Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idfudiag1lem Structured version   Visualization version   GIF version

Theorem idfudiag1lem 49629
Description: Lemma for idfudiag1bas 49630 and idfudiag1 49631. (Contributed by Zhi Wang, 19-Oct-2025.)
Hypotheses
Ref Expression
idfudiag1lem.1 (𝜑 → ( I ↾ 𝐴) = (𝐴 × {𝐵}))
idfudiag1lem.2 (𝜑𝐴 ≠ ∅)
Assertion
Ref Expression
idfudiag1lem (𝜑𝐴 = {𝐵})

Proof of Theorem idfudiag1lem
StepHypRef Expression
1 rnresi 6029 . . 3 ran ( I ↾ 𝐴) = 𝐴
2 idfudiag1lem.1 . . . 4 (𝜑 → ( I ↾ 𝐴) = (𝐴 × {𝐵}))
32rneqd 5883 . . 3 (𝜑 → ran ( I ↾ 𝐴) = ran (𝐴 × {𝐵}))
41, 3eqtr3id 2780 . 2 (𝜑𝐴 = ran (𝐴 × {𝐵}))
5 idfudiag1lem.2 . . 3 (𝜑𝐴 ≠ ∅)
6 rnxp 6123 . . 3 (𝐴 ≠ ∅ → ran (𝐴 × {𝐵}) = {𝐵})
75, 6syl 17 . 2 (𝜑 → ran (𝐴 × {𝐵}) = {𝐵})
84, 7eqtrd 2766 1 (𝜑𝐴 = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wne 2928  c0 4282  {csn 4575   I cid 5513   × cxp 5617  ran crn 5620  cres 5621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632
This theorem is referenced by:  idfudiag1bas  49630  idfudiag1  49631
  Copyright terms: Public domain W3C validator