Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idfudiag1lem Structured version   Visualization version   GIF version

Theorem idfudiag1lem 49375
Description: Lemma for idfudiag1bas 49376 and idfudiag1 49377. (Contributed by Zhi Wang, 19-Oct-2025.)
Hypotheses
Ref Expression
idfudiag1lem.1 (𝜑 → ( I ↾ 𝐴) = (𝐴 × {𝐵}))
idfudiag1lem.2 (𝜑𝐴 ≠ ∅)
Assertion
Ref Expression
idfudiag1lem (𝜑𝐴 = {𝐵})

Proof of Theorem idfudiag1lem
StepHypRef Expression
1 rnresi 6067 . . 3 ran ( I ↾ 𝐴) = 𝐴
2 idfudiag1lem.1 . . . 4 (𝜑 → ( I ↾ 𝐴) = (𝐴 × {𝐵}))
32rneqd 5923 . . 3 (𝜑 → ran ( I ↾ 𝐴) = ran (𝐴 × {𝐵}))
41, 3eqtr3id 2785 . 2 (𝜑𝐴 = ran (𝐴 × {𝐵}))
5 idfudiag1lem.2 . . 3 (𝜑𝐴 ≠ ∅)
6 rnxp 6164 . . 3 (𝐴 ≠ ∅ → ran (𝐴 × {𝐵}) = {𝐵})
75, 6syl 17 . 2 (𝜑 → ran (𝐴 × {𝐵}) = {𝐵})
84, 7eqtrd 2771 1 (𝜑𝐴 = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wne 2933  c0 4313  {csn 4606   I cid 5552   × cxp 5657  ran crn 5660  cres 5661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672
This theorem is referenced by:  idfudiag1bas  49376  idfudiag1  49377
  Copyright terms: Public domain W3C validator