MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnresi Structured version   Visualization version   GIF version

Theorem rnresi 6104
Description: The range of the restricted identity function. (Contributed by NM, 27-Aug-2004.)
Assertion
Ref Expression
rnresi ran ( I ↾ 𝐴) = 𝐴

Proof of Theorem rnresi
StepHypRef Expression
1 df-ima 5713 . 2 ( I “ 𝐴) = ran ( I ↾ 𝐴)
2 imai 6103 . 2 ( I “ 𝐴) = 𝐴
31, 2eqtr3i 2770 1 ran ( I ↾ 𝐴) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537   I cid 5592  ran crn 5701  cres 5702  cima 5703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713
This theorem is referenced by:  resiima  6105  iordsmo  8413  dfac9  10206  relexprng  15095  relexpfld  15098  restid2  17490  sylow1lem2  19641  sylow3lem1  19669  lsslinds  21874  wilthlem3  27131  ausgrusgrb  29200  umgrres1lem  29345  umgrres1  29349  nbupgrres  29399  cusgrexilem2  29477  cusgrsize  29490  cycpmconjslem2  33148  diophrw  42715  lnrfg  43076  rclexi  43577  cnvrcl0  43587  dfrtrcl5  43591  dfrcl2  43636  brfvrcld2  43654  iunrelexp0  43664  relexpiidm  43666  relexp01min  43675  dvsid  44300  fourierdlem60  46087  fourierdlem61  46088  uspgrsprfo  47871
  Copyright terms: Public domain W3C validator