MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnresi Structured version   Visualization version   GIF version

Theorem rnresi 6046
Description: The range of the restricted identity function. (Contributed by NM, 27-Aug-2004.)
Assertion
Ref Expression
rnresi ran ( I ↾ 𝐴) = 𝐴

Proof of Theorem rnresi
StepHypRef Expression
1 df-ima 5651 . 2 ( I “ 𝐴) = ran ( I ↾ 𝐴)
2 imai 6045 . 2 ( I “ 𝐴) = 𝐴
31, 2eqtr3i 2754 1 ran ( I ↾ 𝐴) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540   I cid 5532  ran crn 5639  cres 5640  cima 5641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651
This theorem is referenced by:  resiima  6047  iordsmo  8326  dfac9  10090  relexprng  15012  relexpfld  15015  restid2  17393  sylow1lem2  19529  sylow3lem1  19557  lsslinds  21740  wilthlem3  26980  ausgrusgrb  29092  umgrres1lem  29237  umgrres1  29241  nbupgrres  29291  cusgrexilem2  29369  cusgrsize  29382  cycpmconjslem2  33112  diophrw  42747  lnrfg  43108  rclexi  43604  cnvrcl0  43614  dfrtrcl5  43618  dfrcl2  43663  brfvrcld2  43681  iunrelexp0  43691  relexpiidm  43693  relexp01min  43702  dvsid  44320  fourierdlem60  46164  fourierdlem61  46165  stgredg  47955  gpgedg  48036  uspgrsprfo  48136  imaidfu  49099  idfudiag1lem  49512
  Copyright terms: Public domain W3C validator