Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemb Structured version   Visualization version   GIF version

Theorem cdlemb 37735
Description: Given two atoms not less than or equal to an element covered by 1, there is a third. Lemma B in [Crawley] p. 112. (Contributed by NM, 8-May-2012.)
Hypotheses
Ref Expression
cdlemb.b 𝐵 = (Base‘𝐾)
cdlemb.l = (le‘𝐾)
cdlemb.j = (join‘𝐾)
cdlemb.u 1 = (1.‘𝐾)
cdlemb.c 𝐶 = ( ⋖ ‘𝐾)
cdlemb.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cdlemb (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ∃𝑟𝐴𝑟 𝑋 ∧ ¬ 𝑟 (𝑃 𝑄)))
Distinct variable groups:   𝐴,𝑟   𝐵,𝑟   𝐶,𝑟   ,𝑟   𝐾,𝑟   ,𝑟   𝑃,𝑟   𝑄,𝑟   1 ,𝑟   𝑋,𝑟

Proof of Theorem cdlemb
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 simp11 1201 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝐾 ∈ HL)
2 simp12 1202 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑃𝐴)
3 simp13 1203 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑄𝐴)
4 simp2l 1197 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑋𝐵)
5 simp2r 1198 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑃𝑄)
6 simp31 1207 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑋𝐶 1 )
7 simp32 1208 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ¬ 𝑃 𝑋)
8 cdlemb.b . . . . 5 𝐵 = (Base‘𝐾)
9 cdlemb.l . . . . 5 = (le‘𝐾)
10 cdlemb.j . . . . 5 = (join‘𝐾)
11 eqid 2738 . . . . 5 (meet‘𝐾) = (meet‘𝐾)
12 cdlemb.u . . . . 5 1 = (1.‘𝐾)
13 cdlemb.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
14 cdlemb.a . . . . 5 𝐴 = (Atoms‘𝐾)
158, 9, 10, 11, 12, 13, 141cvrat 37417 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((𝑃 𝑄)(meet‘𝐾)𝑋) ∈ 𝐴)
161, 2, 3, 4, 5, 6, 7, 15syl133anc 1391 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ((𝑃 𝑄)(meet‘𝐾)𝑋) ∈ 𝐴)
171hllatd 37305 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝐾 ∈ Lat)
188, 14atbase 37230 . . . . . . 7 (𝑃𝐴𝑃𝐵)
192, 18syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑃𝐵)
208, 14atbase 37230 . . . . . . 7 (𝑄𝐴𝑄𝐵)
213, 20syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑄𝐵)
228, 10latjcl 18072 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵) → (𝑃 𝑄) ∈ 𝐵)
2317, 19, 21, 22syl3anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → (𝑃 𝑄) ∈ 𝐵)
248, 9, 11latmle2 18098 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ 𝐵𝑋𝐵) → ((𝑃 𝑄)(meet‘𝐾)𝑋) 𝑋)
2517, 23, 4, 24syl3anc 1369 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ((𝑃 𝑄)(meet‘𝐾)𝑋) 𝑋)
26 eqid 2738 . . . . 5 (lt‘𝐾) = (lt‘𝐾)
278, 9, 26, 12, 13, 141cvratlt 37415 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∈ 𝐴𝑋𝐵) ∧ (𝑋𝐶 1 ∧ ((𝑃 𝑄)(meet‘𝐾)𝑋) 𝑋)) → ((𝑃 𝑄)(meet‘𝐾)𝑋)(lt‘𝐾)𝑋)
281, 16, 4, 6, 25, 27syl32anc 1376 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ((𝑃 𝑄)(meet‘𝐾)𝑋)(lt‘𝐾)𝑋)
298, 26, 142atlt 37380 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∈ 𝐴𝑋𝐵) ∧ ((𝑃 𝑄)(meet‘𝐾)𝑋)(lt‘𝐾)𝑋) → ∃𝑢𝐴 (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))
301, 16, 4, 28, 29syl31anc 1371 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ∃𝑢𝐴 (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))
31 simpl11 1246 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → 𝐾 ∈ HL)
32 simpl12 1247 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → 𝑃𝐴)
33 simprl 767 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → 𝑢𝐴)
34 simpl32 1253 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → ¬ 𝑃 𝑋)
35 simprrr 778 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → 𝑢(lt‘𝐾)𝑋)
36 simpl2l 1224 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → 𝑋𝐵)
379, 26pltle 17966 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑢𝐴𝑋𝐵) → (𝑢(lt‘𝐾)𝑋𝑢 𝑋))
3831, 33, 36, 37syl3anc 1369 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → (𝑢(lt‘𝐾)𝑋𝑢 𝑋))
3935, 38mpd 15 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → 𝑢 𝑋)
40 breq1 5073 . . . . . . 7 (𝑃 = 𝑢 → (𝑃 𝑋𝑢 𝑋))
4139, 40syl5ibrcom 246 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → (𝑃 = 𝑢𝑃 𝑋))
4241necon3bd 2956 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → (¬ 𝑃 𝑋𝑃𝑢))
4334, 42mpd 15 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → 𝑃𝑢)
449, 10, 14hlsupr 37327 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑢𝐴) ∧ 𝑃𝑢) → ∃𝑟𝐴 (𝑟𝑃𝑟𝑢𝑟 (𝑃 𝑢)))
4531, 32, 33, 43, 44syl31anc 1371 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → ∃𝑟𝐴 (𝑟𝑃𝑟𝑢𝑟 (𝑃 𝑢)))
46 eqid 2738 . . . . . . . 8 ((𝑃 𝑄)(meet‘𝐾)𝑋) = ((𝑃 𝑄)(meet‘𝐾)𝑋)
478, 9, 10, 12, 13, 14, 26, 11, 46cdlemblem 37734 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋)) ∧ (𝑟𝐴 ∧ (𝑟𝑃𝑟𝑢𝑟 (𝑃 𝑢)))) → (¬ 𝑟 𝑋 ∧ ¬ 𝑟 (𝑃 𝑄)))
48473exp 1117 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ((𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋)) → ((𝑟𝐴 ∧ (𝑟𝑃𝑟𝑢𝑟 (𝑃 𝑢))) → (¬ 𝑟 𝑋 ∧ ¬ 𝑟 (𝑃 𝑄)))))
4948exp4a 431 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ((𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋)) → (𝑟𝐴 → ((𝑟𝑃𝑟𝑢𝑟 (𝑃 𝑢)) → (¬ 𝑟 𝑋 ∧ ¬ 𝑟 (𝑃 𝑄))))))
5049imp 406 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → (𝑟𝐴 → ((𝑟𝑃𝑟𝑢𝑟 (𝑃 𝑢)) → (¬ 𝑟 𝑋 ∧ ¬ 𝑟 (𝑃 𝑄)))))
5150reximdvai 3199 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → (∃𝑟𝐴 (𝑟𝑃𝑟𝑢𝑟 (𝑃 𝑢)) → ∃𝑟𝐴𝑟 𝑋 ∧ ¬ 𝑟 (𝑃 𝑄))))
5245, 51mpd 15 . 2 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → ∃𝑟𝐴𝑟 𝑋 ∧ ¬ 𝑟 (𝑃 𝑄)))
5330, 52rexlimddv 3219 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ∃𝑟𝐴𝑟 𝑋 ∧ ¬ 𝑟 (𝑃 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  ltcplt 17941  joincjn 17944  meetcmee 17945  1.cp1 18057  Latclat 18064  ccvr 37203  Atomscatm 37204  HLchlt 37291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-p1 18059  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292
This theorem is referenced by:  cdlemb2  37982
  Copyright terms: Public domain W3C validator