| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnresi | Structured version Visualization version GIF version | ||
| Description: The range of the restricted identity function. (Contributed by NM, 27-Aug-2004.) |
| Ref | Expression |
|---|---|
| rnresi | ⊢ ran ( I ↾ 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5624 | . 2 ⊢ ( I “ 𝐴) = ran ( I ↾ 𝐴) | |
| 2 | imai 6018 | . 2 ⊢ ( I “ 𝐴) = 𝐴 | |
| 3 | 1, 2 | eqtr3i 2756 | 1 ⊢ ran ( I ↾ 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 I cid 5505 ran crn 5612 ↾ cres 5613 “ cima 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 |
| This theorem is referenced by: resiima 6020 iordsmo 8272 dfac9 10023 relexprng 14948 relexpfld 14951 restid2 17329 sylow1lem2 19506 sylow3lem1 19534 lsslinds 21763 wilthlem3 27002 ausgrusgrb 29138 umgrres1lem 29283 umgrres1 29287 nbupgrres 29337 cusgrexilem2 29415 cusgrsize 29428 cycpmconjslem2 33116 diophrw 42792 lnrfg 43152 rclexi 43648 cnvrcl0 43658 dfrtrcl5 43662 dfrcl2 43707 brfvrcld2 43725 iunrelexp0 43735 relexpiidm 43737 relexp01min 43746 dvsid 44364 fourierdlem60 46204 fourierdlem61 46205 stgredg 47987 gpgedg 48076 uspgrsprfo 48179 imaidfu 49142 idfudiag1lem 49555 |
| Copyright terms: Public domain | W3C validator |