MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnresi Structured version   Visualization version   GIF version

Theorem rnresi 6062
Description: The range of the restricted identity function. (Contributed by NM, 27-Aug-2004.)
Assertion
Ref Expression
rnresi ran ( I ↾ 𝐴) = 𝐴

Proof of Theorem rnresi
StepHypRef Expression
1 df-ima 5667 . 2 ( I “ 𝐴) = ran ( I ↾ 𝐴)
2 imai 6061 . 2 ( I “ 𝐴) = 𝐴
31, 2eqtr3i 2760 1 ran ( I ↾ 𝐴) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540   I cid 5547  ran crn 5655  cres 5656  cima 5657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667
This theorem is referenced by:  resiima  6063  iordsmo  8369  dfac9  10149  relexprng  15063  relexpfld  15066  restid2  17442  sylow1lem2  19578  sylow3lem1  19606  lsslinds  21789  wilthlem3  27030  ausgrusgrb  29090  umgrres1lem  29235  umgrres1  29239  nbupgrres  29289  cusgrexilem2  29367  cusgrsize  29380  cycpmconjslem2  33112  diophrw  42729  lnrfg  43090  rclexi  43586  cnvrcl0  43596  dfrtrcl5  43600  dfrcl2  43645  brfvrcld2  43663  iunrelexp0  43673  relexpiidm  43675  relexp01min  43684  dvsid  44303  fourierdlem60  46143  fourierdlem61  46144  stgredg  47916  gpgedg  47997  uspgrsprfo  48071  imaidfu  49017  idfudiag1lem  49356
  Copyright terms: Public domain W3C validator