![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnresi | Structured version Visualization version GIF version |
Description: The range of the restricted identity function. (Contributed by NM, 27-Aug-2004.) |
Ref | Expression |
---|---|
rnresi | ⊢ ran ( I ↾ 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5713 | . 2 ⊢ ( I “ 𝐴) = ran ( I ↾ 𝐴) | |
2 | imai 6103 | . 2 ⊢ ( I “ 𝐴) = 𝐴 | |
3 | 1, 2 | eqtr3i 2770 | 1 ⊢ ran ( I ↾ 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 I cid 5592 ran crn 5701 ↾ cres 5702 “ cima 5703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 |
This theorem is referenced by: resiima 6105 iordsmo 8413 dfac9 10206 relexprng 15095 relexpfld 15098 restid2 17490 sylow1lem2 19641 sylow3lem1 19669 lsslinds 21874 wilthlem3 27131 ausgrusgrb 29200 umgrres1lem 29345 umgrres1 29349 nbupgrres 29399 cusgrexilem2 29477 cusgrsize 29490 cycpmconjslem2 33148 diophrw 42715 lnrfg 43076 rclexi 43577 cnvrcl0 43587 dfrtrcl5 43591 dfrcl2 43636 brfvrcld2 43654 iunrelexp0 43664 relexpiidm 43666 relexp01min 43675 dvsid 44300 fourierdlem60 46087 fourierdlem61 46088 uspgrsprfo 47871 |
Copyright terms: Public domain | W3C validator |