| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idfudiag1bas | Structured version Visualization version GIF version | ||
| Description: If the identity functor of a category is the same as a constant functor to the category, then the base is a singleton. (Contributed by Zhi Wang, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| idfudiag1.i | ⊢ 𝐼 = (idfunc‘𝐶) |
| idfudiag1.l | ⊢ 𝐿 = (𝐶Δfunc𝐶) |
| idfudiag1.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| idfudiag1.b | ⊢ 𝐵 = (Base‘𝐶) |
| idfudiag1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| idfudiag1.k | ⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) |
| idfudiag1.e | ⊢ (𝜑 → 𝐼 = 𝐾) |
| Ref | Expression |
|---|---|
| idfudiag1bas | ⊢ (𝜑 → 𝐵 = {𝑋}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfudiag1.e | . . . 4 ⊢ (𝜑 → 𝐼 = 𝐾) | |
| 2 | idfudiag1.i | . . . . 5 ⊢ 𝐼 = (idfunc‘𝐶) | |
| 3 | idfudiag1.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
| 4 | idfudiag1.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 5 | eqid 2729 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 6 | 2, 3, 4, 5 | idfuval 17820 | . . . 4 ⊢ (𝜑 → 𝐼 = 〈( I ↾ 𝐵), (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝)))〉) |
| 7 | idfudiag1.l | . . . . 5 ⊢ 𝐿 = (𝐶Δfunc𝐶) | |
| 8 | idfudiag1.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 9 | idfudiag1.k | . . . . 5 ⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) | |
| 10 | eqid 2729 | . . . . 5 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 11 | 7, 4, 4, 3, 8, 9, 3, 5, 10 | diag1a 49289 | . . . 4 ⊢ (𝜑 → 𝐾 = 〈(𝐵 × {𝑋}), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)}))〉) |
| 12 | 1, 6, 11 | 3eqtr3d 2772 | . . 3 ⊢ (𝜑 → 〈( I ↾ 𝐵), (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝)))〉 = 〈(𝐵 × {𝑋}), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)}))〉) |
| 13 | 3 | fvexi 6855 | . . . . 5 ⊢ 𝐵 ∈ V |
| 14 | resiexg 7869 | . . . . 5 ⊢ (𝐵 ∈ V → ( I ↾ 𝐵) ∈ V) | |
| 15 | 13, 14 | ax-mp 5 | . . . 4 ⊢ ( I ↾ 𝐵) ∈ V |
| 16 | 13, 13 | xpex 7710 | . . . . 5 ⊢ (𝐵 × 𝐵) ∈ V |
| 17 | 16 | mptex 7180 | . . . 4 ⊢ (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝))) ∈ V |
| 18 | 15, 17 | opth1 5430 | . . 3 ⊢ (〈( I ↾ 𝐵), (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝)))〉 = 〈(𝐵 × {𝑋}), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)}))〉 → ( I ↾ 𝐵) = (𝐵 × {𝑋})) |
| 19 | 12, 18 | syl 17 | . 2 ⊢ (𝜑 → ( I ↾ 𝐵) = (𝐵 × {𝑋})) |
| 20 | 8 | ne0d 4301 | . 2 ⊢ (𝜑 → 𝐵 ≠ ∅) |
| 21 | 19, 20 | idfudiag1lem 49507 | 1 ⊢ (𝜑 → 𝐵 = {𝑋}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3444 {csn 4585 〈cop 4591 ↦ cmpt 5183 I cid 5525 × cxp 5629 ↾ cres 5633 ‘cfv 6500 (class class class)co 7370 ∈ cmpo 7372 1st c1st 7946 Basecbs 17157 Hom chom 17209 Catccat 17607 Idccid 17608 idfunccidfu 17799 Δfunccdiag 18155 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7692 ax-cnex 11103 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-addrcl 11108 ax-mulcl 11109 ax-mulrcl 11110 ax-mulcom 11111 ax-addass 11112 ax-mulass 11113 ax-distr 11114 ax-i2m1 11115 ax-1ne0 11116 ax-1rid 11117 ax-rnegex 11118 ax-rrecex 11119 ax-cnre 11120 ax-pre-lttri 11121 ax-pre-lttrn 11122 ax-pre-ltadd 11123 ax-pre-mulgt0 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6263 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7327 df-ov 7373 df-oprab 7374 df-mpo 7375 df-om 7824 df-1st 7948 df-2nd 7949 df-frecs 8238 df-wrecs 8269 df-recs 8318 df-rdg 8356 df-1o 8412 df-er 8649 df-map 8779 df-ixp 8849 df-en 8897 df-dom 8898 df-sdom 8899 df-fin 8900 df-pnf 11189 df-mnf 11190 df-xr 11191 df-ltxr 11192 df-le 11193 df-sub 11386 df-neg 11387 df-nn 12166 df-2 12228 df-3 12229 df-4 12230 df-5 12231 df-6 12232 df-7 12233 df-8 12234 df-9 12235 df-n0 12422 df-z 12509 df-dec 12629 df-uz 12773 df-fz 13448 df-struct 17095 df-slot 17130 df-ndx 17142 df-base 17158 df-hom 17222 df-cco 17223 df-cat 17611 df-cid 17612 df-func 17802 df-idfu 17803 df-nat 17890 df-fuc 17891 df-xpc 18115 df-1stf 18116 df-curf 18157 df-diag 18159 |
| This theorem is referenced by: idfudiag1 49509 |
| Copyright terms: Public domain | W3C validator |