| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idfudiag1bas | Structured version Visualization version GIF version | ||
| Description: If the identity functor of a category is the same as a constant functor to the category, then the base is a singleton. (Contributed by Zhi Wang, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| idfudiag1.i | ⊢ 𝐼 = (idfunc‘𝐶) |
| idfudiag1.l | ⊢ 𝐿 = (𝐶Δfunc𝐶) |
| idfudiag1.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| idfudiag1.b | ⊢ 𝐵 = (Base‘𝐶) |
| idfudiag1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| idfudiag1.k | ⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) |
| idfudiag1.e | ⊢ (𝜑 → 𝐼 = 𝐾) |
| Ref | Expression |
|---|---|
| idfudiag1bas | ⊢ (𝜑 → 𝐵 = {𝑋}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfudiag1.e | . . . 4 ⊢ (𝜑 → 𝐼 = 𝐾) | |
| 2 | idfudiag1.i | . . . . 5 ⊢ 𝐼 = (idfunc‘𝐶) | |
| 3 | idfudiag1.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
| 4 | idfudiag1.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 5 | eqid 2731 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 6 | 2, 3, 4, 5 | idfuval 17789 | . . . 4 ⊢ (𝜑 → 𝐼 = 〈( I ↾ 𝐵), (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝)))〉) |
| 7 | idfudiag1.l | . . . . 5 ⊢ 𝐿 = (𝐶Δfunc𝐶) | |
| 8 | idfudiag1.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 9 | idfudiag1.k | . . . . 5 ⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) | |
| 10 | eqid 2731 | . . . . 5 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 11 | 7, 4, 4, 3, 8, 9, 3, 5, 10 | diag1a 49411 | . . . 4 ⊢ (𝜑 → 𝐾 = 〈(𝐵 × {𝑋}), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)}))〉) |
| 12 | 1, 6, 11 | 3eqtr3d 2774 | . . 3 ⊢ (𝜑 → 〈( I ↾ 𝐵), (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝)))〉 = 〈(𝐵 × {𝑋}), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)}))〉) |
| 13 | 3 | fvexi 6842 | . . . . 5 ⊢ 𝐵 ∈ V |
| 14 | resiexg 7848 | . . . . 5 ⊢ (𝐵 ∈ V → ( I ↾ 𝐵) ∈ V) | |
| 15 | 13, 14 | ax-mp 5 | . . . 4 ⊢ ( I ↾ 𝐵) ∈ V |
| 16 | 13, 13 | xpex 7692 | . . . . 5 ⊢ (𝐵 × 𝐵) ∈ V |
| 17 | 16 | mptex 7163 | . . . 4 ⊢ (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝))) ∈ V |
| 18 | 15, 17 | opth1 5418 | . . 3 ⊢ (〈( I ↾ 𝐵), (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝)))〉 = 〈(𝐵 × {𝑋}), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)}))〉 → ( I ↾ 𝐵) = (𝐵 × {𝑋})) |
| 19 | 12, 18 | syl 17 | . 2 ⊢ (𝜑 → ( I ↾ 𝐵) = (𝐵 × {𝑋})) |
| 20 | 8 | ne0d 4291 | . 2 ⊢ (𝜑 → 𝐵 ≠ ∅) |
| 21 | 19, 20 | idfudiag1lem 49629 | 1 ⊢ (𝜑 → 𝐵 = {𝑋}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4575 〈cop 4581 ↦ cmpt 5174 I cid 5513 × cxp 5617 ↾ cres 5621 ‘cfv 6487 (class class class)co 7352 ∈ cmpo 7354 1st c1st 7925 Basecbs 17126 Hom chom 17178 Catccat 17576 Idccid 17577 idfunccidfu 17768 Δfunccdiag 18124 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-2 12194 df-3 12195 df-4 12196 df-5 12197 df-6 12198 df-7 12199 df-8 12200 df-9 12201 df-n0 12388 df-z 12475 df-dec 12595 df-uz 12739 df-fz 13414 df-struct 17064 df-slot 17099 df-ndx 17111 df-base 17127 df-hom 17191 df-cco 17192 df-cat 17580 df-cid 17581 df-func 17771 df-idfu 17772 df-nat 17859 df-fuc 17860 df-xpc 18084 df-1stf 18085 df-curf 18126 df-diag 18128 |
| This theorem is referenced by: idfudiag1 49631 |
| Copyright terms: Public domain | W3C validator |