| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idfudiag1bas | Structured version Visualization version GIF version | ||
| Description: If the identity functor of a category is the same as a constant functor to the category, then the base is a singleton. (Contributed by Zhi Wang, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| idfudiag1.i | ⊢ 𝐼 = (idfunc‘𝐶) |
| idfudiag1.l | ⊢ 𝐿 = (𝐶Δfunc𝐶) |
| idfudiag1.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| idfudiag1.b | ⊢ 𝐵 = (Base‘𝐶) |
| idfudiag1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| idfudiag1.k | ⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) |
| idfudiag1.e | ⊢ (𝜑 → 𝐼 = 𝐾) |
| Ref | Expression |
|---|---|
| idfudiag1bas | ⊢ (𝜑 → 𝐵 = {𝑋}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfudiag1.e | . . . 4 ⊢ (𝜑 → 𝐼 = 𝐾) | |
| 2 | idfudiag1.i | . . . . 5 ⊢ 𝐼 = (idfunc‘𝐶) | |
| 3 | idfudiag1.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
| 4 | idfudiag1.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 5 | eqid 2736 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 6 | 2, 3, 4, 5 | idfuval 17894 | . . . 4 ⊢ (𝜑 → 𝐼 = 〈( I ↾ 𝐵), (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝)))〉) |
| 7 | idfudiag1.l | . . . . 5 ⊢ 𝐿 = (𝐶Δfunc𝐶) | |
| 8 | idfudiag1.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 9 | idfudiag1.k | . . . . 5 ⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) | |
| 10 | eqid 2736 | . . . . 5 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 11 | 7, 4, 4, 3, 8, 9, 3, 5, 10 | diag1a 49183 | . . . 4 ⊢ (𝜑 → 𝐾 = 〈(𝐵 × {𝑋}), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)}))〉) |
| 12 | 1, 6, 11 | 3eqtr3d 2779 | . . 3 ⊢ (𝜑 → 〈( I ↾ 𝐵), (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝)))〉 = 〈(𝐵 × {𝑋}), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)}))〉) |
| 13 | 3 | fvexi 6895 | . . . . 5 ⊢ 𝐵 ∈ V |
| 14 | resiexg 7913 | . . . . 5 ⊢ (𝐵 ∈ V → ( I ↾ 𝐵) ∈ V) | |
| 15 | 13, 14 | ax-mp 5 | . . . 4 ⊢ ( I ↾ 𝐵) ∈ V |
| 16 | 13, 13 | xpex 7752 | . . . . 5 ⊢ (𝐵 × 𝐵) ∈ V |
| 17 | 16 | mptex 7220 | . . . 4 ⊢ (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝))) ∈ V |
| 18 | 15, 17 | opth1 5455 | . . 3 ⊢ (〈( I ↾ 𝐵), (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝)))〉 = 〈(𝐵 × {𝑋}), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)}))〉 → ( I ↾ 𝐵) = (𝐵 × {𝑋})) |
| 19 | 12, 18 | syl 17 | . 2 ⊢ (𝜑 → ( I ↾ 𝐵) = (𝐵 × {𝑋})) |
| 20 | 8 | ne0d 4322 | . 2 ⊢ (𝜑 → 𝐵 ≠ ∅) |
| 21 | 19, 20 | idfudiag1lem 49375 | 1 ⊢ (𝜑 → 𝐵 = {𝑋}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3464 {csn 4606 〈cop 4612 ↦ cmpt 5206 I cid 5552 × cxp 5657 ↾ cres 5661 ‘cfv 6536 (class class class)co 7410 ∈ cmpo 7412 1st c1st 7991 Basecbs 17233 Hom chom 17287 Catccat 17681 Idccid 17682 idfunccidfu 17873 Δfunccdiag 18229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-struct 17171 df-slot 17206 df-ndx 17218 df-base 17234 df-hom 17300 df-cco 17301 df-cat 17685 df-cid 17686 df-func 17876 df-idfu 17877 df-nat 17964 df-fuc 17965 df-xpc 18189 df-1stf 18190 df-curf 18231 df-diag 18233 |
| This theorem is referenced by: idfudiag1 49377 |
| Copyright terms: Public domain | W3C validator |