| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idfudiag1bas | Structured version Visualization version GIF version | ||
| Description: If the identity functor of a category is the same as a constant functor to the category, then the base is a singleton. (Contributed by Zhi Wang, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| idfudiag1.i | ⊢ 𝐼 = (idfunc‘𝐶) |
| idfudiag1.l | ⊢ 𝐿 = (𝐶Δfunc𝐶) |
| idfudiag1.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| idfudiag1.b | ⊢ 𝐵 = (Base‘𝐶) |
| idfudiag1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| idfudiag1.k | ⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) |
| idfudiag1.e | ⊢ (𝜑 → 𝐼 = 𝐾) |
| Ref | Expression |
|---|---|
| idfudiag1bas | ⊢ (𝜑 → 𝐵 = {𝑋}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfudiag1.e | . . . 4 ⊢ (𝜑 → 𝐼 = 𝐾) | |
| 2 | idfudiag1.i | . . . . 5 ⊢ 𝐼 = (idfunc‘𝐶) | |
| 3 | idfudiag1.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
| 4 | idfudiag1.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 5 | eqid 2729 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 6 | 2, 3, 4, 5 | idfuval 17838 | . . . 4 ⊢ (𝜑 → 𝐼 = 〈( I ↾ 𝐵), (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝)))〉) |
| 7 | idfudiag1.l | . . . . 5 ⊢ 𝐿 = (𝐶Δfunc𝐶) | |
| 8 | idfudiag1.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 9 | idfudiag1.k | . . . . 5 ⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) | |
| 10 | eqid 2729 | . . . . 5 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 11 | 7, 4, 4, 3, 8, 9, 3, 5, 10 | diag1a 49291 | . . . 4 ⊢ (𝜑 → 𝐾 = 〈(𝐵 × {𝑋}), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)}))〉) |
| 12 | 1, 6, 11 | 3eqtr3d 2772 | . . 3 ⊢ (𝜑 → 〈( I ↾ 𝐵), (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝)))〉 = 〈(𝐵 × {𝑋}), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)}))〉) |
| 13 | 3 | fvexi 6872 | . . . . 5 ⊢ 𝐵 ∈ V |
| 14 | resiexg 7888 | . . . . 5 ⊢ (𝐵 ∈ V → ( I ↾ 𝐵) ∈ V) | |
| 15 | 13, 14 | ax-mp 5 | . . . 4 ⊢ ( I ↾ 𝐵) ∈ V |
| 16 | 13, 13 | xpex 7729 | . . . . 5 ⊢ (𝐵 × 𝐵) ∈ V |
| 17 | 16 | mptex 7197 | . . . 4 ⊢ (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝))) ∈ V |
| 18 | 15, 17 | opth1 5435 | . . 3 ⊢ (〈( I ↾ 𝐵), (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝)))〉 = 〈(𝐵 × {𝑋}), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)}))〉 → ( I ↾ 𝐵) = (𝐵 × {𝑋})) |
| 19 | 12, 18 | syl 17 | . 2 ⊢ (𝜑 → ( I ↾ 𝐵) = (𝐵 × {𝑋})) |
| 20 | 8 | ne0d 4305 | . 2 ⊢ (𝜑 → 𝐵 ≠ ∅) |
| 21 | 19, 20 | idfudiag1lem 49509 | 1 ⊢ (𝜑 → 𝐵 = {𝑋}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 {csn 4589 〈cop 4595 ↦ cmpt 5188 I cid 5532 × cxp 5636 ↾ cres 5640 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 1st c1st 7966 Basecbs 17179 Hom chom 17231 Catccat 17625 Idccid 17626 idfunccidfu 17817 Δfunccdiag 18173 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-slot 17152 df-ndx 17164 df-base 17180 df-hom 17244 df-cco 17245 df-cat 17629 df-cid 17630 df-func 17820 df-idfu 17821 df-nat 17908 df-fuc 17909 df-xpc 18133 df-1stf 18134 df-curf 18175 df-diag 18177 |
| This theorem is referenced by: idfudiag1 49511 |
| Copyright terms: Public domain | W3C validator |