MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnresi Structured version   Visualization version   GIF version

Theorem rnresi 5983
Description: The range of the restricted identity function. (Contributed by NM, 27-Aug-2004.)
Assertion
Ref Expression
rnresi ran ( I ↾ 𝐴) = 𝐴

Proof of Theorem rnresi
StepHypRef Expression
1 df-ima 5602 . 2 ( I “ 𝐴) = ran ( I ↾ 𝐴)
2 imai 5982 . 2 ( I “ 𝐴) = 𝐴
31, 2eqtr3i 2768 1 ran ( I ↾ 𝐴) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539   I cid 5488  ran crn 5590  cres 5591  cima 5592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602
This theorem is referenced by:  resiima  5984  iordsmo  8188  dfac9  9892  relexprng  14757  relexpfld  14760  restid2  17141  sylow1lem2  19204  sylow3lem1  19232  lsslinds  21038  wilthlem3  26219  ausgrusgrb  27535  umgrres1lem  27677  umgrres1  27681  nbupgrres  27731  cusgrexilem2  27809  cusgrsize  27821  cycpmconjslem2  31422  diophrw  40581  lnrfg  40944  rclexi  41223  cnvrcl0  41233  dfrtrcl5  41237  dfrcl2  41282  brfvrcld2  41300  iunrelexp0  41310  relexpiidm  41312  relexp01min  41321  dvsid  41949  fourierdlem60  43707  fourierdlem61  43708  uspgrsprfo  45310
  Copyright terms: Public domain W3C validator