Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemb Structured version   Visualization version   GIF version

Theorem cdlemb 37808
Description: Given two atoms not less than or equal to an element covered by 1, there is a third. Lemma B in [Crawley] p. 112. (Contributed by NM, 8-May-2012.)
Hypotheses
Ref Expression
cdlemb.b 𝐵 = (Base‘𝐾)
cdlemb.l = (le‘𝐾)
cdlemb.j = (join‘𝐾)
cdlemb.u 1 = (1.‘𝐾)
cdlemb.c 𝐶 = ( ⋖ ‘𝐾)
cdlemb.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cdlemb (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ∃𝑟𝐴𝑟 𝑋 ∧ ¬ 𝑟 (𝑃 𝑄)))
Distinct variable groups:   𝐴,𝑟   𝐵,𝑟   𝐶,𝑟   ,𝑟   𝐾,𝑟   ,𝑟   𝑃,𝑟   𝑄,𝑟   1 ,𝑟   𝑋,𝑟

Proof of Theorem cdlemb
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 simp11 1202 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝐾 ∈ HL)
2 simp12 1203 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑃𝐴)
3 simp13 1204 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑄𝐴)
4 simp2l 1198 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑋𝐵)
5 simp2r 1199 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑃𝑄)
6 simp31 1208 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑋𝐶 1 )
7 simp32 1209 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ¬ 𝑃 𝑋)
8 cdlemb.b . . . . 5 𝐵 = (Base‘𝐾)
9 cdlemb.l . . . . 5 = (le‘𝐾)
10 cdlemb.j . . . . 5 = (join‘𝐾)
11 eqid 2738 . . . . 5 (meet‘𝐾) = (meet‘𝐾)
12 cdlemb.u . . . . 5 1 = (1.‘𝐾)
13 cdlemb.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
14 cdlemb.a . . . . 5 𝐴 = (Atoms‘𝐾)
158, 9, 10, 11, 12, 13, 141cvrat 37490 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃𝑄𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((𝑃 𝑄)(meet‘𝐾)𝑋) ∈ 𝐴)
161, 2, 3, 4, 5, 6, 7, 15syl133anc 1392 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ((𝑃 𝑄)(meet‘𝐾)𝑋) ∈ 𝐴)
171hllatd 37378 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝐾 ∈ Lat)
188, 14atbase 37303 . . . . . . 7 (𝑃𝐴𝑃𝐵)
192, 18syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑃𝐵)
208, 14atbase 37303 . . . . . . 7 (𝑄𝐴𝑄𝐵)
213, 20syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑄𝐵)
228, 10latjcl 18157 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵) → (𝑃 𝑄) ∈ 𝐵)
2317, 19, 21, 22syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → (𝑃 𝑄) ∈ 𝐵)
248, 9, 11latmle2 18183 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ 𝐵𝑋𝐵) → ((𝑃 𝑄)(meet‘𝐾)𝑋) 𝑋)
2517, 23, 4, 24syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ((𝑃 𝑄)(meet‘𝐾)𝑋) 𝑋)
26 eqid 2738 . . . . 5 (lt‘𝐾) = (lt‘𝐾)
278, 9, 26, 12, 13, 141cvratlt 37488 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∈ 𝐴𝑋𝐵) ∧ (𝑋𝐶 1 ∧ ((𝑃 𝑄)(meet‘𝐾)𝑋) 𝑋)) → ((𝑃 𝑄)(meet‘𝐾)𝑋)(lt‘𝐾)𝑋)
281, 16, 4, 6, 25, 27syl32anc 1377 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ((𝑃 𝑄)(meet‘𝐾)𝑋)(lt‘𝐾)𝑋)
298, 26, 142atlt 37453 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∈ 𝐴𝑋𝐵) ∧ ((𝑃 𝑄)(meet‘𝐾)𝑋)(lt‘𝐾)𝑋) → ∃𝑢𝐴 (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))
301, 16, 4, 28, 29syl31anc 1372 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ∃𝑢𝐴 (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))
31 simpl11 1247 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → 𝐾 ∈ HL)
32 simpl12 1248 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → 𝑃𝐴)
33 simprl 768 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → 𝑢𝐴)
34 simpl32 1254 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → ¬ 𝑃 𝑋)
35 simprrr 779 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → 𝑢(lt‘𝐾)𝑋)
36 simpl2l 1225 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → 𝑋𝐵)
379, 26pltle 18051 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑢𝐴𝑋𝐵) → (𝑢(lt‘𝐾)𝑋𝑢 𝑋))
3831, 33, 36, 37syl3anc 1370 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → (𝑢(lt‘𝐾)𝑋𝑢 𝑋))
3935, 38mpd 15 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → 𝑢 𝑋)
40 breq1 5077 . . . . . . 7 (𝑃 = 𝑢 → (𝑃 𝑋𝑢 𝑋))
4139, 40syl5ibrcom 246 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → (𝑃 = 𝑢𝑃 𝑋))
4241necon3bd 2957 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → (¬ 𝑃 𝑋𝑃𝑢))
4334, 42mpd 15 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → 𝑃𝑢)
449, 10, 14hlsupr 37400 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑢𝐴) ∧ 𝑃𝑢) → ∃𝑟𝐴 (𝑟𝑃𝑟𝑢𝑟 (𝑃 𝑢)))
4531, 32, 33, 43, 44syl31anc 1372 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → ∃𝑟𝐴 (𝑟𝑃𝑟𝑢𝑟 (𝑃 𝑢)))
46 eqid 2738 . . . . . . . 8 ((𝑃 𝑄)(meet‘𝐾)𝑋) = ((𝑃 𝑄)(meet‘𝐾)𝑋)
478, 9, 10, 12, 13, 14, 26, 11, 46cdlemblem 37807 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋)) ∧ (𝑟𝐴 ∧ (𝑟𝑃𝑟𝑢𝑟 (𝑃 𝑢)))) → (¬ 𝑟 𝑋 ∧ ¬ 𝑟 (𝑃 𝑄)))
48473exp 1118 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ((𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋)) → ((𝑟𝐴 ∧ (𝑟𝑃𝑟𝑢𝑟 (𝑃 𝑢))) → (¬ 𝑟 𝑋 ∧ ¬ 𝑟 (𝑃 𝑄)))))
4948exp4a 432 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ((𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋)) → (𝑟𝐴 → ((𝑟𝑃𝑟𝑢𝑟 (𝑃 𝑢)) → (¬ 𝑟 𝑋 ∧ ¬ 𝑟 (𝑃 𝑄))))))
5049imp 407 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → (𝑟𝐴 → ((𝑟𝑃𝑟𝑢𝑟 (𝑃 𝑢)) → (¬ 𝑟 𝑋 ∧ ¬ 𝑟 (𝑃 𝑄)))))
5150reximdvai 3200 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → (∃𝑟𝐴 (𝑟𝑃𝑟𝑢𝑟 (𝑃 𝑢)) → ∃𝑟𝐴𝑟 𝑋 ∧ ¬ 𝑟 (𝑃 𝑄))))
5245, 51mpd 15 . 2 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ (𝑢𝐴 ∧ (𝑢 ≠ ((𝑃 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → ∃𝑟𝐴𝑟 𝑋 ∧ ¬ 𝑟 (𝑃 𝑄)))
5330, 52rexlimddv 3220 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ∃𝑟𝐴𝑟 𝑋 ∧ ¬ 𝑟 (𝑃 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  ltcplt 18026  joincjn 18029  meetcmee 18030  1.cp1 18142  Latclat 18149  ccvr 37276  Atomscatm 37277  HLchlt 37364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365
This theorem is referenced by:  cdlemb2  38055
  Copyright terms: Public domain W3C validator