| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnresi | Structured version Visualization version GIF version | ||
| Description: The range of the restricted identity function. (Contributed by NM, 27-Aug-2004.) |
| Ref | Expression |
|---|---|
| rnresi | ⊢ ran ( I ↾ 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5634 | . 2 ⊢ ( I “ 𝐴) = ran ( I ↾ 𝐴) | |
| 2 | imai 6030 | . 2 ⊢ ( I “ 𝐴) = 𝐴 | |
| 3 | 1, 2 | eqtr3i 2758 | 1 ⊢ ran ( I ↾ 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 I cid 5515 ran crn 5622 ↾ cres 5623 “ cima 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 |
| This theorem is referenced by: resiima 6032 f1oi 6809 iordsmo 8286 dfac9 10039 relexprng 14960 relexpfld 14963 restid2 17341 sylow1lem2 19519 sylow3lem1 19547 lsslinds 21777 wilthlem3 27027 ausgrusgrb 29164 umgrres1lem 29309 umgrres1 29313 nbupgrres 29363 cusgrexilem2 29441 cusgrsize 29454 cycpmconjslem2 33165 diophrw 42916 lnrfg 43276 rclexi 43772 cnvrcl0 43782 dfrtrcl5 43786 dfrcl2 43831 brfvrcld2 43849 iunrelexp0 43859 relexpiidm 43861 relexp01min 43870 dvsid 44488 fourierdlem60 46326 fourierdlem61 46327 stgredg 48118 gpgedg 48207 uspgrsprfo 48310 imaidfu 49271 idfudiag1lem 49684 |
| Copyright terms: Public domain | W3C validator |