| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ply1nzb | Structured version Visualization version GIF version | ||
| Description: Univariate polynomials are nonzero iff the base is nonzero. Or in contraposition, the univariate polynomials over the zero ring are also zero. (Contributed by Mario Carneiro, 13-Jun-2015.) |
| Ref | Expression |
|---|---|
| ply1domn.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| Ref | Expression |
|---|---|
| ply1nzb | ⊢ (𝑅 ∈ Ring → (𝑅 ∈ NzRing ↔ 𝑃 ∈ NzRing)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1domn.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 2 | 1 | ply1nz 26061 | . 2 ⊢ (𝑅 ∈ NzRing → 𝑃 ∈ NzRing) |
| 3 | simpl 482 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → 𝑅 ∈ Ring) | |
| 4 | eqid 2729 | . . . . . . 7 ⊢ (1r‘𝑃) = (1r‘𝑃) | |
| 5 | eqid 2729 | . . . . . . 7 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
| 6 | 4, 5 | nzrnz 20436 | . . . . . 6 ⊢ (𝑃 ∈ NzRing → (1r‘𝑃) ≠ (0g‘𝑃)) |
| 7 | 6 | adantl 481 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → (1r‘𝑃) ≠ (0g‘𝑃)) |
| 8 | ifeq1 4488 | . . . . . . . . 9 ⊢ ((1r‘𝑅) = (0g‘𝑅) → if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅)) = if(𝑦 = (1o × {0}), (0g‘𝑅), (0g‘𝑅))) | |
| 9 | ifid 4525 | . . . . . . . . 9 ⊢ if(𝑦 = (1o × {0}), (0g‘𝑅), (0g‘𝑅)) = (0g‘𝑅) | |
| 10 | 8, 9 | eqtrdi 2780 | . . . . . . . 8 ⊢ ((1r‘𝑅) = (0g‘𝑅) → if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅)) |
| 11 | 10 | ralrimivw 3129 | . . . . . . 7 ⊢ ((1r‘𝑅) = (0g‘𝑅) → ∀𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin}if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅)) |
| 12 | eqid 2729 | . . . . . . . . . 10 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
| 13 | eqid 2729 | . . . . . . . . . 10 ⊢ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} = {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} | |
| 14 | eqid 2729 | . . . . . . . . . 10 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 15 | eqid 2729 | . . . . . . . . . 10 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 16 | 12, 1, 4 | ply1mpl1 22177 | . . . . . . . . . 10 ⊢ (1r‘𝑃) = (1r‘(1o mPoly 𝑅)) |
| 17 | 1on 8423 | . . . . . . . . . . 11 ⊢ 1o ∈ On | |
| 18 | 17 | a1i 11 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → 1o ∈ On) |
| 19 | 12, 13, 14, 15, 16, 18, 3 | mpl1 21955 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → (1r‘𝑃) = (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅)))) |
| 20 | 12, 1, 5 | ply1mpl0 22175 | . . . . . . . . . . 11 ⊢ (0g‘𝑃) = (0g‘(1o mPoly 𝑅)) |
| 21 | ringgrp 20159 | . . . . . . . . . . . 12 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 22 | 3, 21 | syl 17 | . . . . . . . . . . 11 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → 𝑅 ∈ Grp) |
| 23 | 12, 13, 14, 20, 18, 22 | mpl0 21949 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → (0g‘𝑃) = ({𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} × {(0g‘𝑅)})) |
| 24 | fconstmpt 5693 | . . . . . . . . . 10 ⊢ ({𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} × {(0g‘𝑅)}) = (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (0g‘𝑅)) | |
| 25 | 23, 24 | eqtrdi 2780 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → (0g‘𝑃) = (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (0g‘𝑅))) |
| 26 | 19, 25 | eqeq12d 2745 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → ((1r‘𝑃) = (0g‘𝑃) ↔ (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅))) = (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (0g‘𝑅)))) |
| 27 | fvex 6853 | . . . . . . . . . . 11 ⊢ (1r‘𝑅) ∈ V | |
| 28 | fvex 6853 | . . . . . . . . . . 11 ⊢ (0g‘𝑅) ∈ V | |
| 29 | 27, 28 | ifex 4535 | . . . . . . . . . 10 ⊢ if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅)) ∈ V |
| 30 | 29 | rgenw 3048 | . . . . . . . . 9 ⊢ ∀𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin}if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅)) ∈ V |
| 31 | mpteqb 6969 | . . . . . . . . 9 ⊢ (∀𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin}if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅)) ∈ V → ((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅))) = (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (0g‘𝑅)) ↔ ∀𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin}if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅))) | |
| 32 | 30, 31 | ax-mp 5 | . . . . . . . 8 ⊢ ((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅))) = (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (0g‘𝑅)) ↔ ∀𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin}if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅)) |
| 33 | 26, 32 | bitrdi 287 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → ((1r‘𝑃) = (0g‘𝑃) ↔ ∀𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin}if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅))) |
| 34 | 11, 33 | imbitrrid 246 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → ((1r‘𝑅) = (0g‘𝑅) → (1r‘𝑃) = (0g‘𝑃))) |
| 35 | 34 | necon3d 2946 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → ((1r‘𝑃) ≠ (0g‘𝑃) → (1r‘𝑅) ≠ (0g‘𝑅))) |
| 36 | 7, 35 | mpd 15 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → (1r‘𝑅) ≠ (0g‘𝑅)) |
| 37 | 15, 14 | isnzr 20435 | . . . 4 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅))) |
| 38 | 3, 36, 37 | sylanbrc 583 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → 𝑅 ∈ NzRing) |
| 39 | 38 | ex 412 | . 2 ⊢ (𝑅 ∈ Ring → (𝑃 ∈ NzRing → 𝑅 ∈ NzRing)) |
| 40 | 2, 39 | impbid2 226 | 1 ⊢ (𝑅 ∈ Ring → (𝑅 ∈ NzRing ↔ 𝑃 ∈ NzRing)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 {crab 3402 Vcvv 3444 ifcif 4484 {csn 4585 ↦ cmpt 5183 × cxp 5629 ◡ccnv 5630 “ cima 5634 Oncon0 6320 ‘cfv 6499 (class class class)co 7369 1oc1o 8404 ↑m cmap 8776 Fincfn 8895 0cc0 11046 ℕcn 12164 ℕ0cn0 12420 0gc0g 17379 Grpcgrp 18848 1rcur 20102 Ringcrg 20154 NzRingcnzr 20433 mPoly cmpl 21849 Poly1cpl1 22095 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-ofr 7634 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-oi 9439 df-card 9870 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-nn 12165 df-2 12227 df-3 12228 df-4 12229 df-5 12230 df-6 12231 df-7 12232 df-8 12233 df-9 12234 df-n0 12421 df-z 12508 df-dec 12628 df-uz 12772 df-fz 13447 df-fzo 13594 df-seq 13945 df-hash 14274 df-struct 17094 df-sets 17111 df-slot 17129 df-ndx 17141 df-base 17157 df-ress 17178 df-plusg 17210 df-mulr 17211 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-hom 17221 df-cco 17222 df-0g 17381 df-gsum 17382 df-prds 17387 df-pws 17389 df-mre 17524 df-mrc 17525 df-acs 17527 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-mhm 18693 df-submnd 18694 df-grp 18851 df-minusg 18852 df-sbg 18853 df-mulg 18983 df-subg 19038 df-ghm 19128 df-cntz 19232 df-cmn 19697 df-abl 19698 df-mgp 20062 df-rng 20074 df-ur 20103 df-ring 20156 df-nzr 20434 df-subrng 20467 df-subrg 20491 df-lmod 20801 df-lss 20871 df-ascl 21798 df-psr 21852 df-mvr 21853 df-mpl 21854 df-opsr 21856 df-psr1 22098 df-vr1 22099 df-ply1 22100 df-coe1 22101 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |