| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idfudiag1lem | Structured version Visualization version GIF version | ||
| Description: Lemma for idfudiag1bas 49510 and idfudiag1 49511. (Contributed by Zhi Wang, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| idfudiag1lem.1 | ⊢ (𝜑 → ( I ↾ 𝐴) = (𝐴 × {𝐵})) |
| idfudiag1lem.2 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
| Ref | Expression |
|---|---|
| idfudiag1lem | ⊢ (𝜑 → 𝐴 = {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnresi 6046 | . . 3 ⊢ ran ( I ↾ 𝐴) = 𝐴 | |
| 2 | idfudiag1lem.1 | . . . 4 ⊢ (𝜑 → ( I ↾ 𝐴) = (𝐴 × {𝐵})) | |
| 3 | 2 | rneqd 5902 | . . 3 ⊢ (𝜑 → ran ( I ↾ 𝐴) = ran (𝐴 × {𝐵})) |
| 4 | 1, 3 | eqtr3id 2778 | . 2 ⊢ (𝜑 → 𝐴 = ran (𝐴 × {𝐵})) |
| 5 | idfudiag1lem.2 | . . 3 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
| 6 | rnxp 6143 | . . 3 ⊢ (𝐴 ≠ ∅ → ran (𝐴 × {𝐵}) = {𝐵}) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (𝜑 → ran (𝐴 × {𝐵}) = {𝐵}) |
| 8 | 4, 7 | eqtrd 2764 | 1 ⊢ (𝜑 → 𝐴 = {𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2925 ∅c0 4296 {csn 4589 I cid 5532 × cxp 5636 ran crn 5639 ↾ cres 5640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 |
| This theorem is referenced by: idfudiag1bas 49510 idfudiag1 49511 |
| Copyright terms: Public domain | W3C validator |