| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idfudiag1lem | Structured version Visualization version GIF version | ||
| Description: Lemma for idfudiag1bas 49270 and idfudiag1 49271. (Contributed by Zhi Wang, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| idfudiag1lem.1 | ⊢ (𝜑 → ( I ↾ 𝐴) = (𝐴 × {𝐵})) |
| idfudiag1lem.2 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
| Ref | Expression |
|---|---|
| idfudiag1lem | ⊢ (𝜑 → 𝐴 = {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnresi 6060 | . . 3 ⊢ ran ( I ↾ 𝐴) = 𝐴 | |
| 2 | idfudiag1lem.1 | . . . 4 ⊢ (𝜑 → ( I ↾ 𝐴) = (𝐴 × {𝐵})) | |
| 3 | 2 | rneqd 5916 | . . 3 ⊢ (𝜑 → ran ( I ↾ 𝐴) = ran (𝐴 × {𝐵})) |
| 4 | 1, 3 | eqtr3id 2783 | . 2 ⊢ (𝜑 → 𝐴 = ran (𝐴 × {𝐵})) |
| 5 | idfudiag1lem.2 | . . 3 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
| 6 | rnxp 6157 | . . 3 ⊢ (𝐴 ≠ ∅ → ran (𝐴 × {𝐵}) = {𝐵}) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (𝜑 → ran (𝐴 × {𝐵}) = {𝐵}) |
| 8 | 4, 7 | eqtrd 2769 | 1 ⊢ (𝜑 → 𝐴 = {𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ≠ wne 2931 ∅c0 4306 {csn 4599 I cid 5545 × cxp 5650 ran crn 5653 ↾ cres 5654 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-11 2156 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pr 5400 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-br 5118 df-opab 5180 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 |
| This theorem is referenced by: idfudiag1bas 49270 idfudiag1 49271 |
| Copyright terms: Public domain | W3C validator |