Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rnresi | Structured version Visualization version GIF version |
Description: The range of the restricted identity function. (Contributed by NM, 27-Aug-2004.) |
Ref | Expression |
---|---|
rnresi | ⊢ ran ( I ↾ 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5593 | . 2 ⊢ ( I “ 𝐴) = ran ( I ↾ 𝐴) | |
2 | imai 5971 | . 2 ⊢ ( I “ 𝐴) = 𝐴 | |
3 | 1, 2 | eqtr3i 2768 | 1 ⊢ ran ( I ↾ 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 I cid 5479 ran crn 5581 ↾ cres 5582 “ cima 5583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 |
This theorem is referenced by: resiima 5973 iordsmo 8159 dfac9 9823 relexprng 14685 relexpfld 14688 restid2 17058 sylow1lem2 19119 sylow3lem1 19147 lsslinds 20948 wilthlem3 26124 ausgrusgrb 27438 umgrres1lem 27580 umgrres1 27584 nbupgrres 27634 cusgrexilem2 27712 cusgrsize 27724 cycpmconjslem2 31324 diophrw 40497 lnrfg 40860 rclexi 41112 cnvrcl0 41122 dfrtrcl5 41126 dfrcl2 41171 brfvrcld2 41189 iunrelexp0 41199 relexpiidm 41201 relexp01min 41210 dvsid 41838 fourierdlem60 43597 fourierdlem61 43598 uspgrsprfo 45198 |
Copyright terms: Public domain | W3C validator |