| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnresi | Structured version Visualization version GIF version | ||
| Description: The range of the restricted identity function. (Contributed by NM, 27-Aug-2004.) |
| Ref | Expression |
|---|---|
| rnresi | ⊢ ran ( I ↾ 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5651 | . 2 ⊢ ( I “ 𝐴) = ran ( I ↾ 𝐴) | |
| 2 | imai 6045 | . 2 ⊢ ( I “ 𝐴) = 𝐴 | |
| 3 | 1, 2 | eqtr3i 2754 | 1 ⊢ ran ( I ↾ 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 I cid 5532 ran crn 5639 ↾ cres 5640 “ cima 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 |
| This theorem is referenced by: resiima 6047 iordsmo 8326 dfac9 10090 relexprng 15012 relexpfld 15015 restid2 17393 sylow1lem2 19529 sylow3lem1 19557 lsslinds 21740 wilthlem3 26980 ausgrusgrb 29092 umgrres1lem 29237 umgrres1 29241 nbupgrres 29291 cusgrexilem2 29369 cusgrsize 29382 cycpmconjslem2 33112 diophrw 42747 lnrfg 43108 rclexi 43604 cnvrcl0 43614 dfrtrcl5 43618 dfrcl2 43663 brfvrcld2 43681 iunrelexp0 43691 relexpiidm 43693 relexp01min 43702 dvsid 44320 fourierdlem60 46164 fourierdlem61 46165 stgredg 47955 gpgedg 48036 uspgrsprfo 48136 imaidfu 49099 idfudiag1lem 49512 |
| Copyright terms: Public domain | W3C validator |