![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ply1nzb | Structured version Visualization version GIF version |
Description: Univariate polynomials are nonzero iff the base is nonzero. Or in contraposition, the univariate polynomials over the zero ring are also zero. (Contributed by Mario Carneiro, 13-Jun-2015.) |
Ref | Expression |
---|---|
ply1domn.p | ⊢ 𝑃 = (Poly1‘𝑅) |
Ref | Expression |
---|---|
ply1nzb | ⊢ (𝑅 ∈ Ring → (𝑅 ∈ NzRing ↔ 𝑃 ∈ NzRing)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1domn.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
2 | 1 | ply1nz 26050 | . 2 ⊢ (𝑅 ∈ NzRing → 𝑃 ∈ NzRing) |
3 | simpl 482 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → 𝑅 ∈ Ring) | |
4 | eqid 2727 | . . . . . . 7 ⊢ (1r‘𝑃) = (1r‘𝑃) | |
5 | eqid 2727 | . . . . . . 7 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
6 | 4, 5 | nzrnz 20447 | . . . . . 6 ⊢ (𝑃 ∈ NzRing → (1r‘𝑃) ≠ (0g‘𝑃)) |
7 | 6 | adantl 481 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → (1r‘𝑃) ≠ (0g‘𝑃)) |
8 | ifeq1 4528 | . . . . . . . . 9 ⊢ ((1r‘𝑅) = (0g‘𝑅) → if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅)) = if(𝑦 = (1o × {0}), (0g‘𝑅), (0g‘𝑅))) | |
9 | ifid 4564 | . . . . . . . . 9 ⊢ if(𝑦 = (1o × {0}), (0g‘𝑅), (0g‘𝑅)) = (0g‘𝑅) | |
10 | 8, 9 | eqtrdi 2783 | . . . . . . . 8 ⊢ ((1r‘𝑅) = (0g‘𝑅) → if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅)) |
11 | 10 | ralrimivw 3145 | . . . . . . 7 ⊢ ((1r‘𝑅) = (0g‘𝑅) → ∀𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin}if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅)) |
12 | eqid 2727 | . . . . . . . . . 10 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
13 | eqid 2727 | . . . . . . . . . 10 ⊢ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} = {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} | |
14 | eqid 2727 | . . . . . . . . . 10 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
15 | eqid 2727 | . . . . . . . . . 10 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
16 | 12, 1, 4 | ply1mpl1 22169 | . . . . . . . . . 10 ⊢ (1r‘𝑃) = (1r‘(1o mPoly 𝑅)) |
17 | 1on 8492 | . . . . . . . . . . 11 ⊢ 1o ∈ On | |
18 | 17 | a1i 11 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → 1o ∈ On) |
19 | 12, 13, 14, 15, 16, 18, 3 | mpl1 21947 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → (1r‘𝑃) = (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅)))) |
20 | 12, 1, 5 | ply1mpl0 22167 | . . . . . . . . . . 11 ⊢ (0g‘𝑃) = (0g‘(1o mPoly 𝑅)) |
21 | ringgrp 20171 | . . . . . . . . . . . 12 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
22 | 3, 21 | syl 17 | . . . . . . . . . . 11 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → 𝑅 ∈ Grp) |
23 | 12, 13, 14, 20, 18, 22 | mpl0 21941 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → (0g‘𝑃) = ({𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} × {(0g‘𝑅)})) |
24 | fconstmpt 5734 | . . . . . . . . . 10 ⊢ ({𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} × {(0g‘𝑅)}) = (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (0g‘𝑅)) | |
25 | 23, 24 | eqtrdi 2783 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → (0g‘𝑃) = (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (0g‘𝑅))) |
26 | 19, 25 | eqeq12d 2743 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → ((1r‘𝑃) = (0g‘𝑃) ↔ (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅))) = (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (0g‘𝑅)))) |
27 | fvex 6904 | . . . . . . . . . . 11 ⊢ (1r‘𝑅) ∈ V | |
28 | fvex 6904 | . . . . . . . . . . 11 ⊢ (0g‘𝑅) ∈ V | |
29 | 27, 28 | ifex 4574 | . . . . . . . . . 10 ⊢ if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅)) ∈ V |
30 | 29 | rgenw 3060 | . . . . . . . . 9 ⊢ ∀𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin}if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅)) ∈ V |
31 | mpteqb 7018 | . . . . . . . . 9 ⊢ (∀𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin}if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅)) ∈ V → ((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅))) = (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (0g‘𝑅)) ↔ ∀𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin}if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅))) | |
32 | 30, 31 | ax-mp 5 | . . . . . . . 8 ⊢ ((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅))) = (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (0g‘𝑅)) ↔ ∀𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin}if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅)) |
33 | 26, 32 | bitrdi 287 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → ((1r‘𝑃) = (0g‘𝑃) ↔ ∀𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin}if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅))) |
34 | 11, 33 | imbitrrid 245 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → ((1r‘𝑅) = (0g‘𝑅) → (1r‘𝑃) = (0g‘𝑃))) |
35 | 34 | necon3d 2956 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → ((1r‘𝑃) ≠ (0g‘𝑃) → (1r‘𝑅) ≠ (0g‘𝑅))) |
36 | 7, 35 | mpd 15 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → (1r‘𝑅) ≠ (0g‘𝑅)) |
37 | 15, 14 | isnzr 20446 | . . . 4 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅))) |
38 | 3, 36, 37 | sylanbrc 582 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → 𝑅 ∈ NzRing) |
39 | 38 | ex 412 | . 2 ⊢ (𝑅 ∈ Ring → (𝑃 ∈ NzRing → 𝑅 ∈ NzRing)) |
40 | 2, 39 | impbid2 225 | 1 ⊢ (𝑅 ∈ Ring → (𝑅 ∈ NzRing ↔ 𝑃 ∈ NzRing)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 ∀wral 3056 {crab 3427 Vcvv 3469 ifcif 4524 {csn 4624 ↦ cmpt 5225 × cxp 5670 ◡ccnv 5671 “ cima 5675 Oncon0 6363 ‘cfv 6542 (class class class)co 7414 1oc1o 8473 ↑m cmap 8838 Fincfn 8957 0cc0 11132 ℕcn 12236 ℕ0cn0 12496 0gc0g 17414 Grpcgrp 18883 1rcur 20114 Ringcrg 20166 NzRingcnzr 20444 mPoly cmpl 21832 Poly1cpl1 22089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-ofr 7680 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8840 df-pm 8841 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9380 df-sup 9459 df-oi 9527 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 df-9 12306 df-n0 12497 df-z 12583 df-dec 12702 df-uz 12847 df-fz 13511 df-fzo 13654 df-seq 13993 df-hash 14316 df-struct 17109 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-ress 17203 df-plusg 17239 df-mulr 17240 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-hom 17250 df-cco 17251 df-0g 17416 df-gsum 17417 df-prds 17422 df-pws 17424 df-mre 17559 df-mrc 17560 df-acs 17562 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-mhm 18733 df-submnd 18734 df-grp 18886 df-minusg 18887 df-sbg 18888 df-mulg 19017 df-subg 19071 df-ghm 19161 df-cntz 19261 df-cmn 19730 df-abl 19731 df-mgp 20068 df-rng 20086 df-ur 20115 df-ring 20168 df-nzr 20445 df-subrng 20476 df-subrg 20501 df-lmod 20738 df-lss 20809 df-ascl 21782 df-psr 21835 df-mvr 21836 df-mpl 21837 df-opsr 21839 df-psr1 22092 df-vr1 22093 df-ply1 22094 df-coe1 22095 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |