Step | Hyp | Ref
| Expression |
1 | | simp11 1200 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) → 𝐾 ∈ HL) |
2 | | simp12 1201 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) → 𝑃 ∈ 𝐴) |
3 | | simp13 1202 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) → 𝑄 ∈ 𝐴) |
4 | | simp2l 1196 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) → 𝑋 ∈ 𝐵) |
5 | | simp2r 1197 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) → 𝑃 ≠ 𝑄) |
6 | | simp31 1206 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) → 𝑋𝐶 1 ) |
7 | | simp32 1207 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) → ¬ 𝑃 ≤ 𝑋) |
8 | | cdlemb.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
9 | | cdlemb.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
10 | | cdlemb.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
11 | | eqid 2758 |
. . . . 5
⊢
(meet‘𝐾) =
(meet‘𝐾) |
12 | | cdlemb.u |
. . . . 5
⊢ 1 =
(1.‘𝐾) |
13 | | cdlemb.c |
. . . . 5
⊢ 𝐶 = ( ⋖ ‘𝐾) |
14 | | cdlemb.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
15 | 8, 9, 10, 11, 12, 13, 14 | 1cvrat 37086 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≠ 𝑄 ∧ 𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋)) → ((𝑃 ∨ 𝑄)(meet‘𝐾)𝑋) ∈ 𝐴) |
16 | 1, 2, 3, 4, 5, 6, 7, 15 | syl133anc 1390 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) → ((𝑃 ∨ 𝑄)(meet‘𝐾)𝑋) ∈ 𝐴) |
17 | 1 | hllatd 36974 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) → 𝐾 ∈ Lat) |
18 | 8, 14 | atbase 36899 |
. . . . . . 7
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
19 | 2, 18 | syl 17 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) → 𝑃 ∈ 𝐵) |
20 | 8, 14 | atbase 36899 |
. . . . . . 7
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) |
21 | 3, 20 | syl 17 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) → 𝑄 ∈ 𝐵) |
22 | 8, 10 | latjcl 17740 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (𝑃 ∨ 𝑄) ∈ 𝐵) |
23 | 17, 19, 21, 22 | syl3anc 1368 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) → (𝑃 ∨ 𝑄) ∈ 𝐵) |
24 | 8, 9, 11 | latmle2 17766 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝑃 ∨ 𝑄)(meet‘𝐾)𝑋) ≤ 𝑋) |
25 | 17, 23, 4, 24 | syl3anc 1368 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) → ((𝑃 ∨ 𝑄)(meet‘𝐾)𝑋) ≤ 𝑋) |
26 | | eqid 2758 |
. . . . 5
⊢
(lt‘𝐾) =
(lt‘𝐾) |
27 | 8, 9, 26, 12, 13, 14 | 1cvratlt 37084 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑄)(meet‘𝐾)𝑋) ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ ((𝑃 ∨ 𝑄)(meet‘𝐾)𝑋) ≤ 𝑋)) → ((𝑃 ∨ 𝑄)(meet‘𝐾)𝑋)(lt‘𝐾)𝑋) |
28 | 1, 16, 4, 6, 25, 27 | syl32anc 1375 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) → ((𝑃 ∨ 𝑄)(meet‘𝐾)𝑋)(lt‘𝐾)𝑋) |
29 | 8, 26, 14 | 2atlt 37049 |
. . 3
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑄)(meet‘𝐾)𝑋) ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ((𝑃 ∨ 𝑄)(meet‘𝐾)𝑋)(lt‘𝐾)𝑋) → ∃𝑢 ∈ 𝐴 (𝑢 ≠ ((𝑃 ∨ 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋)) |
30 | 1, 16, 4, 28, 29 | syl31anc 1370 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) → ∃𝑢 ∈ 𝐴 (𝑢 ≠ ((𝑃 ∨ 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋)) |
31 | | simpl11 1245 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ ((𝑃 ∨ 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → 𝐾 ∈ HL) |
32 | | simpl12 1246 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ ((𝑃 ∨ 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → 𝑃 ∈ 𝐴) |
33 | | simprl 770 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ ((𝑃 ∨ 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → 𝑢 ∈ 𝐴) |
34 | | simpl32 1252 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ ((𝑃 ∨ 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → ¬ 𝑃 ≤ 𝑋) |
35 | | simprrr 781 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ ((𝑃 ∨ 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → 𝑢(lt‘𝐾)𝑋) |
36 | | simpl2l 1223 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ ((𝑃 ∨ 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → 𝑋 ∈ 𝐵) |
37 | 9, 26 | pltle 17650 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑢 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝑢(lt‘𝐾)𝑋 → 𝑢 ≤ 𝑋)) |
38 | 31, 33, 36, 37 | syl3anc 1368 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ ((𝑃 ∨ 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → (𝑢(lt‘𝐾)𝑋 → 𝑢 ≤ 𝑋)) |
39 | 35, 38 | mpd 15 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ ((𝑃 ∨ 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → 𝑢 ≤ 𝑋) |
40 | | breq1 5039 |
. . . . . . 7
⊢ (𝑃 = 𝑢 → (𝑃 ≤ 𝑋 ↔ 𝑢 ≤ 𝑋)) |
41 | 39, 40 | syl5ibrcom 250 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ ((𝑃 ∨ 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → (𝑃 = 𝑢 → 𝑃 ≤ 𝑋)) |
42 | 41 | necon3bd 2965 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ ((𝑃 ∨ 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → (¬ 𝑃 ≤ 𝑋 → 𝑃 ≠ 𝑢)) |
43 | 34, 42 | mpd 15 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ ((𝑃 ∨ 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → 𝑃 ≠ 𝑢) |
44 | 9, 10, 14 | hlsupr 36996 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴) ∧ 𝑃 ≠ 𝑢) → ∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢))) |
45 | 31, 32, 33, 43, 44 | syl31anc 1370 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ ((𝑃 ∨ 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → ∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢))) |
46 | | eqid 2758 |
. . . . . . . 8
⊢ ((𝑃 ∨ 𝑄)(meet‘𝐾)𝑋) = ((𝑃 ∨ 𝑄)(meet‘𝐾)𝑋) |
47 | 8, 9, 10, 12, 13, 14, 26, 11, 46 | cdlemblem 37403 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ ((𝑃 ∨ 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → (¬ 𝑟 ≤ 𝑋 ∧ ¬ 𝑟 ≤ (𝑃 ∨ 𝑄))) |
48 | 47 | 3exp 1116 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) → ((𝑢 ∈ 𝐴 ∧ (𝑢 ≠ ((𝑃 ∨ 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋)) → ((𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢))) → (¬ 𝑟 ≤ 𝑋 ∧ ¬ 𝑟 ≤ (𝑃 ∨ 𝑄))))) |
49 | 48 | exp4a 435 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) → ((𝑢 ∈ 𝐴 ∧ (𝑢 ≠ ((𝑃 ∨ 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋)) → (𝑟 ∈ 𝐴 → ((𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)) → (¬ 𝑟 ≤ 𝑋 ∧ ¬ 𝑟 ≤ (𝑃 ∨ 𝑄)))))) |
50 | 49 | imp 410 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ ((𝑃 ∨ 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → (𝑟 ∈ 𝐴 → ((𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)) → (¬ 𝑟 ≤ 𝑋 ∧ ¬ 𝑟 ≤ (𝑃 ∨ 𝑄))))) |
51 | 50 | reximdvai 3196 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ ((𝑃 ∨ 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → (∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)) → ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑋 ∧ ¬ 𝑟 ≤ (𝑃 ∨ 𝑄)))) |
52 | 45, 51 | mpd 15 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ ((𝑃 ∨ 𝑄)(meet‘𝐾)𝑋) ∧ 𝑢(lt‘𝐾)𝑋))) → ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑋 ∧ ¬ 𝑟 ≤ (𝑃 ∨ 𝑄))) |
53 | 30, 52 | rexlimddv 3215 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) → ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑋 ∧ ¬ 𝑟 ≤ (𝑃 ∨ 𝑄))) |