Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemb Structured version   Visualization version   GIF version

Theorem cdlemb 39176
Description: Given two atoms not less than or equal to an element covered by 1, there is a third. Lemma B in [Crawley] p. 112. (Contributed by NM, 8-May-2012.)
Hypotheses
Ref Expression
cdlemb.b 𝐡 = (Baseβ€˜πΎ)
cdlemb.l ≀ = (leβ€˜πΎ)
cdlemb.j ∨ = (joinβ€˜πΎ)
cdlemb.u 1 = (1.β€˜πΎ)
cdlemb.c 𝐢 = ( β‹– β€˜πΎ)
cdlemb.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
cdlemb (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ 𝑋 ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑄)))
Distinct variable groups:   𝐴,π‘Ÿ   𝐡,π‘Ÿ   𝐢,π‘Ÿ   ∨ ,π‘Ÿ   𝐾,π‘Ÿ   ≀ ,π‘Ÿ   𝑃,π‘Ÿ   𝑄,π‘Ÿ   1 ,π‘Ÿ   𝑋,π‘Ÿ

Proof of Theorem cdlemb
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 simp11 1200 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ 𝐾 ∈ HL)
2 simp12 1201 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ 𝑃 ∈ 𝐴)
3 simp13 1202 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ 𝑄 ∈ 𝐴)
4 simp2l 1196 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ 𝑋 ∈ 𝐡)
5 simp2r 1197 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ 𝑃 β‰  𝑄)
6 simp31 1206 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ 𝑋𝐢 1 )
7 simp32 1207 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ Β¬ 𝑃 ≀ 𝑋)
8 cdlemb.b . . . . 5 𝐡 = (Baseβ€˜πΎ)
9 cdlemb.l . . . . 5 ≀ = (leβ€˜πΎ)
10 cdlemb.j . . . . 5 ∨ = (joinβ€˜πΎ)
11 eqid 2726 . . . . 5 (meetβ€˜πΎ) = (meetβ€˜πΎ)
12 cdlemb.u . . . . 5 1 = (1.β€˜πΎ)
13 cdlemb.c . . . . 5 𝐢 = ( β‹– β€˜πΎ)
14 cdlemb.a . . . . 5 𝐴 = (Atomsβ€˜πΎ)
158, 9, 10, 11, 12, 13, 141cvrat 38858 . . . 4 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 β‰  𝑄 ∧ 𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋)) β†’ ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∈ 𝐴)
161, 2, 3, 4, 5, 6, 7, 15syl133anc 1390 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∈ 𝐴)
171hllatd 38745 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ 𝐾 ∈ Lat)
188, 14atbase 38670 . . . . . . 7 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ 𝐡)
192, 18syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ 𝑃 ∈ 𝐡)
208, 14atbase 38670 . . . . . . 7 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ 𝐡)
213, 20syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ 𝑄 ∈ 𝐡)
228, 10latjcl 18402 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐡 ∧ 𝑄 ∈ 𝐡) β†’ (𝑃 ∨ 𝑄) ∈ 𝐡)
2317, 19, 21, 22syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ (𝑃 ∨ 𝑄) ∈ 𝐡)
248, 9, 11latmle2 18428 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ 𝐡 ∧ 𝑋 ∈ 𝐡) β†’ ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ≀ 𝑋)
2517, 23, 4, 24syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ≀ 𝑋)
26 eqid 2726 . . . . 5 (ltβ€˜πΎ) = (ltβ€˜πΎ)
278, 9, 26, 12, 13, 141cvratlt 38856 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑋𝐢 1 ∧ ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ≀ 𝑋)) β†’ ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋)(ltβ€˜πΎ)𝑋)
281, 16, 4, 6, 25, 27syl32anc 1375 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋)(ltβ€˜πΎ)𝑋)
298, 26, 142atlt 38821 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋)(ltβ€˜πΎ)𝑋) β†’ βˆƒπ‘’ ∈ 𝐴 (𝑒 β‰  ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∧ 𝑒(ltβ€˜πΎ)𝑋))
301, 16, 4, 28, 29syl31anc 1370 . 2 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ βˆƒπ‘’ ∈ 𝐴 (𝑒 β‰  ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∧ 𝑒(ltβ€˜πΎ)𝑋))
31 simpl11 1245 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∧ 𝑒(ltβ€˜πΎ)𝑋))) β†’ 𝐾 ∈ HL)
32 simpl12 1246 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∧ 𝑒(ltβ€˜πΎ)𝑋))) β†’ 𝑃 ∈ 𝐴)
33 simprl 768 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∧ 𝑒(ltβ€˜πΎ)𝑋))) β†’ 𝑒 ∈ 𝐴)
34 simpl32 1252 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∧ 𝑒(ltβ€˜πΎ)𝑋))) β†’ Β¬ 𝑃 ≀ 𝑋)
35 simprrr 779 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∧ 𝑒(ltβ€˜πΎ)𝑋))) β†’ 𝑒(ltβ€˜πΎ)𝑋)
36 simpl2l 1223 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∧ 𝑒(ltβ€˜πΎ)𝑋))) β†’ 𝑋 ∈ 𝐡)
379, 26pltle 18296 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑒 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) β†’ (𝑒(ltβ€˜πΎ)𝑋 β†’ 𝑒 ≀ 𝑋))
3831, 33, 36, 37syl3anc 1368 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∧ 𝑒(ltβ€˜πΎ)𝑋))) β†’ (𝑒(ltβ€˜πΎ)𝑋 β†’ 𝑒 ≀ 𝑋))
3935, 38mpd 15 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∧ 𝑒(ltβ€˜πΎ)𝑋))) β†’ 𝑒 ≀ 𝑋)
40 breq1 5144 . . . . . . 7 (𝑃 = 𝑒 β†’ (𝑃 ≀ 𝑋 ↔ 𝑒 ≀ 𝑋))
4139, 40syl5ibrcom 246 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∧ 𝑒(ltβ€˜πΎ)𝑋))) β†’ (𝑃 = 𝑒 β†’ 𝑃 ≀ 𝑋))
4241necon3bd 2948 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∧ 𝑒(ltβ€˜πΎ)𝑋))) β†’ (Β¬ 𝑃 ≀ 𝑋 β†’ 𝑃 β‰  𝑒))
4334, 42mpd 15 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∧ 𝑒(ltβ€˜πΎ)𝑋))) β†’ 𝑃 β‰  𝑒)
449, 10, 14hlsupr 38768 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴) ∧ 𝑃 β‰  𝑒) β†’ βˆƒπ‘Ÿ ∈ 𝐴 (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))
4531, 32, 33, 43, 44syl31anc 1370 . . 3 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∧ 𝑒(ltβ€˜πΎ)𝑋))) β†’ βˆƒπ‘Ÿ ∈ 𝐴 (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))
46 eqid 2726 . . . . . . . 8 ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) = ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋)
478, 9, 10, 12, 13, 14, 26, 11, 46cdlemblem 39175 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∧ 𝑒(ltβ€˜πΎ)𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ (Β¬ π‘Ÿ ≀ 𝑋 ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑄)))
48473exp 1116 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ ((𝑒 ∈ 𝐴 ∧ (𝑒 β‰  ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∧ 𝑒(ltβ€˜πΎ)𝑋)) β†’ ((π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒))) β†’ (Β¬ π‘Ÿ ≀ 𝑋 ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑄)))))
4948exp4a 431 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ ((𝑒 ∈ 𝐴 ∧ (𝑒 β‰  ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∧ 𝑒(ltβ€˜πΎ)𝑋)) β†’ (π‘Ÿ ∈ 𝐴 β†’ ((π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)) β†’ (Β¬ π‘Ÿ ≀ 𝑋 ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑄))))))
5049imp 406 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∧ 𝑒(ltβ€˜πΎ)𝑋))) β†’ (π‘Ÿ ∈ 𝐴 β†’ ((π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)) β†’ (Β¬ π‘Ÿ ≀ 𝑋 ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑄)))))
5150reximdvai 3159 . . 3 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∧ 𝑒(ltβ€˜πΎ)𝑋))) β†’ (βˆƒπ‘Ÿ ∈ 𝐴 (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)) β†’ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ 𝑋 ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑄))))
5245, 51mpd 15 . 2 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∧ 𝑒(ltβ€˜πΎ)𝑋))) β†’ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ 𝑋 ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑄)))
5330, 52rexlimddv 3155 1 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ 𝑋 ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2934  βˆƒwrex 3064   class class class wbr 5141  β€˜cfv 6536  (class class class)co 7404  Basecbs 17151  lecple 17211  ltcplt 18271  joincjn 18274  meetcmee 18275  1.cp1 18387  Latclat 18394   β‹– ccvr 38643  Atomscatm 38644  HLchlt 38731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-proset 18258  df-poset 18276  df-plt 18293  df-lub 18309  df-glb 18310  df-join 18311  df-meet 18312  df-p0 18388  df-p1 18389  df-lat 18395  df-clat 18462  df-oposet 38557  df-ol 38559  df-oml 38560  df-covers 38647  df-ats 38648  df-atl 38679  df-cvlat 38703  df-hlat 38732
This theorem is referenced by:  cdlemb2  39423
  Copyright terms: Public domain W3C validator