![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnresi | Structured version Visualization version GIF version |
Description: The range of the restricted identity function. (Contributed by NM, 27-Aug-2004.) |
Ref | Expression |
---|---|
rnresi | ⊢ ran ( I ↾ 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5370 | . 2 ⊢ ( I “ 𝐴) = ran ( I ↾ 𝐴) | |
2 | imai 5734 | . 2 ⊢ ( I “ 𝐴) = 𝐴 | |
3 | 1, 2 | eqtr3i 2804 | 1 ⊢ ran ( I ↾ 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1601 I cid 5262 ran crn 5358 ↾ cres 5359 “ cima 5360 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pr 5140 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-br 4889 df-opab 4951 df-id 5263 df-xp 5363 df-rel 5364 df-cnv 5365 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 |
This theorem is referenced by: resiima 5736 idssxpOLD 6257 iordsmo 7739 dfac9 9295 relexprng 14199 relexpfld 14202 restid2 16488 sylow1lem2 18409 sylow3lem1 18437 lsslinds 20585 wilthlem3 25259 ausgrusgrb 26531 umgrres1lem 26674 umgrres1 26678 nbupgrres 26728 cusgrexilem2 26807 cusgrsize 26819 diophrw 38296 lnrfg 38662 rclexi 38893 rtrclex 38895 rtrclexi 38899 cnvrcl0 38903 dfrtrcl5 38907 dfrcl2 38937 brfvrcld2 38955 iunrelexp0 38965 relexpiidm 38967 relexp01min 38976 idhe 39051 dvsid 39500 fourierdlem60 41324 fourierdlem61 41325 uspgrsprfo 42785 |
Copyright terms: Public domain | W3C validator |