MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnresi Structured version   Visualization version   GIF version

Theorem rnresi 6049
Description: The range of the restricted identity function. (Contributed by NM, 27-Aug-2004.)
Assertion
Ref Expression
rnresi ran ( I ↾ 𝐴) = 𝐴

Proof of Theorem rnresi
StepHypRef Expression
1 df-ima 5654 . 2 ( I “ 𝐴) = ran ( I ↾ 𝐴)
2 imai 6048 . 2 ( I “ 𝐴) = 𝐴
31, 2eqtr3i 2755 1 ran ( I ↾ 𝐴) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540   I cid 5535  ran crn 5642  cres 5643  cima 5644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654
This theorem is referenced by:  resiima  6050  iordsmo  8329  dfac9  10097  relexprng  15019  relexpfld  15022  restid2  17400  sylow1lem2  19536  sylow3lem1  19564  lsslinds  21747  wilthlem3  26987  ausgrusgrb  29099  umgrres1lem  29244  umgrres1  29248  nbupgrres  29298  cusgrexilem2  29376  cusgrsize  29389  cycpmconjslem2  33119  diophrw  42754  lnrfg  43115  rclexi  43611  cnvrcl0  43621  dfrtrcl5  43625  dfrcl2  43670  brfvrcld2  43688  iunrelexp0  43698  relexpiidm  43700  relexp01min  43709  dvsid  44327  fourierdlem60  46171  fourierdlem61  46172  stgredg  47959  gpgedg  48040  uspgrsprfo  48140  imaidfu  49103  idfudiag1lem  49516
  Copyright terms: Public domain W3C validator