MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnresi Structured version   Visualization version   GIF version

Theorem rnresi 6031
Description: The range of the restricted identity function. (Contributed by NM, 27-Aug-2004.)
Assertion
Ref Expression
rnresi ran ( I ↾ 𝐴) = 𝐴

Proof of Theorem rnresi
StepHypRef Expression
1 df-ima 5634 . 2 ( I “ 𝐴) = ran ( I ↾ 𝐴)
2 imai 6030 . 2 ( I “ 𝐴) = 𝐴
31, 2eqtr3i 2758 1 ran ( I ↾ 𝐴) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541   I cid 5515  ran crn 5622  cres 5623  cima 5624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634
This theorem is referenced by:  resiima  6032  f1oi  6809  iordsmo  8286  dfac9  10039  relexprng  14960  relexpfld  14963  restid2  17341  sylow1lem2  19519  sylow3lem1  19547  lsslinds  21777  wilthlem3  27027  ausgrusgrb  29164  umgrres1lem  29309  umgrres1  29313  nbupgrres  29363  cusgrexilem2  29441  cusgrsize  29454  cycpmconjslem2  33165  diophrw  42916  lnrfg  43276  rclexi  43772  cnvrcl0  43782  dfrtrcl5  43786  dfrcl2  43831  brfvrcld2  43849  iunrelexp0  43859  relexpiidm  43861  relexp01min  43870  dvsid  44488  fourierdlem60  46326  fourierdlem61  46327  stgredg  48118  gpgedg  48207  uspgrsprfo  48310  imaidfu  49271  idfudiag1lem  49684
  Copyright terms: Public domain W3C validator