Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemb Structured version   Visualization version   GIF version

Theorem cdlemb 39267
Description: Given two atoms not less than or equal to an element covered by 1, there is a third. Lemma B in [Crawley] p. 112. (Contributed by NM, 8-May-2012.)
Hypotheses
Ref Expression
cdlemb.b 𝐡 = (Baseβ€˜πΎ)
cdlemb.l ≀ = (leβ€˜πΎ)
cdlemb.j ∨ = (joinβ€˜πΎ)
cdlemb.u 1 = (1.β€˜πΎ)
cdlemb.c 𝐢 = ( β‹– β€˜πΎ)
cdlemb.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
cdlemb (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ 𝑋 ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑄)))
Distinct variable groups:   𝐴,π‘Ÿ   𝐡,π‘Ÿ   𝐢,π‘Ÿ   ∨ ,π‘Ÿ   𝐾,π‘Ÿ   ≀ ,π‘Ÿ   𝑃,π‘Ÿ   𝑄,π‘Ÿ   1 ,π‘Ÿ   𝑋,π‘Ÿ

Proof of Theorem cdlemb
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 simp11 1201 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ 𝐾 ∈ HL)
2 simp12 1202 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ 𝑃 ∈ 𝐴)
3 simp13 1203 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ 𝑄 ∈ 𝐴)
4 simp2l 1197 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ 𝑋 ∈ 𝐡)
5 simp2r 1198 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ 𝑃 β‰  𝑄)
6 simp31 1207 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ 𝑋𝐢 1 )
7 simp32 1208 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ Β¬ 𝑃 ≀ 𝑋)
8 cdlemb.b . . . . 5 𝐡 = (Baseβ€˜πΎ)
9 cdlemb.l . . . . 5 ≀ = (leβ€˜πΎ)
10 cdlemb.j . . . . 5 ∨ = (joinβ€˜πΎ)
11 eqid 2728 . . . . 5 (meetβ€˜πΎ) = (meetβ€˜πΎ)
12 cdlemb.u . . . . 5 1 = (1.β€˜πΎ)
13 cdlemb.c . . . . 5 𝐢 = ( β‹– β€˜πΎ)
14 cdlemb.a . . . . 5 𝐴 = (Atomsβ€˜πΎ)
158, 9, 10, 11, 12, 13, 141cvrat 38949 . . . 4 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑃 β‰  𝑄 ∧ 𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋)) β†’ ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∈ 𝐴)
161, 2, 3, 4, 5, 6, 7, 15syl133anc 1391 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∈ 𝐴)
171hllatd 38836 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ 𝐾 ∈ Lat)
188, 14atbase 38761 . . . . . . 7 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ 𝐡)
192, 18syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ 𝑃 ∈ 𝐡)
208, 14atbase 38761 . . . . . . 7 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ 𝐡)
213, 20syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ 𝑄 ∈ 𝐡)
228, 10latjcl 18431 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐡 ∧ 𝑄 ∈ 𝐡) β†’ (𝑃 ∨ 𝑄) ∈ 𝐡)
2317, 19, 21, 22syl3anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ (𝑃 ∨ 𝑄) ∈ 𝐡)
248, 9, 11latmle2 18457 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ 𝐡 ∧ 𝑋 ∈ 𝐡) β†’ ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ≀ 𝑋)
2517, 23, 4, 24syl3anc 1369 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ≀ 𝑋)
26 eqid 2728 . . . . 5 (ltβ€˜πΎ) = (ltβ€˜πΎ)
278, 9, 26, 12, 13, 141cvratlt 38947 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ (𝑋𝐢 1 ∧ ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ≀ 𝑋)) β†’ ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋)(ltβ€˜πΎ)𝑋)
281, 16, 4, 6, 25, 27syl32anc 1376 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋)(ltβ€˜πΎ)𝑋)
298, 26, 142atlt 38912 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) ∧ ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋)(ltβ€˜πΎ)𝑋) β†’ βˆƒπ‘’ ∈ 𝐴 (𝑒 β‰  ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∧ 𝑒(ltβ€˜πΎ)𝑋))
301, 16, 4, 28, 29syl31anc 1371 . 2 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ βˆƒπ‘’ ∈ 𝐴 (𝑒 β‰  ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∧ 𝑒(ltβ€˜πΎ)𝑋))
31 simpl11 1246 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∧ 𝑒(ltβ€˜πΎ)𝑋))) β†’ 𝐾 ∈ HL)
32 simpl12 1247 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∧ 𝑒(ltβ€˜πΎ)𝑋))) β†’ 𝑃 ∈ 𝐴)
33 simprl 770 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∧ 𝑒(ltβ€˜πΎ)𝑋))) β†’ 𝑒 ∈ 𝐴)
34 simpl32 1253 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∧ 𝑒(ltβ€˜πΎ)𝑋))) β†’ Β¬ 𝑃 ≀ 𝑋)
35 simprrr 781 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∧ 𝑒(ltβ€˜πΎ)𝑋))) β†’ 𝑒(ltβ€˜πΎ)𝑋)
36 simpl2l 1224 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∧ 𝑒(ltβ€˜πΎ)𝑋))) β†’ 𝑋 ∈ 𝐡)
379, 26pltle 18325 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑒 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) β†’ (𝑒(ltβ€˜πΎ)𝑋 β†’ 𝑒 ≀ 𝑋))
3831, 33, 36, 37syl3anc 1369 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∧ 𝑒(ltβ€˜πΎ)𝑋))) β†’ (𝑒(ltβ€˜πΎ)𝑋 β†’ 𝑒 ≀ 𝑋))
3935, 38mpd 15 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∧ 𝑒(ltβ€˜πΎ)𝑋))) β†’ 𝑒 ≀ 𝑋)
40 breq1 5151 . . . . . . 7 (𝑃 = 𝑒 β†’ (𝑃 ≀ 𝑋 ↔ 𝑒 ≀ 𝑋))
4139, 40syl5ibrcom 246 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∧ 𝑒(ltβ€˜πΎ)𝑋))) β†’ (𝑃 = 𝑒 β†’ 𝑃 ≀ 𝑋))
4241necon3bd 2951 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∧ 𝑒(ltβ€˜πΎ)𝑋))) β†’ (Β¬ 𝑃 ≀ 𝑋 β†’ 𝑃 β‰  𝑒))
4334, 42mpd 15 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∧ 𝑒(ltβ€˜πΎ)𝑋))) β†’ 𝑃 β‰  𝑒)
449, 10, 14hlsupr 38859 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴) ∧ 𝑃 β‰  𝑒) β†’ βˆƒπ‘Ÿ ∈ 𝐴 (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))
4531, 32, 33, 43, 44syl31anc 1371 . . 3 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∧ 𝑒(ltβ€˜πΎ)𝑋))) β†’ βˆƒπ‘Ÿ ∈ 𝐴 (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))
46 eqid 2728 . . . . . . . 8 ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) = ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋)
478, 9, 10, 12, 13, 14, 26, 11, 46cdlemblem 39266 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∧ 𝑒(ltβ€˜πΎ)𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)))) β†’ (Β¬ π‘Ÿ ≀ 𝑋 ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑄)))
48473exp 1117 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ ((𝑒 ∈ 𝐴 ∧ (𝑒 β‰  ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∧ 𝑒(ltβ€˜πΎ)𝑋)) β†’ ((π‘Ÿ ∈ 𝐴 ∧ (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒))) β†’ (Β¬ π‘Ÿ ≀ 𝑋 ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑄)))))
4948exp4a 431 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ ((𝑒 ∈ 𝐴 ∧ (𝑒 β‰  ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∧ 𝑒(ltβ€˜πΎ)𝑋)) β†’ (π‘Ÿ ∈ 𝐴 β†’ ((π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)) β†’ (Β¬ π‘Ÿ ≀ 𝑋 ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑄))))))
5049imp 406 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∧ 𝑒(ltβ€˜πΎ)𝑋))) β†’ (π‘Ÿ ∈ 𝐴 β†’ ((π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)) β†’ (Β¬ π‘Ÿ ≀ 𝑋 ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑄)))))
5150reximdvai 3162 . . 3 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∧ 𝑒(ltβ€˜πΎ)𝑋))) β†’ (βˆƒπ‘Ÿ ∈ 𝐴 (π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑒 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑒)) β†’ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ 𝑋 ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑄))))
5245, 51mpd 15 . 2 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) ∧ (𝑒 ∈ 𝐴 ∧ (𝑒 β‰  ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)𝑋) ∧ 𝑒(ltβ€˜πΎ)𝑋))) β†’ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ 𝑋 ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑄)))
5330, 52rexlimddv 3158 1 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 β‰  𝑄) ∧ (𝑋𝐢 1 ∧ Β¬ 𝑃 ≀ 𝑋 ∧ Β¬ 𝑄 ≀ 𝑋)) β†’ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ 𝑋 ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∧ w3a 1085   = wceq 1534   ∈ wcel 2099   β‰  wne 2937  βˆƒwrex 3067   class class class wbr 5148  β€˜cfv 6548  (class class class)co 7420  Basecbs 17180  lecple 17240  ltcplt 18300  joincjn 18303  meetcmee 18304  1.cp1 18416  Latclat 18423   β‹– ccvr 38734  Atomscatm 38735  HLchlt 38822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-proset 18287  df-poset 18305  df-plt 18322  df-lub 18338  df-glb 18339  df-join 18340  df-meet 18341  df-p0 18417  df-p1 18418  df-lat 18424  df-clat 18491  df-oposet 38648  df-ol 38650  df-oml 38651  df-covers 38738  df-ats 38739  df-atl 38770  df-cvlat 38794  df-hlat 38823
This theorem is referenced by:  cdlemb2  39514
  Copyright terms: Public domain W3C validator