| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnresi | Structured version Visualization version GIF version | ||
| Description: The range of the restricted identity function. (Contributed by NM, 27-Aug-2004.) |
| Ref | Expression |
|---|---|
| rnresi | ⊢ ran ( I ↾ 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5654 | . 2 ⊢ ( I “ 𝐴) = ran ( I ↾ 𝐴) | |
| 2 | imai 6048 | . 2 ⊢ ( I “ 𝐴) = 𝐴 | |
| 3 | 1, 2 | eqtr3i 2755 | 1 ⊢ ran ( I ↾ 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 I cid 5535 ran crn 5642 ↾ cres 5643 “ cima 5644 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 |
| This theorem is referenced by: resiima 6050 iordsmo 8329 dfac9 10097 relexprng 15019 relexpfld 15022 restid2 17400 sylow1lem2 19536 sylow3lem1 19564 lsslinds 21747 wilthlem3 26987 ausgrusgrb 29099 umgrres1lem 29244 umgrres1 29248 nbupgrres 29298 cusgrexilem2 29376 cusgrsize 29389 cycpmconjslem2 33119 diophrw 42754 lnrfg 43115 rclexi 43611 cnvrcl0 43621 dfrtrcl5 43625 dfrcl2 43670 brfvrcld2 43688 iunrelexp0 43698 relexpiidm 43700 relexp01min 43709 dvsid 44327 fourierdlem60 46171 fourierdlem61 46172 stgredg 47959 gpgedg 48040 uspgrsprfo 48140 imaidfu 49103 idfudiag1lem 49516 |
| Copyright terms: Public domain | W3C validator |