| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idfudiag1lem | Structured version Visualization version GIF version | ||
| Description: Lemma for idfudiag1bas 49376 and idfudiag1 49377. (Contributed by Zhi Wang, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| idfudiag1lem.1 | ⊢ (𝜑 → ( I ↾ 𝐴) = (𝐴 × {𝐵})) |
| idfudiag1lem.2 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
| Ref | Expression |
|---|---|
| idfudiag1lem | ⊢ (𝜑 → 𝐴 = {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnresi 6067 | . . 3 ⊢ ran ( I ↾ 𝐴) = 𝐴 | |
| 2 | idfudiag1lem.1 | . . . 4 ⊢ (𝜑 → ( I ↾ 𝐴) = (𝐴 × {𝐵})) | |
| 3 | 2 | rneqd 5923 | . . 3 ⊢ (𝜑 → ran ( I ↾ 𝐴) = ran (𝐴 × {𝐵})) |
| 4 | 1, 3 | eqtr3id 2785 | . 2 ⊢ (𝜑 → 𝐴 = ran (𝐴 × {𝐵})) |
| 5 | idfudiag1lem.2 | . . 3 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
| 6 | rnxp 6164 | . . 3 ⊢ (𝐴 ≠ ∅ → ran (𝐴 × {𝐵}) = {𝐵}) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (𝜑 → ran (𝐴 × {𝐵}) = {𝐵}) |
| 8 | 4, 7 | eqtrd 2771 | 1 ⊢ (𝜑 → 𝐴 = {𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2933 ∅c0 4313 {csn 4606 I cid 5552 × cxp 5657 ran crn 5660 ↾ cres 5661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 |
| This theorem is referenced by: idfudiag1bas 49376 idfudiag1 49377 |
| Copyright terms: Public domain | W3C validator |