Step | Hyp | Ref
| Expression |
1 | | ply1domn.p |
. . 3
⊢ 𝑃 = (Poly1‘𝑅) |
2 | 1 | ply1nz 25191 |
. 2
⊢ (𝑅 ∈ NzRing → 𝑃 ∈ NzRing) |
3 | | simpl 482 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → 𝑅 ∈ Ring) |
4 | | eqid 2738 |
. . . . . . 7
⊢
(1r‘𝑃) = (1r‘𝑃) |
5 | | eqid 2738 |
. . . . . . 7
⊢
(0g‘𝑃) = (0g‘𝑃) |
6 | 4, 5 | nzrnz 20444 |
. . . . . 6
⊢ (𝑃 ∈ NzRing →
(1r‘𝑃)
≠ (0g‘𝑃)) |
7 | 6 | adantl 481 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) →
(1r‘𝑃)
≠ (0g‘𝑃)) |
8 | | ifeq1 4460 |
. . . . . . . . 9
⊢
((1r‘𝑅) = (0g‘𝑅) → if(𝑦 = (1o × {0}),
(1r‘𝑅),
(0g‘𝑅)) =
if(𝑦 = (1o
× {0}), (0g‘𝑅), (0g‘𝑅))) |
9 | | ifid 4496 |
. . . . . . . . 9
⊢ if(𝑦 = (1o × {0}),
(0g‘𝑅),
(0g‘𝑅)) =
(0g‘𝑅) |
10 | 8, 9 | eqtrdi 2795 |
. . . . . . . 8
⊢
((1r‘𝑅) = (0g‘𝑅) → if(𝑦 = (1o × {0}),
(1r‘𝑅),
(0g‘𝑅)) =
(0g‘𝑅)) |
11 | 10 | ralrimivw 3108 |
. . . . . . 7
⊢
((1r‘𝑅) = (0g‘𝑅) → ∀𝑦 ∈ {𝑥 ∈ (ℕ0
↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin}if(𝑦 = (1o × {0}),
(1r‘𝑅),
(0g‘𝑅)) =
(0g‘𝑅)) |
12 | | eqid 2738 |
. . . . . . . . . 10
⊢
(1o mPoly 𝑅) = (1o mPoly 𝑅) |
13 | | eqid 2738 |
. . . . . . . . . 10
⊢ {𝑥 ∈ (ℕ0
↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} = {𝑥 ∈ (ℕ0
↑m 1o) ∣ (◡𝑥 “ ℕ) ∈
Fin} |
14 | | eqid 2738 |
. . . . . . . . . 10
⊢
(0g‘𝑅) = (0g‘𝑅) |
15 | | eqid 2738 |
. . . . . . . . . 10
⊢
(1r‘𝑅) = (1r‘𝑅) |
16 | 12, 1, 4 | ply1mpl1 21338 |
. . . . . . . . . 10
⊢
(1r‘𝑃) = (1r‘(1o
mPoly 𝑅)) |
17 | | 1on 8274 |
. . . . . . . . . . 11
⊢
1o ∈ On |
18 | 17 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) →
1o ∈ On) |
19 | 12, 13, 14, 15, 16, 18, 3 | mpl1 21126 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) →
(1r‘𝑃) =
(𝑦 ∈ {𝑥 ∈ (ℕ0
↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦
if(𝑦 = (1o
× {0}), (1r‘𝑅), (0g‘𝑅)))) |
20 | 12, 1, 5 | ply1mpl0 21336 |
. . . . . . . . . . 11
⊢
(0g‘𝑃) = (0g‘(1o
mPoly 𝑅)) |
21 | | ringgrp 19703 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
22 | 3, 21 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → 𝑅 ∈ Grp) |
23 | 12, 13, 14, 20, 18, 22 | mpl0 21122 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) →
(0g‘𝑃) =
({𝑥 ∈
(ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ×
{(0g‘𝑅)})) |
24 | | fconstmpt 5640 |
. . . . . . . . . 10
⊢ ({𝑥 ∈ (ℕ0
↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ×
{(0g‘𝑅)})
= (𝑦 ∈ {𝑥 ∈ (ℕ0
↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦
(0g‘𝑅)) |
25 | 23, 24 | eqtrdi 2795 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) →
(0g‘𝑃) =
(𝑦 ∈ {𝑥 ∈ (ℕ0
↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦
(0g‘𝑅))) |
26 | 19, 25 | eqeq12d 2754 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) →
((1r‘𝑃) =
(0g‘𝑃)
↔ (𝑦 ∈ {𝑥 ∈ (ℕ0
↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦
if(𝑦 = (1o
× {0}), (1r‘𝑅), (0g‘𝑅))) = (𝑦 ∈ {𝑥 ∈ (ℕ0
↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦
(0g‘𝑅)))) |
27 | | fvex 6769 |
. . . . . . . . . . 11
⊢
(1r‘𝑅) ∈ V |
28 | | fvex 6769 |
. . . . . . . . . . 11
⊢
(0g‘𝑅) ∈ V |
29 | 27, 28 | ifex 4506 |
. . . . . . . . . 10
⊢ if(𝑦 = (1o × {0}),
(1r‘𝑅),
(0g‘𝑅))
∈ V |
30 | 29 | rgenw 3075 |
. . . . . . . . 9
⊢
∀𝑦 ∈
{𝑥 ∈
(ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin}if(𝑦 = (1o × {0}),
(1r‘𝑅),
(0g‘𝑅))
∈ V |
31 | | mpteqb 6876 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
{𝑥 ∈
(ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin}if(𝑦 = (1o × {0}),
(1r‘𝑅),
(0g‘𝑅))
∈ V → ((𝑦 ∈
{𝑥 ∈
(ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦
if(𝑦 = (1o
× {0}), (1r‘𝑅), (0g‘𝑅))) = (𝑦 ∈ {𝑥 ∈ (ℕ0
↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦
(0g‘𝑅))
↔ ∀𝑦 ∈
{𝑥 ∈
(ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin}if(𝑦 = (1o × {0}),
(1r‘𝑅),
(0g‘𝑅)) =
(0g‘𝑅))) |
32 | 30, 31 | ax-mp 5 |
. . . . . . . 8
⊢ ((𝑦 ∈ {𝑥 ∈ (ℕ0
↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦
if(𝑦 = (1o
× {0}), (1r‘𝑅), (0g‘𝑅))) = (𝑦 ∈ {𝑥 ∈ (ℕ0
↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦
(0g‘𝑅))
↔ ∀𝑦 ∈
{𝑥 ∈
(ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin}if(𝑦 = (1o × {0}),
(1r‘𝑅),
(0g‘𝑅)) =
(0g‘𝑅)) |
33 | 26, 32 | bitrdi 286 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) →
((1r‘𝑃) =
(0g‘𝑃)
↔ ∀𝑦 ∈
{𝑥 ∈
(ℕ0 ↑m 1o) ∣ (◡𝑥 “ ℕ) ∈ Fin}if(𝑦 = (1o × {0}),
(1r‘𝑅),
(0g‘𝑅)) =
(0g‘𝑅))) |
34 | 11, 33 | syl5ibr 245 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) →
((1r‘𝑅) =
(0g‘𝑅)
→ (1r‘𝑃) = (0g‘𝑃))) |
35 | 34 | necon3d 2963 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) →
((1r‘𝑃)
≠ (0g‘𝑃) → (1r‘𝑅) ≠
(0g‘𝑅))) |
36 | 7, 35 | mpd 15 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) →
(1r‘𝑅)
≠ (0g‘𝑅)) |
37 | 15, 14 | isnzr 20443 |
. . . 4
⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧
(1r‘𝑅)
≠ (0g‘𝑅))) |
38 | 3, 36, 37 | sylanbrc 582 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing) → 𝑅 ∈ NzRing) |
39 | 38 | ex 412 |
. 2
⊢ (𝑅 ∈ Ring → (𝑃 ∈ NzRing → 𝑅 ∈
NzRing)) |
40 | 2, 39 | impbid2 225 |
1
⊢ (𝑅 ∈ Ring → (𝑅 ∈ NzRing ↔ 𝑃 ∈
NzRing)) |