| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnresi | Structured version Visualization version GIF version | ||
| Description: The range of the restricted identity function. (Contributed by NM, 27-Aug-2004.) |
| Ref | Expression |
|---|---|
| rnresi | ⊢ ran ( I ↾ 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5636 | . 2 ⊢ ( I “ 𝐴) = ran ( I ↾ 𝐴) | |
| 2 | imai 6029 | . 2 ⊢ ( I “ 𝐴) = 𝐴 | |
| 3 | 1, 2 | eqtr3i 2754 | 1 ⊢ ran ( I ↾ 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 I cid 5517 ran crn 5624 ↾ cres 5625 “ cima 5626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 |
| This theorem is referenced by: resiima 6031 iordsmo 8287 dfac9 10050 relexprng 14972 relexpfld 14975 restid2 17353 sylow1lem2 19497 sylow3lem1 19525 lsslinds 21757 wilthlem3 26997 ausgrusgrb 29129 umgrres1lem 29274 umgrres1 29278 nbupgrres 29328 cusgrexilem2 29406 cusgrsize 29419 cycpmconjslem2 33116 diophrw 42752 lnrfg 43112 rclexi 43608 cnvrcl0 43618 dfrtrcl5 43622 dfrcl2 43667 brfvrcld2 43685 iunrelexp0 43695 relexpiidm 43697 relexp01min 43706 dvsid 44324 fourierdlem60 46167 fourierdlem61 46168 stgredg 47960 gpgedg 48049 uspgrsprfo 48152 imaidfu 49115 idfudiag1lem 49528 |
| Copyright terms: Public domain | W3C validator |