![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ply1nzb | Structured version Visualization version GIF version |
Description: Univariate polynomials are nonzero iff the base is nonzero. Or in contraposition, the univariate polynomials over the zero ring are also zero. (Contributed by Mario Carneiro, 13-Jun-2015.) |
Ref | Expression |
---|---|
ply1domn.p | ⊢ 𝑃 = (Poly1‘𝑅) |
Ref | Expression |
---|---|
ply1nzb | ⊢ (𝑅 ∈ Ring → (𝑅 ∈ NzRing ↔ 𝑃 ∈ NzRing)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1domn.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
2 | 1 | ply1nz 24222 | . 2 ⊢ (𝑅 ∈ NzRing → 𝑃 ∈ NzRing) |
3 | simpl 475 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → 𝑅 ∈ Ring) | |
4 | eqid 2799 | . . . . . . 7 ⊢ (1r‘𝑃) = (1r‘𝑃) | |
5 | eqid 2799 | . . . . . . 7 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
6 | 4, 5 | nzrnz 19583 | . . . . . 6 ⊢ (𝑃 ∈ NzRing → (1r‘𝑃) ≠ (0g‘𝑃)) |
7 | 6 | adantl 474 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → (1r‘𝑃) ≠ (0g‘𝑃)) |
8 | ifeq1 4281 | . . . . . . . . 9 ⊢ ((1r‘𝑅) = (0g‘𝑅) → if(𝑦 = (1𝑜 × {0}), (1r‘𝑅), (0g‘𝑅)) = if(𝑦 = (1𝑜 × {0}), (0g‘𝑅), (0g‘𝑅))) | |
9 | ifid 4316 | . . . . . . . . 9 ⊢ if(𝑦 = (1𝑜 × {0}), (0g‘𝑅), (0g‘𝑅)) = (0g‘𝑅) | |
10 | 8, 9 | syl6eq 2849 | . . . . . . . 8 ⊢ ((1r‘𝑅) = (0g‘𝑅) → if(𝑦 = (1𝑜 × {0}), (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅)) |
11 | 10 | ralrimivw 3148 | . . . . . . 7 ⊢ ((1r‘𝑅) = (0g‘𝑅) → ∀𝑦 ∈ {𝑥 ∈ (ℕ0 ↑𝑚 1𝑜) ∣ (◡𝑥 “ ℕ) ∈ Fin}if(𝑦 = (1𝑜 × {0}), (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅)) |
12 | eqid 2799 | . . . . . . . . . 10 ⊢ (1𝑜 mPoly 𝑅) = (1𝑜 mPoly 𝑅) | |
13 | eqid 2799 | . . . . . . . . . 10 ⊢ {𝑥 ∈ (ℕ0 ↑𝑚 1𝑜) ∣ (◡𝑥 “ ℕ) ∈ Fin} = {𝑥 ∈ (ℕ0 ↑𝑚 1𝑜) ∣ (◡𝑥 “ ℕ) ∈ Fin} | |
14 | eqid 2799 | . . . . . . . . . 10 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
15 | eqid 2799 | . . . . . . . . . 10 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
16 | 12, 1, 4 | ply1mpl1 19949 | . . . . . . . . . 10 ⊢ (1r‘𝑃) = (1r‘(1𝑜 mPoly 𝑅)) |
17 | 1on 7806 | . . . . . . . . . . 11 ⊢ 1𝑜 ∈ On | |
18 | 17 | a1i 11 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → 1𝑜 ∈ On) |
19 | 12, 13, 14, 15, 16, 18, 3 | mpl1 19767 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → (1r‘𝑃) = (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑𝑚 1𝑜) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ if(𝑦 = (1𝑜 × {0}), (1r‘𝑅), (0g‘𝑅)))) |
20 | 12, 1, 5 | ply1mpl0 19947 | . . . . . . . . . . 11 ⊢ (0g‘𝑃) = (0g‘(1𝑜 mPoly 𝑅)) |
21 | ringgrp 18868 | . . . . . . . . . . . 12 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
22 | 3, 21 | syl 17 | . . . . . . . . . . 11 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → 𝑅 ∈ Grp) |
23 | 12, 13, 14, 20, 18, 22 | mpl0 19764 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → (0g‘𝑃) = ({𝑥 ∈ (ℕ0 ↑𝑚 1𝑜) ∣ (◡𝑥 “ ℕ) ∈ Fin} × {(0g‘𝑅)})) |
24 | fconstmpt 5368 | . . . . . . . . . 10 ⊢ ({𝑥 ∈ (ℕ0 ↑𝑚 1𝑜) ∣ (◡𝑥 “ ℕ) ∈ Fin} × {(0g‘𝑅)}) = (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑𝑚 1𝑜) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (0g‘𝑅)) | |
25 | 23, 24 | syl6eq 2849 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → (0g‘𝑃) = (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑𝑚 1𝑜) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (0g‘𝑅))) |
26 | 19, 25 | eqeq12d 2814 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → ((1r‘𝑃) = (0g‘𝑃) ↔ (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑𝑚 1𝑜) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ if(𝑦 = (1𝑜 × {0}), (1r‘𝑅), (0g‘𝑅))) = (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑𝑚 1𝑜) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (0g‘𝑅)))) |
27 | fvex 6424 | . . . . . . . . . . 11 ⊢ (1r‘𝑅) ∈ V | |
28 | fvex 6424 | . . . . . . . . . . 11 ⊢ (0g‘𝑅) ∈ V | |
29 | 27, 28 | ifex 4325 | . . . . . . . . . 10 ⊢ if(𝑦 = (1𝑜 × {0}), (1r‘𝑅), (0g‘𝑅)) ∈ V |
30 | 29 | rgenw 3105 | . . . . . . . . 9 ⊢ ∀𝑦 ∈ {𝑥 ∈ (ℕ0 ↑𝑚 1𝑜) ∣ (◡𝑥 “ ℕ) ∈ Fin}if(𝑦 = (1𝑜 × {0}), (1r‘𝑅), (0g‘𝑅)) ∈ V |
31 | mpteqb 6524 | . . . . . . . . 9 ⊢ (∀𝑦 ∈ {𝑥 ∈ (ℕ0 ↑𝑚 1𝑜) ∣ (◡𝑥 “ ℕ) ∈ Fin}if(𝑦 = (1𝑜 × {0}), (1r‘𝑅), (0g‘𝑅)) ∈ V → ((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑𝑚 1𝑜) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ if(𝑦 = (1𝑜 × {0}), (1r‘𝑅), (0g‘𝑅))) = (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑𝑚 1𝑜) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (0g‘𝑅)) ↔ ∀𝑦 ∈ {𝑥 ∈ (ℕ0 ↑𝑚 1𝑜) ∣ (◡𝑥 “ ℕ) ∈ Fin}if(𝑦 = (1𝑜 × {0}), (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅))) | |
32 | 30, 31 | ax-mp 5 | . . . . . . . 8 ⊢ ((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑𝑚 1𝑜) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ if(𝑦 = (1𝑜 × {0}), (1r‘𝑅), (0g‘𝑅))) = (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑𝑚 1𝑜) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (0g‘𝑅)) ↔ ∀𝑦 ∈ {𝑥 ∈ (ℕ0 ↑𝑚 1𝑜) ∣ (◡𝑥 “ ℕ) ∈ Fin}if(𝑦 = (1𝑜 × {0}), (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅)) |
33 | 26, 32 | syl6bb 279 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → ((1r‘𝑃) = (0g‘𝑃) ↔ ∀𝑦 ∈ {𝑥 ∈ (ℕ0 ↑𝑚 1𝑜) ∣ (◡𝑥 “ ℕ) ∈ Fin}if(𝑦 = (1𝑜 × {0}), (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅))) |
34 | 11, 33 | syl5ibr 238 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → ((1r‘𝑅) = (0g‘𝑅) → (1r‘𝑃) = (0g‘𝑃))) |
35 | 34 | necon3d 2992 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → ((1r‘𝑃) ≠ (0g‘𝑃) → (1r‘𝑅) ≠ (0g‘𝑅))) |
36 | 7, 35 | mpd 15 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → (1r‘𝑅) ≠ (0g‘𝑅)) |
37 | 15, 14 | isnzr 19582 | . . . 4 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅))) |
38 | 3, 36, 37 | sylanbrc 579 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → 𝑅 ∈ NzRing) |
39 | 38 | ex 402 | . 2 ⊢ (𝑅 ∈ Ring → (𝑃 ∈ NzRing → 𝑅 ∈ NzRing)) |
40 | 2, 39 | impbid2 218 | 1 ⊢ (𝑅 ∈ Ring → (𝑅 ∈ NzRing ↔ 𝑃 ∈ NzRing)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 ∀wral 3089 {crab 3093 Vcvv 3385 ifcif 4277 {csn 4368 ↦ cmpt 4922 × cxp 5310 ◡ccnv 5311 “ cima 5315 Oncon0 5941 ‘cfv 6101 (class class class)co 6878 1𝑜c1o 7792 ↑𝑚 cmap 8095 Fincfn 8195 0cc0 10224 ℕcn 11312 ℕ0cn0 11580 0gc0g 16415 Grpcgrp 17738 1rcur 18817 Ringcrg 18863 NzRingcnzr 19580 mPoly cmpl 19676 Poly1cpl1 19869 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-inf2 8788 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-iin 4713 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-se 5272 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-isom 6110 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-of 7131 df-ofr 7132 df-om 7300 df-1st 7401 df-2nd 7402 df-supp 7533 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-2o 7800 df-oadd 7803 df-er 7982 df-map 8097 df-pm 8098 df-ixp 8149 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-fsupp 8518 df-oi 8657 df-card 9051 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-nn 11313 df-2 11376 df-3 11377 df-4 11378 df-5 11379 df-6 11380 df-7 11381 df-8 11382 df-9 11383 df-n0 11581 df-z 11667 df-dec 11784 df-uz 11931 df-fz 12581 df-fzo 12721 df-seq 13056 df-hash 13371 df-struct 16186 df-ndx 16187 df-slot 16188 df-base 16190 df-sets 16191 df-ress 16192 df-plusg 16280 df-mulr 16281 df-sca 16283 df-vsca 16284 df-tset 16286 df-ple 16287 df-0g 16417 df-gsum 16418 df-mre 16561 df-mrc 16562 df-acs 16564 df-mgm 17557 df-sgrp 17599 df-mnd 17610 df-mhm 17650 df-submnd 17651 df-grp 17741 df-minusg 17742 df-sbg 17743 df-mulg 17857 df-subg 17904 df-ghm 17971 df-cntz 18062 df-cmn 18510 df-abl 18511 df-mgp 18806 df-ur 18818 df-ring 18865 df-subrg 19096 df-lmod 19183 df-lss 19251 df-nzr 19581 df-ascl 19637 df-psr 19679 df-mvr 19680 df-mpl 19681 df-opsr 19683 df-psr1 19872 df-vr1 19873 df-ply1 19874 df-coe1 19875 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |