| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnresi | Structured version Visualization version GIF version | ||
| Description: The range of the restricted identity function. (Contributed by NM, 27-Aug-2004.) |
| Ref | Expression |
|---|---|
| rnresi | ⊢ ran ( I ↾ 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5667 | . 2 ⊢ ( I “ 𝐴) = ran ( I ↾ 𝐴) | |
| 2 | imai 6061 | . 2 ⊢ ( I “ 𝐴) = 𝐴 | |
| 3 | 1, 2 | eqtr3i 2760 | 1 ⊢ ran ( I ↾ 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 I cid 5547 ran crn 5655 ↾ cres 5656 “ cima 5657 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 |
| This theorem is referenced by: resiima 6063 iordsmo 8369 dfac9 10149 relexprng 15063 relexpfld 15066 restid2 17442 sylow1lem2 19578 sylow3lem1 19606 lsslinds 21789 wilthlem3 27030 ausgrusgrb 29090 umgrres1lem 29235 umgrres1 29239 nbupgrres 29289 cusgrexilem2 29367 cusgrsize 29380 cycpmconjslem2 33112 diophrw 42729 lnrfg 43090 rclexi 43586 cnvrcl0 43596 dfrtrcl5 43600 dfrcl2 43645 brfvrcld2 43663 iunrelexp0 43673 relexpiidm 43675 relexp01min 43684 dvsid 44303 fourierdlem60 46143 fourierdlem61 46144 stgredg 47916 gpgedg 47997 uspgrsprfo 48071 imaidfu 49017 idfudiag1lem 49356 |
| Copyright terms: Public domain | W3C validator |