MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnresi Structured version   Visualization version   GIF version

Theorem rnresi 6019
Description: The range of the restricted identity function. (Contributed by NM, 27-Aug-2004.)
Assertion
Ref Expression
rnresi ran ( I ↾ 𝐴) = 𝐴

Proof of Theorem rnresi
StepHypRef Expression
1 df-ima 5624 . 2 ( I “ 𝐴) = ran ( I ↾ 𝐴)
2 imai 6018 . 2 ( I “ 𝐴) = 𝐴
31, 2eqtr3i 2756 1 ran ( I ↾ 𝐴) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541   I cid 5505  ran crn 5612  cres 5613  cima 5614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624
This theorem is referenced by:  resiima  6020  iordsmo  8272  dfac9  10023  relexprng  14948  relexpfld  14951  restid2  17329  sylow1lem2  19506  sylow3lem1  19534  lsslinds  21763  wilthlem3  27002  ausgrusgrb  29138  umgrres1lem  29283  umgrres1  29287  nbupgrres  29337  cusgrexilem2  29415  cusgrsize  29428  cycpmconjslem2  33116  diophrw  42792  lnrfg  43152  rclexi  43648  cnvrcl0  43658  dfrtrcl5  43662  dfrcl2  43707  brfvrcld2  43725  iunrelexp0  43735  relexpiidm  43737  relexp01min  43746  dvsid  44364  fourierdlem60  46204  fourierdlem61  46205  stgredg  47987  gpgedg  48076  uspgrsprfo  48179  imaidfu  49142  idfudiag1lem  49555
  Copyright terms: Public domain W3C validator