MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodeq2ii Structured version   Visualization version   GIF version

Theorem prodeq2ii 15947
Description: Equality theorem for product, with the class expressions 𝐵 and 𝐶 guarded by I to be always sets. (Contributed by Scott Fenton, 4-Dec-2017.)
Assertion
Ref Expression
prodeq2ii (∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) → ∏𝑘𝐴 𝐵 = ∏𝑘𝐴 𝐶)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem prodeq2ii
Dummy variables 𝑓 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluzelz 12888 . . . . . . . . . . . . 13 (𝑛 ∈ (ℤ𝑚) → 𝑛 ∈ ℤ)
21adantl 481 . . . . . . . . . . . 12 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑛 ∈ (ℤ𝑚)) → 𝑛 ∈ ℤ)
3 nfra1 3284 . . . . . . . . . . . . . . . . 17 𝑘𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶)
4 rsp 3247 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) → (𝑘𝐴 → ( I ‘𝐵) = ( I ‘𝐶)))
54adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑘 ∈ ℤ) → (𝑘𝐴 → ( I ‘𝐵) = ( I ‘𝐶)))
6 ifeq1 4529 . . . . . . . . . . . . . . . . . . . 20 (( I ‘𝐵) = ( I ‘𝐶) → if(𝑘𝐴, ( I ‘𝐵), ( I ‘1)) = if(𝑘𝐴, ( I ‘𝐶), ( I ‘1)))
75, 6syl6 35 . . . . . . . . . . . . . . . . . . 19 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑘 ∈ ℤ) → (𝑘𝐴 → if(𝑘𝐴, ( I ‘𝐵), ( I ‘1)) = if(𝑘𝐴, ( I ‘𝐶), ( I ‘1))))
8 iffalse 4534 . . . . . . . . . . . . . . . . . . . 20 𝑘𝐴 → if(𝑘𝐴, ( I ‘𝐵), ( I ‘1)) = ( I ‘1))
9 iffalse 4534 . . . . . . . . . . . . . . . . . . . 20 𝑘𝐴 → if(𝑘𝐴, ( I ‘𝐶), ( I ‘1)) = ( I ‘1))
108, 9eqtr4d 2780 . . . . . . . . . . . . . . . . . . 19 𝑘𝐴 → if(𝑘𝐴, ( I ‘𝐵), ( I ‘1)) = if(𝑘𝐴, ( I ‘𝐶), ( I ‘1)))
117, 10pm2.61d1 180 . . . . . . . . . . . . . . . . . 18 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑘 ∈ ℤ) → if(𝑘𝐴, ( I ‘𝐵), ( I ‘1)) = if(𝑘𝐴, ( I ‘𝐶), ( I ‘1)))
12 fvif 6922 . . . . . . . . . . . . . . . . . 18 ( I ‘if(𝑘𝐴, 𝐵, 1)) = if(𝑘𝐴, ( I ‘𝐵), ( I ‘1))
13 fvif 6922 . . . . . . . . . . . . . . . . . 18 ( I ‘if(𝑘𝐴, 𝐶, 1)) = if(𝑘𝐴, ( I ‘𝐶), ( I ‘1))
1411, 12, 133eqtr4g 2802 . . . . . . . . . . . . . . . . 17 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑘 ∈ ℤ) → ( I ‘if(𝑘𝐴, 𝐵, 1)) = ( I ‘if(𝑘𝐴, 𝐶, 1)))
153, 14mpteq2da 5240 . . . . . . . . . . . . . . . 16 (∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) → (𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐵, 1))) = (𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐶, 1))))
1615adantr 480 . . . . . . . . . . . . . . 15 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑥 ∈ (ℤ𝑛)) → (𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐵, 1))) = (𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐶, 1))))
1716fveq1d 6908 . . . . . . . . . . . . . 14 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑥 ∈ (ℤ𝑛)) → ((𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐵, 1)))‘𝑥) = ((𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐶, 1)))‘𝑥))
1817adantlr 715 . . . . . . . . . . . . 13 (((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑛 ∈ (ℤ𝑚)) ∧ 𝑥 ∈ (ℤ𝑛)) → ((𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐵, 1)))‘𝑥) = ((𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐶, 1)))‘𝑥))
19 eqid 2737 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1)) = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
20 eqid 2737 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐵, 1))) = (𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐵, 1)))
2119, 20fvmptex 7030 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑥) = ((𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐵, 1)))‘𝑥)
22 eqid 2737 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1)) = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))
23 eqid 2737 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐶, 1))) = (𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐶, 1)))
2422, 23fvmptex 7030 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))‘𝑥) = ((𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐶, 1)))‘𝑥)
2518, 21, 243eqtr4g 2802 . . . . . . . . . . . 12 (((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑛 ∈ (ℤ𝑚)) ∧ 𝑥 ∈ (ℤ𝑛)) → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑥) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))‘𝑥))
262, 25seqfeq 14068 . . . . . . . . . . 11 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑛 ∈ (ℤ𝑚)) → seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) = seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))))
2726breq1d 5153 . . . . . . . . . 10 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑛 ∈ (ℤ𝑚)) → (seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦 ↔ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦))
2827anbi2d 630 . . . . . . . . 9 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑛 ∈ (ℤ𝑚)) → ((𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ (𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦)))
2928exbidv 1921 . . . . . . . 8 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑛 ∈ (ℤ𝑚)) → (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦)))
3029rexbidva 3177 . . . . . . 7 (∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) → (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦)))
3130adantr 480 . . . . . 6 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) → (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦)))
32 simpr 484 . . . . . . . 8 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ)
3315adantr 480 . . . . . . . . . . 11 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑥 ∈ (ℤ𝑚)) → (𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐵, 1))) = (𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐶, 1))))
3433fveq1d 6908 . . . . . . . . . 10 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑥 ∈ (ℤ𝑚)) → ((𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐵, 1)))‘𝑥) = ((𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐶, 1)))‘𝑥))
3534, 21, 243eqtr4g 2802 . . . . . . . . 9 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑥 ∈ (ℤ𝑚)) → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑥) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))‘𝑥))
3635adantlr 715 . . . . . . . 8 (((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) ∧ 𝑥 ∈ (ℤ𝑚)) → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑥) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))‘𝑥))
3732, 36seqfeq 14068 . . . . . . 7 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) → seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) = seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))))
3837breq1d 5153 . . . . . 6 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) → (seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥 ↔ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥))
3931, 383anbi23d 1441 . . . . 5 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) → ((𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥)))
4039rexbidva 3177 . . . 4 (∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥)))
41 simplr 769 . . . . . . . . . 10 (((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 𝑚 ∈ ℕ)
42 nnuz 12921 . . . . . . . . . 10 ℕ = (ℤ‘1)
4341, 42eleqtrdi 2851 . . . . . . . . 9 (((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 𝑚 ∈ (ℤ‘1))
44 f1of 6848 . . . . . . . . . . . . . 14 (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...𝑚)⟶𝐴)
4544ad2antlr 727 . . . . . . . . . . . . 13 ((((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑥 ∈ (1...𝑚)) → 𝑓:(1...𝑚)⟶𝐴)
46 ffvelcdm 7101 . . . . . . . . . . . . 13 ((𝑓:(1...𝑚)⟶𝐴𝑥 ∈ (1...𝑚)) → (𝑓𝑥) ∈ 𝐴)
4745, 46sylancom 588 . . . . . . . . . . . 12 ((((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑥 ∈ (1...𝑚)) → (𝑓𝑥) ∈ 𝐴)
48 simplll 775 . . . . . . . . . . . 12 ((((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑥 ∈ (1...𝑚)) → ∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶))
49 nfcsb1v 3923 . . . . . . . . . . . . . 14 𝑘(𝑓𝑥) / 𝑘( I ‘𝐵)
50 nfcsb1v 3923 . . . . . . . . . . . . . 14 𝑘(𝑓𝑥) / 𝑘( I ‘𝐶)
5149, 50nfeq 2919 . . . . . . . . . . . . 13 𝑘(𝑓𝑥) / 𝑘( I ‘𝐵) = (𝑓𝑥) / 𝑘( I ‘𝐶)
52 csbeq1a 3913 . . . . . . . . . . . . . 14 (𝑘 = (𝑓𝑥) → ( I ‘𝐵) = (𝑓𝑥) / 𝑘( I ‘𝐵))
53 csbeq1a 3913 . . . . . . . . . . . . . 14 (𝑘 = (𝑓𝑥) → ( I ‘𝐶) = (𝑓𝑥) / 𝑘( I ‘𝐶))
5452, 53eqeq12d 2753 . . . . . . . . . . . . 13 (𝑘 = (𝑓𝑥) → (( I ‘𝐵) = ( I ‘𝐶) ↔ (𝑓𝑥) / 𝑘( I ‘𝐵) = (𝑓𝑥) / 𝑘( I ‘𝐶)))
5551, 54rspc 3610 . . . . . . . . . . . 12 ((𝑓𝑥) ∈ 𝐴 → (∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) → (𝑓𝑥) / 𝑘( I ‘𝐵) = (𝑓𝑥) / 𝑘( I ‘𝐶)))
5647, 48, 55sylc 65 . . . . . . . . . . 11 ((((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑥 ∈ (1...𝑚)) → (𝑓𝑥) / 𝑘( I ‘𝐵) = (𝑓𝑥) / 𝑘( I ‘𝐶))
57 fvex 6919 . . . . . . . . . . . 12 (𝑓𝑥) ∈ V
58 csbfv2g 6955 . . . . . . . . . . . 12 ((𝑓𝑥) ∈ V → (𝑓𝑥) / 𝑘( I ‘𝐵) = ( I ‘(𝑓𝑥) / 𝑘𝐵))
5957, 58ax-mp 5 . . . . . . . . . . 11 (𝑓𝑥) / 𝑘( I ‘𝐵) = ( I ‘(𝑓𝑥) / 𝑘𝐵)
60 csbfv2g 6955 . . . . . . . . . . . 12 ((𝑓𝑥) ∈ V → (𝑓𝑥) / 𝑘( I ‘𝐶) = ( I ‘(𝑓𝑥) / 𝑘𝐶))
6157, 60ax-mp 5 . . . . . . . . . . 11 (𝑓𝑥) / 𝑘( I ‘𝐶) = ( I ‘(𝑓𝑥) / 𝑘𝐶)
6256, 59, 613eqtr3g 2800 . . . . . . . . . 10 ((((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑥 ∈ (1...𝑚)) → ( I ‘(𝑓𝑥) / 𝑘𝐵) = ( I ‘(𝑓𝑥) / 𝑘𝐶))
63 elfznn 13593 . . . . . . . . . . . 12 (𝑥 ∈ (1...𝑚) → 𝑥 ∈ ℕ)
6463adantl 481 . . . . . . . . . . 11 ((((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑥 ∈ (1...𝑚)) → 𝑥 ∈ ℕ)
65 fveq2 6906 . . . . . . . . . . . . 13 (𝑛 = 𝑥 → (𝑓𝑛) = (𝑓𝑥))
6665csbeq1d 3903 . . . . . . . . . . . 12 (𝑛 = 𝑥(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑥) / 𝑘𝐵)
67 eqid 2737 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵) = (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)
6866, 67fvmpti 7015 . . . . . . . . . . 11 (𝑥 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)‘𝑥) = ( I ‘(𝑓𝑥) / 𝑘𝐵))
6964, 68syl 17 . . . . . . . . . 10 ((((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑥 ∈ (1...𝑚)) → ((𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)‘𝑥) = ( I ‘(𝑓𝑥) / 𝑘𝐵))
7065csbeq1d 3903 . . . . . . . . . . . 12 (𝑛 = 𝑥(𝑓𝑛) / 𝑘𝐶 = (𝑓𝑥) / 𝑘𝐶)
71 eqid 2737 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶) = (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶)
7270, 71fvmpti 7015 . . . . . . . . . . 11 (𝑥 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶)‘𝑥) = ( I ‘(𝑓𝑥) / 𝑘𝐶))
7364, 72syl 17 . . . . . . . . . 10 ((((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑥 ∈ (1...𝑚)) → ((𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶)‘𝑥) = ( I ‘(𝑓𝑥) / 𝑘𝐶))
7462, 69, 733eqtr4d 2787 . . . . . . . . 9 ((((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑥 ∈ (1...𝑚)) → ((𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)‘𝑥) = ((𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶)‘𝑥))
7543, 74seqfveq 14067 . . . . . . . 8 (((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚) = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))
7675eqeq2d 2748 . . . . . . 7 (((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚) ↔ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)))
7776pm5.32da 579 . . . . . 6 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
7877exbidv 1921 . . . . 5 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
7978rexbidva 3177 . . . 4 (∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
8040, 79orbi12d 919 . . 3 (∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)))))
8180iotabidv 6545 . 2 (∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))) = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)))))
82 df-prod 15940 . 2 𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
83 df-prod 15940 . 2 𝑘𝐴 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
8481, 82, 833eqtr4g 2802 1 (∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) → ∏𝑘𝐴 𝐵 = ∏𝑘𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wex 1779  wcel 2108  wne 2940  wral 3061  wrex 3070  Vcvv 3480  csb 3899  wss 3951  ifcif 4525   class class class wbr 5143  cmpt 5225   I cid 5577  cio 6512  wf 6557  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156   · cmul 11160  cn 12266  cz 12613  cuz 12878  ...cfz 13547  seqcseq 14042  cli 15520  cprod 15939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-seq 14043  df-prod 15940
This theorem is referenced by:  prodeq2  15948  prod2id  15964
  Copyright terms: Public domain W3C validator