|   | Mathbox for Zhi Wang | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idfudiag1lem | Structured version Visualization version GIF version | ||
| Description: Lemma for idfudiag1bas 49182 and idfudiag1 49183. (Contributed by Zhi Wang, 19-Oct-2025.) | 
| Ref | Expression | 
|---|---|
| idfudiag1lem.1 | ⊢ (𝜑 → ( I ↾ 𝐴) = (𝐴 × {𝐵})) | 
| idfudiag1lem.2 | ⊢ (𝜑 → 𝐴 ≠ ∅) | 
| Ref | Expression | 
|---|---|
| idfudiag1lem | ⊢ (𝜑 → 𝐴 = {𝐵}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rnresi 6092 | . . 3 ⊢ ran ( I ↾ 𝐴) = 𝐴 | |
| 2 | idfudiag1lem.1 | . . . 4 ⊢ (𝜑 → ( I ↾ 𝐴) = (𝐴 × {𝐵})) | |
| 3 | 2 | rneqd 5948 | . . 3 ⊢ (𝜑 → ran ( I ↾ 𝐴) = ran (𝐴 × {𝐵})) | 
| 4 | 1, 3 | eqtr3id 2790 | . 2 ⊢ (𝜑 → 𝐴 = ran (𝐴 × {𝐵})) | 
| 5 | idfudiag1lem.2 | . . 3 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
| 6 | rnxp 6189 | . . 3 ⊢ (𝐴 ≠ ∅ → ran (𝐴 × {𝐵}) = {𝐵}) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (𝜑 → ran (𝐴 × {𝐵}) = {𝐵}) | 
| 8 | 4, 7 | eqtrd 2776 | 1 ⊢ (𝜑 → 𝐴 = {𝐵}) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ≠ wne 2939 ∅c0 4332 {csn 4625 I cid 5576 × cxp 5682 ran crn 5685 ↾ cres 5686 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-11 2156 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 | 
| This theorem is referenced by: idfudiag1bas 49182 idfudiag1 49183 | 
| Copyright terms: Public domain | W3C validator |