| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnresi | Structured version Visualization version GIF version | ||
| Description: The range of the restricted identity function. (Contributed by NM, 27-Aug-2004.) |
| Ref | Expression |
|---|---|
| rnresi | ⊢ ran ( I ↾ 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5644 | . 2 ⊢ ( I “ 𝐴) = ran ( I ↾ 𝐴) | |
| 2 | imai 6034 | . 2 ⊢ ( I “ 𝐴) = 𝐴 | |
| 3 | 1, 2 | eqtr3i 2754 | 1 ⊢ ran ( I ↾ 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 I cid 5525 ran crn 5632 ↾ cres 5633 “ cima 5634 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 |
| This theorem is referenced by: resiima 6036 iordsmo 8303 dfac9 10066 relexprng 14988 relexpfld 14991 restid2 17369 sylow1lem2 19505 sylow3lem1 19533 lsslinds 21716 wilthlem3 26956 ausgrusgrb 29068 umgrres1lem 29213 umgrres1 29217 nbupgrres 29267 cusgrexilem2 29345 cusgrsize 29358 cycpmconjslem2 33085 diophrw 42720 lnrfg 43081 rclexi 43577 cnvrcl0 43587 dfrtrcl5 43591 dfrcl2 43636 brfvrcld2 43654 iunrelexp0 43664 relexpiidm 43666 relexp01min 43675 dvsid 44293 fourierdlem60 46137 fourierdlem61 46138 stgredg 47928 gpgedg 48009 uspgrsprfo 48109 imaidfu 49072 idfudiag1lem 49485 |
| Copyright terms: Public domain | W3C validator |