Step | Hyp | Ref
| Expression |
1 | | eluzelz 12334 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈
(ℤ≥‘𝑚) → 𝑛 ∈ ℤ) |
2 | 1 | adantl 485 |
. . . . . . . . . . . 12
⊢
((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑛 ∈ (ℤ≥‘𝑚)) → 𝑛 ∈ ℤ) |
3 | | nfra1 3131 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘∀𝑘 ∈ 𝐴 ( I ‘𝐵) = ( I ‘𝐶) |
4 | | rsp 3118 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) → (𝑘 ∈ 𝐴 → ( I ‘𝐵) = ( I ‘𝐶))) |
5 | 4 | adantr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ 𝐴 → ( I ‘𝐵) = ( I ‘𝐶))) |
6 | | ifeq1 4418 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (( I
‘𝐵) = ( I
‘𝐶) → if(𝑘 ∈ 𝐴, ( I ‘𝐵), ( I ‘1)) = if(𝑘 ∈ 𝐴, ( I ‘𝐶), ( I ‘1))) |
7 | 5, 6 | syl6 35 |
. . . . . . . . . . . . . . . . . . 19
⊢
((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, ( I ‘𝐵), ( I ‘1)) = if(𝑘 ∈ 𝐴, ( I ‘𝐶), ( I ‘1)))) |
8 | | iffalse 4423 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬
𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, ( I ‘𝐵), ( I ‘1)) = ( I
‘1)) |
9 | | iffalse 4423 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬
𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, ( I ‘𝐶), ( I ‘1)) = ( I
‘1)) |
10 | 8, 9 | eqtr4d 2776 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, ( I ‘𝐵), ( I ‘1)) = if(𝑘 ∈ 𝐴, ( I ‘𝐶), ( I ‘1))) |
11 | 7, 10 | pm2.61d1 183 |
. . . . . . . . . . . . . . . . . 18
⊢
((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑘 ∈ ℤ) → if(𝑘 ∈ 𝐴, ( I ‘𝐵), ( I ‘1)) = if(𝑘 ∈ 𝐴, ( I ‘𝐶), ( I ‘1))) |
12 | | fvif 6690 |
. . . . . . . . . . . . . . . . . 18
⊢ ( I
‘if(𝑘 ∈ 𝐴, 𝐵, 1)) = if(𝑘 ∈ 𝐴, ( I ‘𝐵), ( I ‘1)) |
13 | | fvif 6690 |
. . . . . . . . . . . . . . . . . 18
⊢ ( I
‘if(𝑘 ∈ 𝐴, 𝐶, 1)) = if(𝑘 ∈ 𝐴, ( I ‘𝐶), ( I ‘1)) |
14 | 11, 12, 13 | 3eqtr4g 2798 |
. . . . . . . . . . . . . . . . 17
⊢
((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑘 ∈ ℤ) → ( I ‘if(𝑘 ∈ 𝐴, 𝐵, 1)) = ( I ‘if(𝑘 ∈ 𝐴, 𝐶, 1))) |
15 | 3, 14 | mpteq2da 5124 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) → (𝑘 ∈ ℤ ↦ ( I ‘if(𝑘 ∈ 𝐴, 𝐵, 1))) = (𝑘 ∈ ℤ ↦ ( I ‘if(𝑘 ∈ 𝐴, 𝐶, 1)))) |
16 | 15 | adantr 484 |
. . . . . . . . . . . . . . 15
⊢
((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑥 ∈ (ℤ≥‘𝑛)) → (𝑘 ∈ ℤ ↦ ( I ‘if(𝑘 ∈ 𝐴, 𝐵, 1))) = (𝑘 ∈ ℤ ↦ ( I ‘if(𝑘 ∈ 𝐴, 𝐶, 1)))) |
17 | 16 | fveq1d 6676 |
. . . . . . . . . . . . . 14
⊢
((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑥 ∈ (ℤ≥‘𝑛)) → ((𝑘 ∈ ℤ ↦ ( I ‘if(𝑘 ∈ 𝐴, 𝐵, 1)))‘𝑥) = ((𝑘 ∈ ℤ ↦ ( I ‘if(𝑘 ∈ 𝐴, 𝐶, 1)))‘𝑥)) |
18 | 17 | adantlr 715 |
. . . . . . . . . . . . 13
⊢
(((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑛 ∈ (ℤ≥‘𝑚)) ∧ 𝑥 ∈ (ℤ≥‘𝑛)) → ((𝑘 ∈ ℤ ↦ ( I ‘if(𝑘 ∈ 𝐴, 𝐵, 1)))‘𝑥) = ((𝑘 ∈ ℤ ↦ ( I ‘if(𝑘 ∈ 𝐴, 𝐶, 1)))‘𝑥)) |
19 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) |
20 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℤ ↦ ( I
‘if(𝑘 ∈ 𝐴, 𝐵, 1))) = (𝑘 ∈ ℤ ↦ ( I ‘if(𝑘 ∈ 𝐴, 𝐵, 1))) |
21 | 19, 20 | fvmptex 6789 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))‘𝑥) = ((𝑘 ∈ ℤ ↦ ( I ‘if(𝑘 ∈ 𝐴, 𝐵, 1)))‘𝑥) |
22 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1)) = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1)) |
23 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℤ ↦ ( I
‘if(𝑘 ∈ 𝐴, 𝐶, 1))) = (𝑘 ∈ ℤ ↦ ( I ‘if(𝑘 ∈ 𝐴, 𝐶, 1))) |
24 | 22, 23 | fvmptex 6789 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))‘𝑥) = ((𝑘 ∈ ℤ ↦ ( I ‘if(𝑘 ∈ 𝐴, 𝐶, 1)))‘𝑥) |
25 | 18, 21, 24 | 3eqtr4g 2798 |
. . . . . . . . . . . 12
⊢
(((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑛 ∈ (ℤ≥‘𝑚)) ∧ 𝑥 ∈ (ℤ≥‘𝑛)) → ((𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))‘𝑥) = ((𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))‘𝑥)) |
26 | 2, 25 | seqfeq 13487 |
. . . . . . . . . . 11
⊢
((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑛 ∈ (ℤ≥‘𝑚)) → seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) = seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1)))) |
27 | 26 | breq1d 5040 |
. . . . . . . . . 10
⊢
((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑛 ∈ (ℤ≥‘𝑚)) → (seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦 ↔ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦)) |
28 | 27 | anbi2d 632 |
. . . . . . . . 9
⊢
((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑛 ∈ (ℤ≥‘𝑚)) → ((𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ (𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦))) |
29 | 28 | exbidv 1928 |
. . . . . . . 8
⊢
((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑛 ∈ (ℤ≥‘𝑚)) → (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦))) |
30 | 29 | rexbidva 3206 |
. . . . . . 7
⊢
(∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) → (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦))) |
31 | 30 | adantr 484 |
. . . . . 6
⊢
((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) → (∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦))) |
32 | | simpr 488 |
. . . . . . . 8
⊢
((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ) |
33 | 15 | adantr 484 |
. . . . . . . . . . 11
⊢
((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑥 ∈ (ℤ≥‘𝑚)) → (𝑘 ∈ ℤ ↦ ( I ‘if(𝑘 ∈ 𝐴, 𝐵, 1))) = (𝑘 ∈ ℤ ↦ ( I ‘if(𝑘 ∈ 𝐴, 𝐶, 1)))) |
34 | 33 | fveq1d 6676 |
. . . . . . . . . 10
⊢
((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑥 ∈ (ℤ≥‘𝑚)) → ((𝑘 ∈ ℤ ↦ ( I ‘if(𝑘 ∈ 𝐴, 𝐵, 1)))‘𝑥) = ((𝑘 ∈ ℤ ↦ ( I ‘if(𝑘 ∈ 𝐴, 𝐶, 1)))‘𝑥)) |
35 | 34, 21, 24 | 3eqtr4g 2798 |
. . . . . . . . 9
⊢
((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑥 ∈ (ℤ≥‘𝑚)) → ((𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))‘𝑥) = ((𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))‘𝑥)) |
36 | 35 | adantlr 715 |
. . . . . . . 8
⊢
(((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) ∧ 𝑥 ∈ (ℤ≥‘𝑚)) → ((𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))‘𝑥) = ((𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))‘𝑥)) |
37 | 32, 36 | seqfeq 13487 |
. . . . . . 7
⊢
((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) → seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) = seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1)))) |
38 | 37 | breq1d 5040 |
. . . . . 6
⊢
((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) → (seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥 ↔ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑥)) |
39 | 31, 38 | 3anbi23d 1440 |
. . . . 5
⊢
((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) → ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑥))) |
40 | 39 | rexbidva 3206 |
. . . 4
⊢
(∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑥))) |
41 | | simplr 769 |
. . . . . . . . . 10
⊢
(((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → 𝑚 ∈ ℕ) |
42 | | nnuz 12363 |
. . . . . . . . . 10
⊢ ℕ =
(ℤ≥‘1) |
43 | 41, 42 | eleqtrdi 2843 |
. . . . . . . . 9
⊢
(((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → 𝑚 ∈
(ℤ≥‘1)) |
44 | | f1of 6618 |
. . . . . . . . . . . . . 14
⊢ (𝑓:(1...𝑚)–1-1-onto→𝐴 → 𝑓:(1...𝑚)⟶𝐴) |
45 | 44 | ad2antlr 727 |
. . . . . . . . . . . . 13
⊢
((((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑥 ∈ (1...𝑚)) → 𝑓:(1...𝑚)⟶𝐴) |
46 | | ffvelrn 6859 |
. . . . . . . . . . . . 13
⊢ ((𝑓:(1...𝑚)⟶𝐴 ∧ 𝑥 ∈ (1...𝑚)) → (𝑓‘𝑥) ∈ 𝐴) |
47 | 45, 46 | sylancom 591 |
. . . . . . . . . . . 12
⊢
((((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑥 ∈ (1...𝑚)) → (𝑓‘𝑥) ∈ 𝐴) |
48 | | simplll 775 |
. . . . . . . . . . . 12
⊢
((((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑥 ∈ (1...𝑚)) → ∀𝑘 ∈ 𝐴 ( I ‘𝐵) = ( I ‘𝐶)) |
49 | | nfcsb1v 3814 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐵) |
50 | | nfcsb1v 3814 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐶) |
51 | 49, 50 | nfeq 2912 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐵) = ⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐶) |
52 | | csbeq1a 3804 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (𝑓‘𝑥) → ( I ‘𝐵) = ⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐵)) |
53 | | csbeq1a 3804 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (𝑓‘𝑥) → ( I ‘𝐶) = ⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐶)) |
54 | 52, 53 | eqeq12d 2754 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑓‘𝑥) → (( I ‘𝐵) = ( I ‘𝐶) ↔ ⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐵) = ⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐶))) |
55 | 51, 54 | rspc 3514 |
. . . . . . . . . . . 12
⊢ ((𝑓‘𝑥) ∈ 𝐴 → (∀𝑘 ∈ 𝐴 ( I ‘𝐵) = ( I ‘𝐶) → ⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐵) = ⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐶))) |
56 | 47, 48, 55 | sylc 65 |
. . . . . . . . . . 11
⊢
((((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑥 ∈ (1...𝑚)) → ⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐵) = ⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐶)) |
57 | | fvex 6687 |
. . . . . . . . . . . 12
⊢ (𝑓‘𝑥) ∈ V |
58 | | csbfv2g 6718 |
. . . . . . . . . . . 12
⊢ ((𝑓‘𝑥) ∈ V → ⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐵) = ( I ‘⦋(𝑓‘𝑥) / 𝑘⦌𝐵)) |
59 | 57, 58 | ax-mp 5 |
. . . . . . . . . . 11
⊢
⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐵) = ( I ‘⦋(𝑓‘𝑥) / 𝑘⦌𝐵) |
60 | | csbfv2g 6718 |
. . . . . . . . . . . 12
⊢ ((𝑓‘𝑥) ∈ V → ⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐶) = ( I ‘⦋(𝑓‘𝑥) / 𝑘⦌𝐶)) |
61 | 57, 60 | ax-mp 5 |
. . . . . . . . . . 11
⊢
⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐶) = ( I ‘⦋(𝑓‘𝑥) / 𝑘⦌𝐶) |
62 | 56, 59, 61 | 3eqtr3g 2796 |
. . . . . . . . . 10
⊢
((((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑥 ∈ (1...𝑚)) → ( I ‘⦋(𝑓‘𝑥) / 𝑘⦌𝐵) = ( I ‘⦋(𝑓‘𝑥) / 𝑘⦌𝐶)) |
63 | | elfznn 13027 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (1...𝑚) → 𝑥 ∈ ℕ) |
64 | 63 | adantl 485 |
. . . . . . . . . . 11
⊢
((((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑥 ∈ (1...𝑚)) → 𝑥 ∈ ℕ) |
65 | | fveq2 6674 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑥 → (𝑓‘𝑛) = (𝑓‘𝑥)) |
66 | 65 | csbeq1d 3794 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑥 → ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑥) / 𝑘⦌𝐵) |
67 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑘⦌𝐵) = (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵) |
68 | 66, 67 | fvmpti 6774 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℕ → ((𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑘⦌𝐵)‘𝑥) = ( I ‘⦋(𝑓‘𝑥) / 𝑘⦌𝐵)) |
69 | 64, 68 | syl 17 |
. . . . . . . . . 10
⊢
((((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑥 ∈ (1...𝑚)) → ((𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵)‘𝑥) = ( I ‘⦋(𝑓‘𝑥) / 𝑘⦌𝐵)) |
70 | 65 | csbeq1d 3794 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑥 → ⦋(𝑓‘𝑛) / 𝑘⦌𝐶 = ⦋(𝑓‘𝑥) / 𝑘⦌𝐶) |
71 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑘⦌𝐶) = (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶) |
72 | 70, 71 | fvmpti 6774 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℕ → ((𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑘⦌𝐶)‘𝑥) = ( I ‘⦋(𝑓‘𝑥) / 𝑘⦌𝐶)) |
73 | 64, 72 | syl 17 |
. . . . . . . . . 10
⊢
((((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑥 ∈ (1...𝑚)) → ((𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶)‘𝑥) = ( I ‘⦋(𝑓‘𝑥) / 𝑘⦌𝐶)) |
74 | 62, 69, 73 | 3eqtr4d 2783 |
. . . . . . . . 9
⊢
((((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑥 ∈ (1...𝑚)) → ((𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵)‘𝑥) = ((𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶)‘𝑥)) |
75 | 43, 74 | seqfveq 13486 |
. . . . . . . 8
⊢
(((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (seq1( · ,
(𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚) = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚)) |
76 | 75 | eqeq2d 2749 |
. . . . . . 7
⊢
(((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚) ↔ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚))) |
77 | 76 | pm5.32da 582 |
. . . . . 6
⊢
((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚)))) |
78 | 77 | exbidv 1928 |
. . . . 5
⊢
((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚)))) |
79 | 78 | rexbidva 3206 |
. . . 4
⊢
(∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚)))) |
80 | 40, 79 | orbi12d 918 |
. . 3
⊢
(∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚))))) |
81 | 80 | iotabidv 6323 |
. 2
⊢
(∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚))))) |
82 | | df-prod 15352 |
. 2
⊢
∏𝑘 ∈
𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) |
83 | | df-prod 15352 |
. 2
⊢
∏𝑘 ∈
𝐴 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚)))) |
84 | 81, 82, 83 | 3eqtr4g 2798 |
1
⊢
(∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶) |