Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rnresi | Structured version Visualization version GIF version |
Description: The range of the restricted identity function. (Contributed by NM, 27-Aug-2004.) |
Ref | Expression |
---|---|
rnresi | ⊢ ran ( I ↾ 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5602 | . 2 ⊢ ( I “ 𝐴) = ran ( I ↾ 𝐴) | |
2 | imai 5982 | . 2 ⊢ ( I “ 𝐴) = 𝐴 | |
3 | 1, 2 | eqtr3i 2768 | 1 ⊢ ran ( I ↾ 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 I cid 5488 ran crn 5590 ↾ cres 5591 “ cima 5592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 |
This theorem is referenced by: resiima 5984 iordsmo 8188 dfac9 9892 relexprng 14757 relexpfld 14760 restid2 17141 sylow1lem2 19204 sylow3lem1 19232 lsslinds 21038 wilthlem3 26219 ausgrusgrb 27535 umgrres1lem 27677 umgrres1 27681 nbupgrres 27731 cusgrexilem2 27809 cusgrsize 27821 cycpmconjslem2 31422 diophrw 40581 lnrfg 40944 rclexi 41223 cnvrcl0 41233 dfrtrcl5 41237 dfrcl2 41282 brfvrcld2 41300 iunrelexp0 41310 relexpiidm 41312 relexp01min 41321 dvsid 41949 fourierdlem60 43707 fourierdlem61 43708 uspgrsprfo 45310 |
Copyright terms: Public domain | W3C validator |