| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idfudiag1lem | Structured version Visualization version GIF version | ||
| Description: Lemma for idfudiag1bas 49630 and idfudiag1 49631. (Contributed by Zhi Wang, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| idfudiag1lem.1 | ⊢ (𝜑 → ( I ↾ 𝐴) = (𝐴 × {𝐵})) |
| idfudiag1lem.2 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
| Ref | Expression |
|---|---|
| idfudiag1lem | ⊢ (𝜑 → 𝐴 = {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnresi 6029 | . . 3 ⊢ ran ( I ↾ 𝐴) = 𝐴 | |
| 2 | idfudiag1lem.1 | . . . 4 ⊢ (𝜑 → ( I ↾ 𝐴) = (𝐴 × {𝐵})) | |
| 3 | 2 | rneqd 5883 | . . 3 ⊢ (𝜑 → ran ( I ↾ 𝐴) = ran (𝐴 × {𝐵})) |
| 4 | 1, 3 | eqtr3id 2780 | . 2 ⊢ (𝜑 → 𝐴 = ran (𝐴 × {𝐵})) |
| 5 | idfudiag1lem.2 | . . 3 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
| 6 | rnxp 6123 | . . 3 ⊢ (𝐴 ≠ ∅ → ran (𝐴 × {𝐵}) = {𝐵}) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (𝜑 → ran (𝐴 × {𝐵}) = {𝐵}) |
| 8 | 4, 7 | eqtrd 2766 | 1 ⊢ (𝜑 → 𝐴 = {𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ≠ wne 2928 ∅c0 4282 {csn 4575 I cid 5513 × cxp 5617 ran crn 5620 ↾ cres 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 |
| This theorem is referenced by: idfudiag1bas 49630 idfudiag1 49631 |
| Copyright terms: Public domain | W3C validator |