MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodeq2ii Structured version   Visualization version   GIF version

Theorem prodeq2ii 15793
Description: Equality theorem for product, with the class expressions 𝐵 and 𝐶 guarded by I to be always sets. (Contributed by Scott Fenton, 4-Dec-2017.)
Assertion
Ref Expression
prodeq2ii (∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) → ∏𝑘𝐴 𝐵 = ∏𝑘𝐴 𝐶)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem prodeq2ii
Dummy variables 𝑓 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluzelz 12770 . . . . . . . . . . . . 13 (𝑛 ∈ (ℤ𝑚) → 𝑛 ∈ ℤ)
21adantl 482 . . . . . . . . . . . 12 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑛 ∈ (ℤ𝑚)) → 𝑛 ∈ ℤ)
3 nfra1 3266 . . . . . . . . . . . . . . . . 17 𝑘𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶)
4 rsp 3229 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) → (𝑘𝐴 → ( I ‘𝐵) = ( I ‘𝐶)))
54adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑘 ∈ ℤ) → (𝑘𝐴 → ( I ‘𝐵) = ( I ‘𝐶)))
6 ifeq1 4489 . . . . . . . . . . . . . . . . . . . 20 (( I ‘𝐵) = ( I ‘𝐶) → if(𝑘𝐴, ( I ‘𝐵), ( I ‘1)) = if(𝑘𝐴, ( I ‘𝐶), ( I ‘1)))
75, 6syl6 35 . . . . . . . . . . . . . . . . . . 19 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑘 ∈ ℤ) → (𝑘𝐴 → if(𝑘𝐴, ( I ‘𝐵), ( I ‘1)) = if(𝑘𝐴, ( I ‘𝐶), ( I ‘1))))
8 iffalse 4494 . . . . . . . . . . . . . . . . . . . 20 𝑘𝐴 → if(𝑘𝐴, ( I ‘𝐵), ( I ‘1)) = ( I ‘1))
9 iffalse 4494 . . . . . . . . . . . . . . . . . . . 20 𝑘𝐴 → if(𝑘𝐴, ( I ‘𝐶), ( I ‘1)) = ( I ‘1))
108, 9eqtr4d 2779 . . . . . . . . . . . . . . . . . . 19 𝑘𝐴 → if(𝑘𝐴, ( I ‘𝐵), ( I ‘1)) = if(𝑘𝐴, ( I ‘𝐶), ( I ‘1)))
117, 10pm2.61d1 180 . . . . . . . . . . . . . . . . . 18 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑘 ∈ ℤ) → if(𝑘𝐴, ( I ‘𝐵), ( I ‘1)) = if(𝑘𝐴, ( I ‘𝐶), ( I ‘1)))
12 fvif 6856 . . . . . . . . . . . . . . . . . 18 ( I ‘if(𝑘𝐴, 𝐵, 1)) = if(𝑘𝐴, ( I ‘𝐵), ( I ‘1))
13 fvif 6856 . . . . . . . . . . . . . . . . . 18 ( I ‘if(𝑘𝐴, 𝐶, 1)) = if(𝑘𝐴, ( I ‘𝐶), ( I ‘1))
1411, 12, 133eqtr4g 2801 . . . . . . . . . . . . . . . . 17 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑘 ∈ ℤ) → ( I ‘if(𝑘𝐴, 𝐵, 1)) = ( I ‘if(𝑘𝐴, 𝐶, 1)))
153, 14mpteq2da 5202 . . . . . . . . . . . . . . . 16 (∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) → (𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐵, 1))) = (𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐶, 1))))
1615adantr 481 . . . . . . . . . . . . . . 15 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑥 ∈ (ℤ𝑛)) → (𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐵, 1))) = (𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐶, 1))))
1716fveq1d 6842 . . . . . . . . . . . . . 14 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑥 ∈ (ℤ𝑛)) → ((𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐵, 1)))‘𝑥) = ((𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐶, 1)))‘𝑥))
1817adantlr 713 . . . . . . . . . . . . 13 (((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑛 ∈ (ℤ𝑚)) ∧ 𝑥 ∈ (ℤ𝑛)) → ((𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐵, 1)))‘𝑥) = ((𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐶, 1)))‘𝑥))
19 eqid 2736 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1)) = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
20 eqid 2736 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐵, 1))) = (𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐵, 1)))
2119, 20fvmptex 6960 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑥) = ((𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐵, 1)))‘𝑥)
22 eqid 2736 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1)) = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))
23 eqid 2736 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐶, 1))) = (𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐶, 1)))
2422, 23fvmptex 6960 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))‘𝑥) = ((𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐶, 1)))‘𝑥)
2518, 21, 243eqtr4g 2801 . . . . . . . . . . . 12 (((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑛 ∈ (ℤ𝑚)) ∧ 𝑥 ∈ (ℤ𝑛)) → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑥) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))‘𝑥))
262, 25seqfeq 13930 . . . . . . . . . . 11 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑛 ∈ (ℤ𝑚)) → seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) = seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))))
2726breq1d 5114 . . . . . . . . . 10 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑛 ∈ (ℤ𝑚)) → (seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦 ↔ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦))
2827anbi2d 629 . . . . . . . . 9 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑛 ∈ (ℤ𝑚)) → ((𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ (𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦)))
2928exbidv 1924 . . . . . . . 8 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑛 ∈ (ℤ𝑚)) → (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦)))
3029rexbidva 3172 . . . . . . 7 (∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) → (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦)))
3130adantr 481 . . . . . 6 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) → (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦)))
32 simpr 485 . . . . . . . 8 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ)
3315adantr 481 . . . . . . . . . . 11 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑥 ∈ (ℤ𝑚)) → (𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐵, 1))) = (𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐶, 1))))
3433fveq1d 6842 . . . . . . . . . 10 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑥 ∈ (ℤ𝑚)) → ((𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐵, 1)))‘𝑥) = ((𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐶, 1)))‘𝑥))
3534, 21, 243eqtr4g 2801 . . . . . . . . 9 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑥 ∈ (ℤ𝑚)) → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑥) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))‘𝑥))
3635adantlr 713 . . . . . . . 8 (((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) ∧ 𝑥 ∈ (ℤ𝑚)) → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑥) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))‘𝑥))
3732, 36seqfeq 13930 . . . . . . 7 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) → seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) = seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))))
3837breq1d 5114 . . . . . 6 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) → (seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥 ↔ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥))
3931, 383anbi23d 1439 . . . . 5 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) → ((𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥)))
4039rexbidva 3172 . . . 4 (∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥)))
41 simplr 767 . . . . . . . . . 10 (((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 𝑚 ∈ ℕ)
42 nnuz 12803 . . . . . . . . . 10 ℕ = (ℤ‘1)
4341, 42eleqtrdi 2848 . . . . . . . . 9 (((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 𝑚 ∈ (ℤ‘1))
44 f1of 6782 . . . . . . . . . . . . . 14 (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...𝑚)⟶𝐴)
4544ad2antlr 725 . . . . . . . . . . . . 13 ((((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑥 ∈ (1...𝑚)) → 𝑓:(1...𝑚)⟶𝐴)
46 ffvelcdm 7030 . . . . . . . . . . . . 13 ((𝑓:(1...𝑚)⟶𝐴𝑥 ∈ (1...𝑚)) → (𝑓𝑥) ∈ 𝐴)
4745, 46sylancom 588 . . . . . . . . . . . 12 ((((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑥 ∈ (1...𝑚)) → (𝑓𝑥) ∈ 𝐴)
48 simplll 773 . . . . . . . . . . . 12 ((((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑥 ∈ (1...𝑚)) → ∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶))
49 nfcsb1v 3879 . . . . . . . . . . . . . 14 𝑘(𝑓𝑥) / 𝑘( I ‘𝐵)
50 nfcsb1v 3879 . . . . . . . . . . . . . 14 𝑘(𝑓𝑥) / 𝑘( I ‘𝐶)
5149, 50nfeq 2919 . . . . . . . . . . . . 13 𝑘(𝑓𝑥) / 𝑘( I ‘𝐵) = (𝑓𝑥) / 𝑘( I ‘𝐶)
52 csbeq1a 3868 . . . . . . . . . . . . . 14 (𝑘 = (𝑓𝑥) → ( I ‘𝐵) = (𝑓𝑥) / 𝑘( I ‘𝐵))
53 csbeq1a 3868 . . . . . . . . . . . . . 14 (𝑘 = (𝑓𝑥) → ( I ‘𝐶) = (𝑓𝑥) / 𝑘( I ‘𝐶))
5452, 53eqeq12d 2752 . . . . . . . . . . . . 13 (𝑘 = (𝑓𝑥) → (( I ‘𝐵) = ( I ‘𝐶) ↔ (𝑓𝑥) / 𝑘( I ‘𝐵) = (𝑓𝑥) / 𝑘( I ‘𝐶)))
5551, 54rspc 3568 . . . . . . . . . . . 12 ((𝑓𝑥) ∈ 𝐴 → (∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) → (𝑓𝑥) / 𝑘( I ‘𝐵) = (𝑓𝑥) / 𝑘( I ‘𝐶)))
5647, 48, 55sylc 65 . . . . . . . . . . 11 ((((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑥 ∈ (1...𝑚)) → (𝑓𝑥) / 𝑘( I ‘𝐵) = (𝑓𝑥) / 𝑘( I ‘𝐶))
57 fvex 6853 . . . . . . . . . . . 12 (𝑓𝑥) ∈ V
58 csbfv2g 6889 . . . . . . . . . . . 12 ((𝑓𝑥) ∈ V → (𝑓𝑥) / 𝑘( I ‘𝐵) = ( I ‘(𝑓𝑥) / 𝑘𝐵))
5957, 58ax-mp 5 . . . . . . . . . . 11 (𝑓𝑥) / 𝑘( I ‘𝐵) = ( I ‘(𝑓𝑥) / 𝑘𝐵)
60 csbfv2g 6889 . . . . . . . . . . . 12 ((𝑓𝑥) ∈ V → (𝑓𝑥) / 𝑘( I ‘𝐶) = ( I ‘(𝑓𝑥) / 𝑘𝐶))
6157, 60ax-mp 5 . . . . . . . . . . 11 (𝑓𝑥) / 𝑘( I ‘𝐶) = ( I ‘(𝑓𝑥) / 𝑘𝐶)
6256, 59, 613eqtr3g 2799 . . . . . . . . . 10 ((((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑥 ∈ (1...𝑚)) → ( I ‘(𝑓𝑥) / 𝑘𝐵) = ( I ‘(𝑓𝑥) / 𝑘𝐶))
63 elfznn 13467 . . . . . . . . . . . 12 (𝑥 ∈ (1...𝑚) → 𝑥 ∈ ℕ)
6463adantl 482 . . . . . . . . . . 11 ((((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑥 ∈ (1...𝑚)) → 𝑥 ∈ ℕ)
65 fveq2 6840 . . . . . . . . . . . . 13 (𝑛 = 𝑥 → (𝑓𝑛) = (𝑓𝑥))
6665csbeq1d 3858 . . . . . . . . . . . 12 (𝑛 = 𝑥(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑥) / 𝑘𝐵)
67 eqid 2736 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵) = (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)
6866, 67fvmpti 6945 . . . . . . . . . . 11 (𝑥 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)‘𝑥) = ( I ‘(𝑓𝑥) / 𝑘𝐵))
6964, 68syl 17 . . . . . . . . . 10 ((((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑥 ∈ (1...𝑚)) → ((𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)‘𝑥) = ( I ‘(𝑓𝑥) / 𝑘𝐵))
7065csbeq1d 3858 . . . . . . . . . . . 12 (𝑛 = 𝑥(𝑓𝑛) / 𝑘𝐶 = (𝑓𝑥) / 𝑘𝐶)
71 eqid 2736 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶) = (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶)
7270, 71fvmpti 6945 . . . . . . . . . . 11 (𝑥 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶)‘𝑥) = ( I ‘(𝑓𝑥) / 𝑘𝐶))
7364, 72syl 17 . . . . . . . . . 10 ((((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑥 ∈ (1...𝑚)) → ((𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶)‘𝑥) = ( I ‘(𝑓𝑥) / 𝑘𝐶))
7462, 69, 733eqtr4d 2786 . . . . . . . . 9 ((((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑥 ∈ (1...𝑚)) → ((𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)‘𝑥) = ((𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶)‘𝑥))
7543, 74seqfveq 13929 . . . . . . . 8 (((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚) = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))
7675eqeq2d 2747 . . . . . . 7 (((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚) ↔ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)))
7776pm5.32da 579 . . . . . 6 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
7877exbidv 1924 . . . . 5 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
7978rexbidva 3172 . . . 4 (∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
8040, 79orbi12d 917 . . 3 (∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)))))
8180iotabidv 6478 . 2 (∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))) = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)))))
82 df-prod 15786 . 2 𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
83 df-prod 15786 . 2 𝑘𝐴 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
8481, 82, 833eqtr4g 2801 1 (∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) → ∏𝑘𝐴 𝐵 = ∏𝑘𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wne 2942  wral 3063  wrex 3072  Vcvv 3444  csb 3854  wss 3909  ifcif 4485   class class class wbr 5104  cmpt 5187   I cid 5529  cio 6444  wf 6490  1-1-ontowf1o 6493  cfv 6494  (class class class)co 7354  0cc0 11048  1c1 11049   · cmul 11053  cn 12150  cz 12496  cuz 12760  ...cfz 13421  seqcseq 13903  cli 15363  cprod 15785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7669  ax-cnex 11104  ax-resscn 11105  ax-1cn 11106  ax-icn 11107  ax-addcl 11108  ax-addrcl 11109  ax-mulcl 11110  ax-mulrcl 11111  ax-mulcom 11112  ax-addass 11113  ax-mulass 11114  ax-distr 11115  ax-i2m1 11116  ax-1ne0 11117  ax-1rid 11118  ax-rnegex 11119  ax-rrecex 11120  ax-cnre 11121  ax-pre-lttri 11122  ax-pre-lttrn 11123  ax-pre-ltadd 11124  ax-pre-mulgt0 11125
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-iun 4955  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5530  df-eprel 5536  df-po 5544  df-so 5545  df-fr 5587  df-we 5589  df-xp 5638  df-rel 5639  df-cnv 5640  df-co 5641  df-dm 5642  df-rn 5643  df-res 5644  df-ima 5645  df-pred 6252  df-ord 6319  df-on 6320  df-lim 6321  df-suc 6322  df-iota 6446  df-fun 6496  df-fn 6497  df-f 6498  df-f1 6499  df-fo 6500  df-f1o 6501  df-fv 6502  df-riota 7310  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7800  df-1st 7918  df-2nd 7919  df-frecs 8209  df-wrecs 8240  df-recs 8314  df-rdg 8353  df-er 8645  df-en 8881  df-dom 8882  df-sdom 8883  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11384  df-neg 11385  df-nn 12151  df-n0 12411  df-z 12497  df-uz 12761  df-fz 13422  df-seq 13904  df-prod 15786
This theorem is referenced by:  prodeq2  15794  prod2id  15808
  Copyright terms: Public domain W3C validator