Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemb Structured version   Visualization version   GIF version

Theorem cdlemb 39818
Description: Given two atoms not less than or equal to an element covered by 1, there is a third. Lemma B in [Crawley] p. 112. (Contributed by NM, 8-May-2012.)
Hypotheses
Ref Expression
cdlemb.b 𝐵 = (Base‘𝐾)
cdlemb.l = (le‘𝐾)
cdlemb.j = (join‘𝐾)
cdlemb.u 1 = (1.‘𝐾)
cdlemb.c 𝐶 = ( ⋖ ‘𝐾)
cdlemb.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cdlemb (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ∃𝑟𝐴𝑟 𝑋 ∧ ¬ 𝑟 (𝑃 𝑄)))
Distinct variable groups:   𝐴,𝑟   𝐵,𝑟   𝐶,𝑟   ,𝑟   𝐾,𝑟   ,𝑟   𝑃,𝑟   𝑄,𝑟   1 ,𝑟   𝑋,𝑟

Proof of Theorem cdlemb
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 simp11 1204 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝐾 ∈ HL)
2 simp12 1205 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑃𝐴)
3 simp13 1206 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑄𝐴)
4 simp2l 1200 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑋𝐵)
5 simp2r 1201 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑃𝑄)
6 simp31 1210 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑋𝐶 1 )
7 simp32 1211 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ¬ 𝑃 𝑋)
8 cdlemb.b . . . . 5 𝐵 = (Base‘𝐾)
9 cdlemb.l . . . . 5 = (le‘𝐾)
10 cdlemb.j . . . . 5 = (join‘𝐾)
11 eqid 2736 . . . . 5 (meet‘𝐾) = (meet‘𝐾)
12 cdlemb.u . . . . 5 1 = (1.‘𝐾)
13 cdlemb.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
14 cdlemb.a . . . . 5 𝐴 = (Atoms‘𝐾)
158, 9, 10, 11, 12, 13, 141cvrat 39500 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((𝑃 𝑄)(meet‘𝐾)𝑋) ∈ 𝐴)
161, 2, 3, 4, 5, 6, 7, 15syl133anc 1395 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ((𝑃 𝑄)(meet‘𝐾)𝑋) ∈ 𝐴)
171hllatd 39387 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝐾 ∈ Lat)
188, 14atbase 39312 . . . . . . 7 (𝑃𝐴𝑃𝐵)
192, 18syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑃𝐵)
208, 14atbase 39312 . . . . . . 7 (𝑄𝐴𝑄𝐵)
213, 20syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑄𝐵)
228, 10latjcl 18454 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵) → (𝑃 𝑄) ∈ 𝐵)
2317, 19, 21, 22syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → (𝑃 𝑄) ∈ 𝐵)
248, 9, 11latmle2 18480 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ 𝐵𝑋𝐵) → ((𝑃 𝑄)(meet‘𝐾)𝑋) 𝑋)
2517, 23, 4, 24syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ((𝑃 𝑄)(meet‘𝐾)𝑋) 𝑋)
26 eqid 2736 . . . . 5 (lt‘𝐾) = (lt‘𝐾)
278, 9, 26, 12, 13, 141cvratlt 39498 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∈ 𝐴𝑋𝐵) ∧ (𝑋𝐶 1 ∧ ((𝑃 𝑄)(meet‘𝐾)𝑋) 𝑋)) → ((𝑃 𝑄)(meet‘𝐾)𝑋)(lt‘𝐾)𝑋)
281, 16, 4, 6, 25, 27syl32anc 1380 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ((𝑃 𝑄)(meet‘𝐾)𝑋)(lt‘𝐾)𝑋)
298, 26, 142atlt 39463 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∈ 𝐴𝑋𝐵) ∧ ((𝑃 𝑄)(meet‘𝐾)𝑋)(lt‘𝐾)𝑋) → ∃𝑢𝐴 (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))
301, 16, 4, 28, 29syl31anc 1375 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ∃𝑢𝐴 (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))
31 simpl11 1249 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → 𝐾 ∈ HL)
32 simpl12 1250 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → 𝑃𝐴)
33 simprl 770 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → 𝑢𝐴)
34 simpl32 1256 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → ¬ 𝑃 𝑋)
35 simprrr 781 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → 𝑢(lt‘𝐾)𝑋)
36 simpl2l 1227 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → 𝑋𝐵)
379, 26pltle 18348 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑢𝐴𝑋𝐵) → (𝑢(lt‘𝐾)𝑋𝑢 𝑋))
3831, 33, 36, 37syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → (𝑢(lt‘𝐾)𝑋𝑢 𝑋))
3935, 38mpd 15 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → 𝑢 𝑋)
40 breq1 5127 . . . . . . 7 (𝑃 = 𝑢 → (𝑃 𝑋𝑢 𝑋))
4139, 40syl5ibrcom 247 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → (𝑃 = 𝑢𝑃 𝑋))
4241necon3bd 2947 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → (¬ 𝑃 𝑋𝑃𝑢))
4334, 42mpd 15 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → 𝑃𝑢)
449, 10, 14hlsupr 39410 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑢𝐴) ∧ 𝑃𝑢) → ∃𝑟𝐴 (𝑟𝑃𝑟𝑢𝑟 (𝑃 𝑢)))
4531, 32, 33, 43, 44syl31anc 1375 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → ∃𝑟𝐴 (𝑟𝑃𝑟𝑢𝑟 (𝑃 𝑢)))
46 eqid 2736 . . . . . . . 8 ((𝑃 𝑄)(meet‘𝐾)𝑋) = ((𝑃 𝑄)(meet‘𝐾)𝑋)
478, 9, 10, 12, 13, 14, 26, 11, 46cdlemblem 39817 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋)) ∧ (𝑟𝐴 ∧ (𝑟𝑃𝑟𝑢𝑟 (𝑃 𝑢)))) → (¬ 𝑟 𝑋 ∧ ¬ 𝑟 (𝑃 𝑄)))
48473exp 1119 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ((𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋)) → ((𝑟𝐴 ∧ (𝑟𝑃𝑟𝑢𝑟 (𝑃 𝑢))) → (¬ 𝑟 𝑋 ∧ ¬ 𝑟 (𝑃 𝑄)))))
4948exp4a 431 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ((𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋)) → (𝑟𝐴 → ((𝑟𝑃𝑟𝑢𝑟 (𝑃 𝑢)) → (¬ 𝑟 𝑋 ∧ ¬ 𝑟 (𝑃 𝑄))))))
5049imp 406 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → (𝑟𝐴 → ((𝑟𝑃𝑟𝑢𝑟 (𝑃 𝑢)) → (¬ 𝑟 𝑋 ∧ ¬ 𝑟 (𝑃 𝑄)))))
5150reximdvai 3152 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → (∃𝑟𝐴 (𝑟𝑃𝑟𝑢𝑟 (𝑃 𝑢)) → ∃𝑟𝐴𝑟 𝑋 ∧ ¬ 𝑟 (𝑃 𝑄))))
5245, 51mpd 15 . 2 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → ∃𝑟𝐴𝑟 𝑋 ∧ ¬ 𝑟 (𝑃 𝑄)))
5330, 52rexlimddv 3148 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ∃𝑟𝐴𝑟 𝑋 ∧ ¬ 𝑟 (𝑃 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wrex 3061   class class class wbr 5124  cfv 6536  (class class class)co 7410  Basecbs 17233  lecple 17283  ltcplt 18325  joincjn 18328  meetcmee 18329  1.cp1 18439  Latclat 18446  ccvr 39285  Atomscatm 39286  HLchlt 39373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-proset 18311  df-poset 18330  df-plt 18345  df-lub 18361  df-glb 18362  df-join 18363  df-meet 18364  df-p0 18440  df-p1 18441  df-lat 18447  df-clat 18514  df-oposet 39199  df-ol 39201  df-oml 39202  df-covers 39289  df-ats 39290  df-atl 39321  df-cvlat 39345  df-hlat 39374
This theorem is referenced by:  cdlemb2  40065
  Copyright terms: Public domain W3C validator