Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idfudiag1lem Structured version   Visualization version   GIF version

Theorem idfudiag1lem 49269
Description: Lemma for idfudiag1bas 49270 and idfudiag1 49271. (Contributed by Zhi Wang, 19-Oct-2025.)
Hypotheses
Ref Expression
idfudiag1lem.1 (𝜑 → ( I ↾ 𝐴) = (𝐴 × {𝐵}))
idfudiag1lem.2 (𝜑𝐴 ≠ ∅)
Assertion
Ref Expression
idfudiag1lem (𝜑𝐴 = {𝐵})

Proof of Theorem idfudiag1lem
StepHypRef Expression
1 rnresi 6060 . . 3 ran ( I ↾ 𝐴) = 𝐴
2 idfudiag1lem.1 . . . 4 (𝜑 → ( I ↾ 𝐴) = (𝐴 × {𝐵}))
32rneqd 5916 . . 3 (𝜑 → ran ( I ↾ 𝐴) = ran (𝐴 × {𝐵}))
41, 3eqtr3id 2783 . 2 (𝜑𝐴 = ran (𝐴 × {𝐵}))
5 idfudiag1lem.2 . . 3 (𝜑𝐴 ≠ ∅)
6 rnxp 6157 . . 3 (𝐴 ≠ ∅ → ran (𝐴 × {𝐵}) = {𝐵})
75, 6syl 17 . 2 (𝜑 → ran (𝐴 × {𝐵}) = {𝐵})
84, 7eqtrd 2769 1 (𝜑𝐴 = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wne 2931  c0 4306  {csn 4599   I cid 5545   × cxp 5650  ran crn 5653  cres 5654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-11 2156  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pr 5400
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-br 5118  df-opab 5180  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665
This theorem is referenced by:  idfudiag1bas  49270  idfudiag1  49271
  Copyright terms: Public domain W3C validator