MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnresi Structured version   Visualization version   GIF version

Theorem rnresi 5972
Description: The range of the restricted identity function. (Contributed by NM, 27-Aug-2004.)
Assertion
Ref Expression
rnresi ran ( I ↾ 𝐴) = 𝐴

Proof of Theorem rnresi
StepHypRef Expression
1 df-ima 5593 . 2 ( I “ 𝐴) = ran ( I ↾ 𝐴)
2 imai 5971 . 2 ( I “ 𝐴) = 𝐴
31, 2eqtr3i 2768 1 ran ( I ↾ 𝐴) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539   I cid 5479  ran crn 5581  cres 5582  cima 5583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593
This theorem is referenced by:  resiima  5973  iordsmo  8159  dfac9  9823  relexprng  14685  relexpfld  14688  restid2  17058  sylow1lem2  19119  sylow3lem1  19147  lsslinds  20948  wilthlem3  26124  ausgrusgrb  27438  umgrres1lem  27580  umgrres1  27584  nbupgrres  27634  cusgrexilem2  27712  cusgrsize  27724  cycpmconjslem2  31324  diophrw  40497  lnrfg  40860  rclexi  41112  cnvrcl0  41122  dfrtrcl5  41126  dfrcl2  41171  brfvrcld2  41189  iunrelexp0  41199  relexpiidm  41201  relexp01min  41210  dvsid  41838  fourierdlem60  43597  fourierdlem61  43598  uspgrsprfo  45198
  Copyright terms: Public domain W3C validator