![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ply1nzb | Structured version Visualization version GIF version |
Description: Univariate polynomials are nonzero iff the base is nonzero. Or in contraposition, the univariate polynomials over the zero ring are also zero. (Contributed by Mario Carneiro, 13-Jun-2015.) |
Ref | Expression |
---|---|
ply1domn.p | ⊢ 𝑃 = (Poly1‘𝑅) |
Ref | Expression |
---|---|
ply1nzb | ⊢ (𝑅 ∈ Ring → (𝑅 ∈ NzRing ↔ 𝑃 ∈ NzRing)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1domn.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
2 | 1 | ply1nz 25486 | . 2 ⊢ (𝑅 ∈ NzRing → 𝑃 ∈ NzRing) |
3 | simpl 483 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → 𝑅 ∈ Ring) | |
4 | eqid 2736 | . . . . . . 7 ⊢ (1r‘𝑃) = (1r‘𝑃) | |
5 | eqid 2736 | . . . . . . 7 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
6 | 4, 5 | nzrnz 20730 | . . . . . 6 ⊢ (𝑃 ∈ NzRing → (1r‘𝑃) ≠ (0g‘𝑃)) |
7 | 6 | adantl 482 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → (1r‘𝑃) ≠ (0g‘𝑃)) |
8 | ifeq1 4490 | . . . . . . . . 9 ⊢ ((1r‘𝑅) = (0g‘𝑅) → if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅)) = if(𝑦 = (1o × {0}), (0g‘𝑅), (0g‘𝑅))) | |
9 | ifid 4526 | . . . . . . . . 9 ⊢ if(𝑦 = (1o × {0}), (0g‘𝑅), (0g‘𝑅)) = (0g‘𝑅) | |
10 | 8, 9 | eqtrdi 2792 | . . . . . . . 8 ⊢ ((1r‘𝑅) = (0g‘𝑅) → if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅)) |
11 | 10 | ralrimivw 3147 | . . . . . . 7 ⊢ ((1r‘𝑅) = (0g‘𝑅) → ∀𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin}if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅)) |
12 | eqid 2736 | . . . . . . . . . 10 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
13 | eqid 2736 | . . . . . . . . . 10 ⊢ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} = {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} | |
14 | eqid 2736 | . . . . . . . . . 10 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
15 | eqid 2736 | . . . . . . . . . 10 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
16 | 12, 1, 4 | ply1mpl1 21628 | . . . . . . . . . 10 ⊢ (1r‘𝑃) = (1r‘(1o mPoly 𝑅)) |
17 | 1on 8424 | . . . . . . . . . . 11 ⊢ 1o ∈ On | |
18 | 17 | a1i 11 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → 1o ∈ On) |
19 | 12, 13, 14, 15, 16, 18, 3 | mpl1 21416 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → (1r‘𝑃) = (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅)))) |
20 | 12, 1, 5 | ply1mpl0 21626 | . . . . . . . . . . 11 ⊢ (0g‘𝑃) = (0g‘(1o mPoly 𝑅)) |
21 | ringgrp 19969 | . . . . . . . . . . . 12 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
22 | 3, 21 | syl 17 | . . . . . . . . . . 11 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → 𝑅 ∈ Grp) |
23 | 12, 13, 14, 20, 18, 22 | mpl0 21412 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → (0g‘𝑃) = ({𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} × {(0g‘𝑅)})) |
24 | fconstmpt 5694 | . . . . . . . . . 10 ⊢ ({𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} × {(0g‘𝑅)}) = (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (0g‘𝑅)) | |
25 | 23, 24 | eqtrdi 2792 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → (0g‘𝑃) = (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (0g‘𝑅))) |
26 | 19, 25 | eqeq12d 2752 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → ((1r‘𝑃) = (0g‘𝑃) ↔ (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅))) = (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (0g‘𝑅)))) |
27 | fvex 6855 | . . . . . . . . . . 11 ⊢ (1r‘𝑅) ∈ V | |
28 | fvex 6855 | . . . . . . . . . . 11 ⊢ (0g‘𝑅) ∈ V | |
29 | 27, 28 | ifex 4536 | . . . . . . . . . 10 ⊢ if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅)) ∈ V |
30 | 29 | rgenw 3068 | . . . . . . . . 9 ⊢ ∀𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin}if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅)) ∈ V |
31 | mpteqb 6967 | . . . . . . . . 9 ⊢ (∀𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin}if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅)) ∈ V → ((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅))) = (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (0g‘𝑅)) ↔ ∀𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin}if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅))) | |
32 | 30, 31 | ax-mp 5 | . . . . . . . 8 ⊢ ((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅))) = (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (0g‘𝑅)) ↔ ∀𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin}if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅)) |
33 | 26, 32 | bitrdi 286 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → ((1r‘𝑃) = (0g‘𝑃) ↔ ∀𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin}if(𝑦 = (1o × {0}), (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅))) |
34 | 11, 33 | syl5ibr 245 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → ((1r‘𝑅) = (0g‘𝑅) → (1r‘𝑃) = (0g‘𝑃))) |
35 | 34 | necon3d 2964 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → ((1r‘𝑃) ≠ (0g‘𝑃) → (1r‘𝑅) ≠ (0g‘𝑅))) |
36 | 7, 35 | mpd 15 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → (1r‘𝑅) ≠ (0g‘𝑅)) |
37 | 15, 14 | isnzr 20729 | . . . 4 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅))) |
38 | 3, 36, 37 | sylanbrc 583 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → 𝑅 ∈ NzRing) |
39 | 38 | ex 413 | . 2 ⊢ (𝑅 ∈ Ring → (𝑃 ∈ NzRing → 𝑅 ∈ NzRing)) |
40 | 2, 39 | impbid2 225 | 1 ⊢ (𝑅 ∈ Ring → (𝑅 ∈ NzRing ↔ 𝑃 ∈ NzRing)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 {crab 3407 Vcvv 3445 ifcif 4486 {csn 4586 ↦ cmpt 5188 × cxp 5631 ◡ccnv 5632 “ cima 5636 Oncon0 6317 ‘cfv 6496 (class class class)co 7357 1oc1o 8405 ↑m cmap 8765 Fincfn 8883 0cc0 11051 ℕcn 12153 ℕ0cn0 12413 0gc0g 17321 Grpcgrp 18748 1rcur 19913 Ringcrg 19964 NzRingcnzr 20727 mPoly cmpl 21308 Poly1cpl1 21548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-ofr 7618 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-map 8767 df-pm 8768 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-sup 9378 df-oi 9446 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-fz 13425 df-fzo 13568 df-seq 13907 df-hash 14231 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-hom 17157 df-cco 17158 df-0g 17323 df-gsum 17324 df-prds 17329 df-pws 17331 df-mre 17466 df-mrc 17467 df-acs 17469 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-mhm 18601 df-submnd 18602 df-grp 18751 df-minusg 18752 df-sbg 18753 df-mulg 18873 df-subg 18925 df-ghm 19006 df-cntz 19097 df-cmn 19564 df-abl 19565 df-mgp 19897 df-ur 19914 df-ring 19966 df-subrg 20220 df-lmod 20324 df-lss 20393 df-nzr 20728 df-ascl 21261 df-psr 21311 df-mvr 21312 df-mpl 21313 df-opsr 21315 df-psr1 21551 df-vr1 21552 df-ply1 21553 df-coe1 21554 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |