Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemb Structured version   Visualization version   GIF version

Theorem cdlemb 39832
Description: Given two atoms not less than or equal to an element covered by 1, there is a third. Lemma B in [Crawley] p. 112. (Contributed by NM, 8-May-2012.)
Hypotheses
Ref Expression
cdlemb.b 𝐵 = (Base‘𝐾)
cdlemb.l = (le‘𝐾)
cdlemb.j = (join‘𝐾)
cdlemb.u 1 = (1.‘𝐾)
cdlemb.c 𝐶 = ( ⋖ ‘𝐾)
cdlemb.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cdlemb (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ∃𝑟𝐴𝑟 𝑋 ∧ ¬ 𝑟 (𝑃 𝑄)))
Distinct variable groups:   𝐴,𝑟   𝐵,𝑟   𝐶,𝑟   ,𝑟   𝐾,𝑟   ,𝑟   𝑃,𝑟   𝑄,𝑟   1 ,𝑟   𝑋,𝑟

Proof of Theorem cdlemb
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 simp11 1204 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝐾 ∈ HL)
2 simp12 1205 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑃𝐴)
3 simp13 1206 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑄𝐴)
4 simp2l 1200 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑋𝐵)
5 simp2r 1201 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑃𝑄)
6 simp31 1210 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑋𝐶 1 )
7 simp32 1211 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ¬ 𝑃 𝑋)
8 cdlemb.b . . . . 5 𝐵 = (Base‘𝐾)
9 cdlemb.l . . . . 5 = (le‘𝐾)
10 cdlemb.j . . . . 5 = (join‘𝐾)
11 eqid 2731 . . . . 5 (meet‘𝐾) = (meet‘𝐾)
12 cdlemb.u . . . . 5 1 = (1.‘𝐾)
13 cdlemb.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
14 cdlemb.a . . . . 5 𝐴 = (Atoms‘𝐾)
158, 9, 10, 11, 12, 13, 141cvrat 39514 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((𝑃 𝑄)(meet‘𝐾)𝑋) ∈ 𝐴)
161, 2, 3, 4, 5, 6, 7, 15syl133anc 1395 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ((𝑃 𝑄)(meet‘𝐾)𝑋) ∈ 𝐴)
171hllatd 39402 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝐾 ∈ Lat)
188, 14atbase 39327 . . . . . . 7 (𝑃𝐴𝑃𝐵)
192, 18syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑃𝐵)
208, 14atbase 39327 . . . . . . 7 (𝑄𝐴𝑄𝐵)
213, 20syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑄𝐵)
228, 10latjcl 18342 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵) → (𝑃 𝑄) ∈ 𝐵)
2317, 19, 21, 22syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → (𝑃 𝑄) ∈ 𝐵)
248, 9, 11latmle2 18368 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ 𝐵𝑋𝐵) → ((𝑃 𝑄)(meet‘𝐾)𝑋) 𝑋)
2517, 23, 4, 24syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ((𝑃 𝑄)(meet‘𝐾)𝑋) 𝑋)
26 eqid 2731 . . . . 5 (lt‘𝐾) = (lt‘𝐾)
278, 9, 26, 12, 13, 141cvratlt 39512 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∈ 𝐴𝑋𝐵) ∧ (𝑋𝐶 1 ∧ ((𝑃 𝑄)(meet‘𝐾)𝑋) 𝑋)) → ((𝑃 𝑄)(meet‘𝐾)𝑋)(lt‘𝐾)𝑋)
281, 16, 4, 6, 25, 27syl32anc 1380 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ((𝑃 𝑄)(meet‘𝐾)𝑋)(lt‘𝐾)𝑋)
298, 26, 142atlt 39477 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∈ 𝐴𝑋𝐵) ∧ ((𝑃 𝑄)(meet‘𝐾)𝑋)(lt‘𝐾)𝑋) → ∃𝑢𝐴 (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))
301, 16, 4, 28, 29syl31anc 1375 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ∃𝑢𝐴 (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))
31 simpl11 1249 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → 𝐾 ∈ HL)
32 simpl12 1250 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → 𝑃𝐴)
33 simprl 770 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → 𝑢𝐴)
34 simpl32 1256 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → ¬ 𝑃 𝑋)
35 simprrr 781 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → 𝑢(lt‘𝐾)𝑋)
36 simpl2l 1227 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → 𝑋𝐵)
379, 26pltle 18234 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑢𝐴𝑋𝐵) → (𝑢(lt‘𝐾)𝑋𝑢 𝑋))
3831, 33, 36, 37syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → (𝑢(lt‘𝐾)𝑋𝑢 𝑋))
3935, 38mpd 15 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → 𝑢 𝑋)
40 breq1 5094 . . . . . . 7 (𝑃 = 𝑢 → (𝑃 𝑋𝑢 𝑋))
4139, 40syl5ibrcom 247 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → (𝑃 = 𝑢𝑃 𝑋))
4241necon3bd 2942 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → (¬ 𝑃 𝑋𝑃𝑢))
4334, 42mpd 15 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → 𝑃𝑢)
449, 10, 14hlsupr 39424 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑢𝐴) ∧ 𝑃𝑢) → ∃𝑟𝐴 (𝑟𝑃𝑟𝑢𝑟 (𝑃 𝑢)))
4531, 32, 33, 43, 44syl31anc 1375 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → ∃𝑟𝐴 (𝑟𝑃𝑟𝑢𝑟 (𝑃 𝑢)))
46 eqid 2731 . . . . . . . 8 ((𝑃 𝑄)(meet‘𝐾)𝑋) = ((𝑃 𝑄)(meet‘𝐾)𝑋)
478, 9, 10, 12, 13, 14, 26, 11, 46cdlemblem 39831 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋)) ∧ (𝑟𝐴 ∧ (𝑟𝑃𝑟𝑢𝑟 (𝑃 𝑢)))) → (¬ 𝑟 𝑋 ∧ ¬ 𝑟 (𝑃 𝑄)))
48473exp 1119 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ((𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋)) → ((𝑟𝐴 ∧ (𝑟𝑃𝑟𝑢𝑟 (𝑃 𝑢))) → (¬ 𝑟 𝑋 ∧ ¬ 𝑟 (𝑃 𝑄)))))
4948exp4a 431 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ((𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋)) → (𝑟𝐴 → ((𝑟𝑃𝑟𝑢𝑟 (𝑃 𝑢)) → (¬ 𝑟 𝑋 ∧ ¬ 𝑟 (𝑃 𝑄))))))
5049imp 406 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → (𝑟𝐴 → ((𝑟𝑃𝑟𝑢𝑟 (𝑃 𝑢)) → (¬ 𝑟 𝑋 ∧ ¬ 𝑟 (𝑃 𝑄)))))
5150reximdvai 3143 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → (∃𝑟𝐴 (𝑟𝑃𝑟𝑢𝑟 (𝑃 𝑢)) → ∃𝑟𝐴𝑟 𝑋 ∧ ¬ 𝑟 (𝑃 𝑄))))
5245, 51mpd 15 . 2 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → ∃𝑟𝐴𝑟 𝑋 ∧ ¬ 𝑟 (𝑃 𝑄)))
5330, 52rexlimddv 3139 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ∃𝑟𝐴𝑟 𝑋 ∧ ¬ 𝑟 (𝑃 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wrex 3056   class class class wbr 5091  cfv 6481  (class class class)co 7346  Basecbs 17117  lecple 17165  ltcplt 18211  joincjn 18214  meetcmee 18215  1.cp1 18325  Latclat 18334  ccvr 39300  Atomscatm 39301  HLchlt 39388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-proset 18197  df-poset 18216  df-plt 18231  df-lub 18247  df-glb 18248  df-join 18249  df-meet 18250  df-p0 18326  df-p1 18327  df-lat 18335  df-clat 18402  df-oposet 39214  df-ol 39216  df-oml 39217  df-covers 39304  df-ats 39305  df-atl 39336  df-cvlat 39360  df-hlat 39389
This theorem is referenced by:  cdlemb2  40079
  Copyright terms: Public domain W3C validator