theorem is referenced by:  cdlemg36  40697
  Copyright terms: Public domain W3C validator