| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ply1nzb | Structured version Visualization version GIF version | ||
| Description: Univariate polynomials are nonzero iff the base is nonzero. Or in contraposition, the univariate polynomials over the zero ring are also zero. (Contributed by Mario Carneiro, 13-Jun-2015.) |
| Ref | Expression |
|---|---|
| ply1domn.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| Ref | Expression |
|---|---|
| ply1nzb | ⊢ (𝑅 ∈ Ring → (𝑅 ∈ NzRing ↔ 𝑃 ∈ NzRing)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1domn.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 2 | 1 | ply1nz 26062 | . 2 ⊢ (𝑅 ∈ NzRing → 𝑃 ∈ NzRing) |
| 3 | simpl 482 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → 𝑅 ∈ Ring) | |
| 4 | eqid 2729 | . . . . . . 7 ⊢ (1r‘𝑃) = (1r‘𝑃) | |
| 5 | eqid 2729 | . . . . . . 7 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
| 6 | 4, 5 | nzrnz 20437 | . . . . . 6 ⊢ (𝑃 ∈ NzRing → (1r‘𝑃) ≠ (0g‘𝑃)) |
| 7 | 6 | adantl 481 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → (1r‘𝑃) ≠ (0g‘𝑃)) |
| 8 | ifeq1 4488 | . . . . . . . . 9 ⊢ ((1r‘𝑅) = (0g‘𝑅) → if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅)) = if(𝑦 = (1o × {0}), (0g‘𝑅), (0g‘𝑅))) | |
| 9 | ifid 4525 | . . . . . . . . 9 ⊢ if(𝑦 = (1o × {0}), (0g‘𝑅), (0g‘𝑅)) = (0g‘𝑅) | |
| 10 | 8, 9 | eqtrdi 2780 | . . . . . . . 8 ⊢ ((1r‘𝑅) = (0g‘𝑅) → if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅)) |
| 11 | 10 | ralrimivw 3129 | . . . . . . 7 ⊢ ((1r‘𝑅) = (0g‘𝑅) → ∀𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin}if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅)) |
| 12 | eqid 2729 | . . . . . . . . . 10 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
| 13 | eqid 2729 | . . . . . . . . . 10 ⊢ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} = {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} | |
| 14 | eqid 2729 | . . . . . . . . . 10 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 15 | eqid 2729 | . . . . . . . . . 10 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 16 | 12, 1, 4 | ply1mpl1 22178 | . . . . . . . . . 10 ⊢ (1r‘𝑃) = (1r‘(1o mPoly 𝑅)) |
| 17 | 1on 8424 | . . . . . . . . . . 11 ⊢ 1o ∈ On | |
| 18 | 17 | a1i 11 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → 1o ∈ On) |
| 19 | 12, 13, 14, 15, 16, 18, 3 | mpl1 21956 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → (1r‘𝑃) = (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅)))) |
| 20 | 12, 1, 5 | ply1mpl0 22176 | . . . . . . . . . . 11 ⊢ (0g‘𝑃) = (0g‘(1o mPoly 𝑅)) |
| 21 | ringgrp 20160 | . . . . . . . . . . . 12 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 22 | 3, 21 | syl 17 | . . . . . . . . . . 11 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → 𝑅 ∈ Grp) |
| 23 | 12, 13, 14, 20, 18, 22 | mpl0 21950 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → (0g‘𝑃) = ({𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} × {(0g‘𝑅)})) |
| 24 | fconstmpt 5693 | . . . . . . . . . 10 ⊢ ({𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} × {(0g‘𝑅)}) = (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (0g‘𝑅)) | |
| 25 | 23, 24 | eqtrdi 2780 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → (0g‘𝑃) = (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (0g‘𝑅))) |
| 26 | 19, 25 | eqeq12d 2745 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → ((1r‘𝑃) = (0g‘𝑃) ↔ (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅))) = (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (0g‘𝑅)))) |
| 27 | fvex 6854 | . . . . . . . . . . 11 ⊢ (1r‘𝑅) ∈ V | |
| 28 | fvex 6854 | . . . . . . . . . . 11 ⊢ (0g‘𝑅) ∈ V | |
| 29 | 27, 28 | ifex 4535 | . . . . . . . . . 10 ⊢ if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅)) ∈ V |
| 30 | 29 | rgenw 3048 | . . . . . . . . 9 ⊢ ∀𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin}if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅)) ∈ V |
| 31 | mpteqb 6970 | . . . . . . . . 9 ⊢ (∀𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin}if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅)) ∈ V → ((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅))) = (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (0g‘𝑅)) ↔ ∀𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin}if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅))) | |
| 32 | 30, 31 | ax-mp 5 | . . . . . . . 8 ⊢ ((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅))) = (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (0g‘𝑅)) ↔ ∀𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin}if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅)) |
| 33 | 26, 32 | bitrdi 287 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → ((1r‘𝑃) = (0g‘𝑃) ↔ ∀𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin}if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅))) |
| 34 | 11, 33 | imbitrrid 246 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → ((1r‘𝑅) = (0g‘𝑅) → (1r‘𝑃) = (0g‘𝑃))) |
| 35 | 34 | necon3d 2946 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → ((1r‘𝑃) ≠ (0g‘𝑃) → (1r‘𝑅) ≠ (0g‘𝑅))) |
| 36 | 7, 35 | mpd 15 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → (1r‘𝑅) ≠ (0g‘𝑅)) |
| 37 | 15, 14 | isnzr 20436 | . . . 4 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅))) |
| 38 | 3, 36, 37 | sylanbrc 583 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → 𝑅 ∈ NzRing) |
| 39 | 38 | ex 412 | . 2 ⊢ (𝑅 ∈ Ring → (𝑃 ∈ NzRing → 𝑅 ∈ NzRing)) |
| 40 | 2, 39 | impbid2 226 | 1 ⊢ (𝑅 ∈ Ring → (𝑅 ∈ NzRing ↔ 𝑃 ∈ NzRing)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 {crab 3402 Vcvv 3444 ifcif 4484 {csn 4585 ↦ cmpt 5183 × cxp 5629 ◡ccnv 5630 “ cima 5634 Oncon0 6321 ‘cfv 6500 (class class class)co 7370 1oc1o 8405 ↑m cmap 8777 Fincfn 8896 0cc0 11047 ℕcn 12165 ℕ0cn0 12421 0gc0g 17380 Grpcgrp 18849 1rcur 20103 Ringcrg 20155 NzRingcnzr 20434 mPoly cmpl 21850 Poly1cpl1 22096 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7692 ax-cnex 11103 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-addrcl 11108 ax-mulcl 11109 ax-mulrcl 11110 ax-mulcom 11111 ax-addass 11112 ax-mulass 11113 ax-distr 11114 ax-i2m1 11115 ax-1ne0 11116 ax-1rid 11117 ax-rnegex 11118 ax-rrecex 11119 ax-cnre 11120 ax-pre-lttri 11121 ax-pre-lttrn 11122 ax-pre-ltadd 11123 ax-pre-mulgt0 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6263 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-isom 6509 df-riota 7327 df-ov 7373 df-oprab 7374 df-mpo 7375 df-of 7634 df-ofr 7635 df-om 7824 df-1st 7948 df-2nd 7949 df-supp 8118 df-frecs 8238 df-wrecs 8269 df-recs 8318 df-rdg 8356 df-1o 8412 df-2o 8413 df-er 8649 df-map 8779 df-pm 8780 df-ixp 8849 df-en 8897 df-dom 8898 df-sdom 8899 df-fin 8900 df-fsupp 9290 df-sup 9370 df-oi 9440 df-card 9871 df-pnf 11189 df-mnf 11190 df-xr 11191 df-ltxr 11192 df-le 11193 df-sub 11386 df-neg 11387 df-nn 12166 df-2 12228 df-3 12229 df-4 12230 df-5 12231 df-6 12232 df-7 12233 df-8 12234 df-9 12235 df-n0 12422 df-z 12509 df-dec 12629 df-uz 12773 df-fz 13448 df-fzo 13595 df-seq 13946 df-hash 14275 df-struct 17095 df-sets 17112 df-slot 17130 df-ndx 17142 df-base 17158 df-ress 17179 df-plusg 17211 df-mulr 17212 df-sca 17214 df-vsca 17215 df-ip 17216 df-tset 17217 df-ple 17218 df-ds 17220 df-hom 17222 df-cco 17223 df-0g 17382 df-gsum 17383 df-prds 17388 df-pws 17390 df-mre 17525 df-mrc 17526 df-acs 17528 df-mgm 18551 df-sgrp 18630 df-mnd 18646 df-mhm 18694 df-submnd 18695 df-grp 18852 df-minusg 18853 df-sbg 18854 df-mulg 18984 df-subg 19039 df-ghm 19129 df-cntz 19233 df-cmn 19698 df-abl 19699 df-mgp 20063 df-rng 20075 df-ur 20104 df-ring 20157 df-nzr 20435 df-subrng 20468 df-subrg 20492 df-lmod 20802 df-lss 20872 df-ascl 21799 df-psr 21853 df-mvr 21854 df-mpl 21855 df-opsr 21857 df-psr1 22099 df-vr1 22100 df-ply1 22101 df-coe1 22102 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |