MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasumiflem1 Structured version   Visualization version   GIF version

Theorem dchrvmasumiflem1 26649
Description: Lemma for dchrvmasumif 26651. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrvmasumif.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
dchrvmasumif.c (𝜑𝐶 ∈ (0[,)+∞))
dchrvmasumif.s (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
dchrvmasumif.1 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / 𝑦))
dchrvmasumif.g 𝐾 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · ((log‘𝑎) / 𝑎)))
dchrvmasumif.e (𝜑𝐸 ∈ (0[,)+∞))
dchrvmasumif.t (𝜑 → seq1( + , 𝐾) ⇝ 𝑇)
dchrvmasumif.2 (𝜑 → ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 · ((log‘𝑦) / 𝑦)))
Assertion
Ref Expression
dchrvmasumiflem1 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇)))) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑘,𝑦, 1   𝑥,𝑑,𝑦,𝐶   𝑘,𝑑,𝐹,𝑥,𝑦   𝑎,𝑑,𝑘,𝑥,𝑦   𝐸,𝑑,𝑥,𝑦   𝑘,𝐾,𝑦   𝑘,𝑁,𝑥,𝑦   𝜑,𝑑,𝑘,𝑥   𝑇,𝑑,𝑥,𝑦   𝑆,𝑑,𝑘,𝑥,𝑦   𝑘,𝑍,𝑥,𝑦   𝐷,𝑘,𝑥,𝑦   𝐿,𝑎,𝑑,𝑘,𝑥,𝑦   𝑋,𝑎,𝑑,𝑘,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐶(𝑘,𝑎)   𝐷(𝑎,𝑑)   𝑆(𝑎)   𝑇(𝑘,𝑎)   1 (𝑎,𝑑)   𝐸(𝑘,𝑎)   𝐹(𝑎)   𝐺(𝑥,𝑦,𝑘,𝑎,𝑑)   𝐾(𝑥,𝑎,𝑑)   𝑁(𝑎,𝑑)   𝑍(𝑎,𝑑)

Proof of Theorem dchrvmasumiflem1
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 rpvmasum.z . 2 𝑍 = (ℤ/nℤ‘𝑁)
2 rpvmasum.l . 2 𝐿 = (ℤRHom‘𝑍)
3 rpvmasum.a . 2 (𝜑𝑁 ∈ ℕ)
4 rpvmasum.g . 2 𝐺 = (DChr‘𝑁)
5 rpvmasum.d . 2 𝐷 = (Base‘𝐺)
6 rpvmasum.1 . 2 1 = (0g𝐺)
7 dchrisum.b . 2 (𝜑𝑋𝐷)
8 dchrisum.n1 . 2 (𝜑𝑋1 )
9 fzfid 13693 . . 3 ((𝜑𝑚 ∈ ℝ+) → (1...(⌊‘𝑚)) ∈ Fin)
10 simpl 483 . . . . 5 ((𝜑𝑚 ∈ ℝ+) → 𝜑)
11 elfznn 13285 . . . . 5 (𝑘 ∈ (1...(⌊‘𝑚)) → 𝑘 ∈ ℕ)
127adantr 481 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝑋𝐷)
13 nnz 12342 . . . . . . 7 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
1413adantl 482 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
154, 1, 5, 2, 12, 14dchrzrhcl 26393 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑋‘(𝐿𝑘)) ∈ ℂ)
1610, 11, 15syl2an 596 . . . 4 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → (𝑋‘(𝐿𝑘)) ∈ ℂ)
17 simpr 485 . . . . . . . 8 ((𝜑𝑚 ∈ ℝ+) → 𝑚 ∈ ℝ+)
1811nnrpd 12770 . . . . . . . 8 (𝑘 ∈ (1...(⌊‘𝑚)) → 𝑘 ∈ ℝ+)
19 ifcl 4504 . . . . . . . 8 ((𝑚 ∈ ℝ+𝑘 ∈ ℝ+) → if(𝑆 = 0, 𝑚, 𝑘) ∈ ℝ+)
2017, 18, 19syl2an 596 . . . . . . 7 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → if(𝑆 = 0, 𝑚, 𝑘) ∈ ℝ+)
2120relogcld 25778 . . . . . 6 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → (log‘if(𝑆 = 0, 𝑚, 𝑘)) ∈ ℝ)
2211adantl 482 . . . . . 6 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → 𝑘 ∈ ℕ)
2321, 22nndivred 12027 . . . . 5 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘) ∈ ℝ)
2423recnd 11003 . . . 4 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘) ∈ ℂ)
2516, 24mulcld 10995 . . 3 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) ∈ ℂ)
269, 25fsumcl 15445 . 2 ((𝜑𝑚 ∈ ℝ+) → Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) ∈ ℂ)
27 fveq2 6774 . . . 4 (𝑚 = (𝑥 / 𝑑) → (⌊‘𝑚) = (⌊‘(𝑥 / 𝑑)))
2827oveq2d 7291 . . 3 (𝑚 = (𝑥 / 𝑑) → (1...(⌊‘𝑚)) = (1...(⌊‘(𝑥 / 𝑑))))
29 ifeq1 4463 . . . . . . 7 (𝑚 = (𝑥 / 𝑑) → if(𝑆 = 0, 𝑚, 𝑘) = if(𝑆 = 0, (𝑥 / 𝑑), 𝑘))
3029fveq2d 6778 . . . . . 6 (𝑚 = (𝑥 / 𝑑) → (log‘if(𝑆 = 0, 𝑚, 𝑘)) = (log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)))
3130oveq1d 7290 . . . . 5 (𝑚 = (𝑥 / 𝑑) → ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘) = ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))
3231oveq2d 7291 . . . 4 (𝑚 = (𝑥 / 𝑑) → ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) = ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)))
3332adantr 481 . . 3 ((𝑚 = (𝑥 / 𝑑) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) = ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)))
3428, 33sumeq12rdv 15419 . 2 (𝑚 = (𝑥 / 𝑑) → Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) = Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)))
35 dchrvmasumif.c . . 3 (𝜑𝐶 ∈ (0[,)+∞))
36 dchrvmasumif.e . . 3 (𝜑𝐸 ∈ (0[,)+∞))
3735, 36ifcld 4505 . 2 (𝜑 → if(𝑆 = 0, 𝐶, 𝐸) ∈ (0[,)+∞))
38 0cn 10967 . . 3 0 ∈ ℂ
39 dchrvmasumif.t . . . 4 (𝜑 → seq1( + , 𝐾) ⇝ 𝑇)
40 climcl 15208 . . . 4 (seq1( + , 𝐾) ⇝ 𝑇𝑇 ∈ ℂ)
4139, 40syl 17 . . 3 (𝜑𝑇 ∈ ℂ)
42 ifcl 4504 . . 3 ((0 ∈ ℂ ∧ 𝑇 ∈ ℂ) → if(𝑆 = 0, 0, 𝑇) ∈ ℂ)
4338, 41, 42sylancr 587 . 2 (𝜑 → if(𝑆 = 0, 0, 𝑇) ∈ ℂ)
44 nnuz 12621 . . . . . . . . 9 ℕ = (ℤ‘1)
45 1zzd 12351 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
46 nncn 11981 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
4746adantl 482 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
48 nnne0 12007 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
4948adantl 482 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝑘 ≠ 0)
5015, 47, 49divcld 11751 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝑋‘(𝐿𝑘)) / 𝑘) ∈ ℂ)
51 dchrvmasumif.f . . . . . . . . . . . 12 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
52 2fveq3 6779 . . . . . . . . . . . . . 14 (𝑎 = 𝑘 → (𝑋‘(𝐿𝑎)) = (𝑋‘(𝐿𝑘)))
53 id 22 . . . . . . . . . . . . . 14 (𝑎 = 𝑘𝑎 = 𝑘)
5452, 53oveq12d 7293 . . . . . . . . . . . . 13 (𝑎 = 𝑘 → ((𝑋‘(𝐿𝑎)) / 𝑎) = ((𝑋‘(𝐿𝑘)) / 𝑘))
5554cbvmptv 5187 . . . . . . . . . . . 12 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)) = (𝑘 ∈ ℕ ↦ ((𝑋‘(𝐿𝑘)) / 𝑘))
5651, 55eqtri 2766 . . . . . . . . . . 11 𝐹 = (𝑘 ∈ ℕ ↦ ((𝑋‘(𝐿𝑘)) / 𝑘))
5750, 56fmptd 6988 . . . . . . . . . 10 (𝜑𝐹:ℕ⟶ℂ)
58 ffvelrn 6959 . . . . . . . . . 10 ((𝐹:ℕ⟶ℂ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
5957, 58sylan 580 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
6044, 45, 59serf 13751 . . . . . . . 8 (𝜑 → seq1( + , 𝐹):ℕ⟶ℂ)
6160ad2antrr 723 . . . . . . 7 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → seq1( + , 𝐹):ℕ⟶ℂ)
62 3re 12053 . . . . . . . . . . 11 3 ∈ ℝ
63 elicopnf 13177 . . . . . . . . . . 11 (3 ∈ ℝ → (𝑚 ∈ (3[,)+∞) ↔ (𝑚 ∈ ℝ ∧ 3 ≤ 𝑚)))
6462, 63mp1i 13 . . . . . . . . . 10 (𝜑 → (𝑚 ∈ (3[,)+∞) ↔ (𝑚 ∈ ℝ ∧ 3 ≤ 𝑚)))
6564simprbda 499 . . . . . . . . 9 ((𝜑𝑚 ∈ (3[,)+∞)) → 𝑚 ∈ ℝ)
66 1red 10976 . . . . . . . . . 10 ((𝜑𝑚 ∈ (3[,)+∞)) → 1 ∈ ℝ)
6762a1i 11 . . . . . . . . . 10 ((𝜑𝑚 ∈ (3[,)+∞)) → 3 ∈ ℝ)
68 1le3 12185 . . . . . . . . . . 11 1 ≤ 3
6968a1i 11 . . . . . . . . . 10 ((𝜑𝑚 ∈ (3[,)+∞)) → 1 ≤ 3)
7064simplbda 500 . . . . . . . . . 10 ((𝜑𝑚 ∈ (3[,)+∞)) → 3 ≤ 𝑚)
7166, 67, 65, 69, 70letrd 11132 . . . . . . . . 9 ((𝜑𝑚 ∈ (3[,)+∞)) → 1 ≤ 𝑚)
72 flge1nn 13541 . . . . . . . . 9 ((𝑚 ∈ ℝ ∧ 1 ≤ 𝑚) → (⌊‘𝑚) ∈ ℕ)
7365, 71, 72syl2anc 584 . . . . . . . 8 ((𝜑𝑚 ∈ (3[,)+∞)) → (⌊‘𝑚) ∈ ℕ)
7473adantr 481 . . . . . . 7 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (⌊‘𝑚) ∈ ℕ)
7561, 74ffvelrnd 6962 . . . . . 6 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (seq1( + , 𝐹)‘(⌊‘𝑚)) ∈ ℂ)
7675abscld 15148 . . . . 5 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (abs‘(seq1( + , 𝐹)‘(⌊‘𝑚))) ∈ ℝ)
77 simpl 483 . . . . . . . 8 ((𝜑𝑚 ∈ (3[,)+∞)) → 𝜑)
78 0red 10978 . . . . . . . . . 10 ((𝜑𝑚 ∈ (3[,)+∞)) → 0 ∈ ℝ)
79 3pos 12078 . . . . . . . . . . 11 0 < 3
8079a1i 11 . . . . . . . . . 10 ((𝜑𝑚 ∈ (3[,)+∞)) → 0 < 3)
8178, 67, 65, 80, 70ltletrd 11135 . . . . . . . . 9 ((𝜑𝑚 ∈ (3[,)+∞)) → 0 < 𝑚)
8265, 81elrpd 12769 . . . . . . . 8 ((𝜑𝑚 ∈ (3[,)+∞)) → 𝑚 ∈ ℝ+)
8377, 82jca 512 . . . . . . 7 ((𝜑𝑚 ∈ (3[,)+∞)) → (𝜑𝑚 ∈ ℝ+))
84 elrege0 13186 . . . . . . . . . 10 (𝐶 ∈ (0[,)+∞) ↔ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
8584simplbi 498 . . . . . . . . 9 (𝐶 ∈ (0[,)+∞) → 𝐶 ∈ ℝ)
8635, 85syl 17 . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
87 rerpdivcl 12760 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ 𝑚 ∈ ℝ+) → (𝐶 / 𝑚) ∈ ℝ)
8886, 87sylan 580 . . . . . . 7 ((𝜑𝑚 ∈ ℝ+) → (𝐶 / 𝑚) ∈ ℝ)
8983, 88syl 17 . . . . . 6 ((𝜑𝑚 ∈ (3[,)+∞)) → (𝐶 / 𝑚) ∈ ℝ)
9089adantr 481 . . . . 5 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (𝐶 / 𝑚) ∈ ℝ)
9182relogcld 25778 . . . . . . 7 ((𝜑𝑚 ∈ (3[,)+∞)) → (log‘𝑚) ∈ ℝ)
9265, 71logge0d 25785 . . . . . . 7 ((𝜑𝑚 ∈ (3[,)+∞)) → 0 ≤ (log‘𝑚))
9391, 92jca 512 . . . . . 6 ((𝜑𝑚 ∈ (3[,)+∞)) → ((log‘𝑚) ∈ ℝ ∧ 0 ≤ (log‘𝑚)))
9493adantr 481 . . . . 5 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → ((log‘𝑚) ∈ ℝ ∧ 0 ≤ (log‘𝑚)))
95 oveq2 7283 . . . . . . . 8 (𝑆 = 0 → ((seq1( + , 𝐹)‘(⌊‘𝑚)) − 𝑆) = ((seq1( + , 𝐹)‘(⌊‘𝑚)) − 0))
9660adantr 481 . . . . . . . . . 10 ((𝜑𝑚 ∈ (3[,)+∞)) → seq1( + , 𝐹):ℕ⟶ℂ)
9796, 73ffvelrnd 6962 . . . . . . . . 9 ((𝜑𝑚 ∈ (3[,)+∞)) → (seq1( + , 𝐹)‘(⌊‘𝑚)) ∈ ℂ)
9897subid1d 11321 . . . . . . . 8 ((𝜑𝑚 ∈ (3[,)+∞)) → ((seq1( + , 𝐹)‘(⌊‘𝑚)) − 0) = (seq1( + , 𝐹)‘(⌊‘𝑚)))
9995, 98sylan9eqr 2800 . . . . . . 7 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → ((seq1( + , 𝐹)‘(⌊‘𝑚)) − 𝑆) = (seq1( + , 𝐹)‘(⌊‘𝑚)))
10099fveq2d 6778 . . . . . 6 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑚)) − 𝑆)) = (abs‘(seq1( + , 𝐹)‘(⌊‘𝑚))))
101 2fveq3 6779 . . . . . . . . . 10 (𝑦 = 𝑚 → (seq1( + , 𝐹)‘(⌊‘𝑦)) = (seq1( + , 𝐹)‘(⌊‘𝑚)))
102101fvoveq1d 7297 . . . . . . . . 9 (𝑦 = 𝑚 → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) = (abs‘((seq1( + , 𝐹)‘(⌊‘𝑚)) − 𝑆)))
103 oveq2 7283 . . . . . . . . 9 (𝑦 = 𝑚 → (𝐶 / 𝑦) = (𝐶 / 𝑚))
104102, 103breq12d 5087 . . . . . . . 8 (𝑦 = 𝑚 → ((abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / 𝑦) ↔ (abs‘((seq1( + , 𝐹)‘(⌊‘𝑚)) − 𝑆)) ≤ (𝐶 / 𝑚)))
105 dchrvmasumif.1 . . . . . . . . 9 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / 𝑦))
106105adantr 481 . . . . . . . 8 ((𝜑𝑚 ∈ (3[,)+∞)) → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / 𝑦))
107 1re 10975 . . . . . . . . . 10 1 ∈ ℝ
108 elicopnf 13177 . . . . . . . . . 10 (1 ∈ ℝ → (𝑚 ∈ (1[,)+∞) ↔ (𝑚 ∈ ℝ ∧ 1 ≤ 𝑚)))
109107, 108ax-mp 5 . . . . . . . . 9 (𝑚 ∈ (1[,)+∞) ↔ (𝑚 ∈ ℝ ∧ 1 ≤ 𝑚))
11065, 71, 109sylanbrc 583 . . . . . . . 8 ((𝜑𝑚 ∈ (3[,)+∞)) → 𝑚 ∈ (1[,)+∞))
111104, 106, 110rspcdva 3562 . . . . . . 7 ((𝜑𝑚 ∈ (3[,)+∞)) → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑚)) − 𝑆)) ≤ (𝐶 / 𝑚))
112111adantr 481 . . . . . 6 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑚)) − 𝑆)) ≤ (𝐶 / 𝑚))
113100, 112eqbrtrrd 5098 . . . . 5 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (abs‘(seq1( + , 𝐹)‘(⌊‘𝑚))) ≤ (𝐶 / 𝑚))
114 lemul2a 11830 . . . . 5 ((((abs‘(seq1( + , 𝐹)‘(⌊‘𝑚))) ∈ ℝ ∧ (𝐶 / 𝑚) ∈ ℝ ∧ ((log‘𝑚) ∈ ℝ ∧ 0 ≤ (log‘𝑚))) ∧ (abs‘(seq1( + , 𝐹)‘(⌊‘𝑚))) ≤ (𝐶 / 𝑚)) → ((log‘𝑚) · (abs‘(seq1( + , 𝐹)‘(⌊‘𝑚)))) ≤ ((log‘𝑚) · (𝐶 / 𝑚)))
11576, 90, 94, 113, 114syl31anc 1372 . . . 4 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → ((log‘𝑚) · (abs‘(seq1( + , 𝐹)‘(⌊‘𝑚)))) ≤ ((log‘𝑚) · (𝐶 / 𝑚)))
116 iftrue 4465 . . . . . . . . . . . . . . 15 (𝑆 = 0 → if(𝑆 = 0, 𝑚, 𝑘) = 𝑚)
117116fveq2d 6778 . . . . . . . . . . . . . 14 (𝑆 = 0 → (log‘if(𝑆 = 0, 𝑚, 𝑘)) = (log‘𝑚))
118117oveq1d 7290 . . . . . . . . . . . . 13 (𝑆 = 0 → ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘) = ((log‘𝑚) / 𝑘))
119118ad2antlr 724 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘) = ((log‘𝑚) / 𝑘))
120119oveq2d 7291 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) = ((𝑋‘(𝐿𝑘)) · ((log‘𝑚) / 𝑘)))
12116adantlr 712 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → (𝑋‘(𝐿𝑘)) ∈ ℂ)
122 relogcl 25731 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℝ+ → (log‘𝑚) ∈ ℝ)
123122adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℝ+) → (log‘𝑚) ∈ ℝ)
124123recnd 11003 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℝ+) → (log‘𝑚) ∈ ℂ)
125124ad2antrr 723 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → (log‘𝑚) ∈ ℂ)
12611adantl 482 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → 𝑘 ∈ ℕ)
127126nncnd 11989 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → 𝑘 ∈ ℂ)
128126nnne0d 12023 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → 𝑘 ≠ 0)
129121, 125, 127, 128div12d 11787 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → ((𝑋‘(𝐿𝑘)) · ((log‘𝑚) / 𝑘)) = ((log‘𝑚) · ((𝑋‘(𝐿𝑘)) / 𝑘)))
130120, 129eqtrd 2778 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) = ((log‘𝑚) · ((𝑋‘(𝐿𝑘)) / 𝑘)))
131130sumeq2dv 15415 . . . . . . . . 9 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) → Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) = Σ𝑘 ∈ (1...(⌊‘𝑚))((log‘𝑚) · ((𝑋‘(𝐿𝑘)) / 𝑘)))
132 iftrue 4465 . . . . . . . . . . 11 (𝑆 = 0 → if(𝑆 = 0, 0, 𝑇) = 0)
133132oveq2d 7291 . . . . . . . . . 10 (𝑆 = 0 → (Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇)) = (Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − 0))
13426subid1d 11321 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℝ+) → (Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − 0) = Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)))
135133, 134sylan9eqr 2800 . . . . . . . . 9 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) → (Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇)) = Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)))
136 ovex 7308 . . . . . . . . . . . . . 14 ((𝑋‘(𝐿𝑘)) / 𝑘) ∈ V
13754, 51, 136fvmpt 6875 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝐹𝑘) = ((𝑋‘(𝐿𝑘)) / 𝑘))
13822, 137syl 17 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → (𝐹𝑘) = ((𝑋‘(𝐿𝑘)) / 𝑘))
13957adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℝ+) → 𝐹:ℕ⟶ℂ)
140139, 11, 58syl2an 596 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → (𝐹𝑘) ∈ ℂ)
141138, 140eqeltrrd 2840 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → ((𝑋‘(𝐿𝑘)) / 𝑘) ∈ ℂ)
1429, 124, 141fsummulc2 15496 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℝ+) → ((log‘𝑚) · Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) / 𝑘)) = Σ𝑘 ∈ (1...(⌊‘𝑚))((log‘𝑚) · ((𝑋‘(𝐿𝑘)) / 𝑘)))
143142adantr 481 . . . . . . . . 9 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) → ((log‘𝑚) · Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) / 𝑘)) = Σ𝑘 ∈ (1...(⌊‘𝑚))((log‘𝑚) · ((𝑋‘(𝐿𝑘)) / 𝑘)))
144131, 135, 1433eqtr4d 2788 . . . . . . . 8 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) → (Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇)) = ((log‘𝑚) · Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) / 𝑘)))
14583, 144sylan 580 . . . . . . 7 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇)) = ((log‘𝑚) · Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) / 𝑘)))
14683, 138sylan 580 . . . . . . . . . 10 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → (𝐹𝑘) = ((𝑋‘(𝐿𝑘)) / 𝑘))
14773, 44eleqtrdi 2849 . . . . . . . . . 10 ((𝜑𝑚 ∈ (3[,)+∞)) → (⌊‘𝑚) ∈ (ℤ‘1))
14877, 11, 50syl2an 596 . . . . . . . . . 10 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → ((𝑋‘(𝐿𝑘)) / 𝑘) ∈ ℂ)
149146, 147, 148fsumser 15442 . . . . . . . . 9 ((𝜑𝑚 ∈ (3[,)+∞)) → Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) / 𝑘) = (seq1( + , 𝐹)‘(⌊‘𝑚)))
150149adantr 481 . . . . . . . 8 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) / 𝑘) = (seq1( + , 𝐹)‘(⌊‘𝑚)))
151150oveq2d 7291 . . . . . . 7 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → ((log‘𝑚) · Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) / 𝑘)) = ((log‘𝑚) · (seq1( + , 𝐹)‘(⌊‘𝑚))))
152145, 151eqtrd 2778 . . . . . 6 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇)) = ((log‘𝑚) · (seq1( + , 𝐹)‘(⌊‘𝑚))))
153152fveq2d 6778 . . . . 5 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) = (abs‘((log‘𝑚) · (seq1( + , 𝐹)‘(⌊‘𝑚)))))
154122ad2antlr 724 . . . . . . . 8 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) → (log‘𝑚) ∈ ℝ)
155154recnd 11003 . . . . . . 7 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) → (log‘𝑚) ∈ ℂ)
15683, 155sylan 580 . . . . . 6 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (log‘𝑚) ∈ ℂ)
157156, 75absmuld 15166 . . . . 5 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (abs‘((log‘𝑚) · (seq1( + , 𝐹)‘(⌊‘𝑚)))) = ((abs‘(log‘𝑚)) · (abs‘(seq1( + , 𝐹)‘(⌊‘𝑚)))))
15891, 92absidd 15134 . . . . . . 7 ((𝜑𝑚 ∈ (3[,)+∞)) → (abs‘(log‘𝑚)) = (log‘𝑚))
159158oveq1d 7290 . . . . . 6 ((𝜑𝑚 ∈ (3[,)+∞)) → ((abs‘(log‘𝑚)) · (abs‘(seq1( + , 𝐹)‘(⌊‘𝑚)))) = ((log‘𝑚) · (abs‘(seq1( + , 𝐹)‘(⌊‘𝑚)))))
160159adantr 481 . . . . 5 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → ((abs‘(log‘𝑚)) · (abs‘(seq1( + , 𝐹)‘(⌊‘𝑚)))) = ((log‘𝑚) · (abs‘(seq1( + , 𝐹)‘(⌊‘𝑚)))))
161153, 157, 1603eqtrd 2782 . . . 4 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) = ((log‘𝑚) · (abs‘(seq1( + , 𝐹)‘(⌊‘𝑚)))))
162 iftrue 4465 . . . . . . . 8 (𝑆 = 0 → if(𝑆 = 0, 𝐶, 𝐸) = 𝐶)
163162adantl 482 . . . . . . 7 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) → if(𝑆 = 0, 𝐶, 𝐸) = 𝐶)
164163oveq1d 7290 . . . . . 6 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) → (if(𝑆 = 0, 𝐶, 𝐸) · ((log‘𝑚) / 𝑚)) = (𝐶 · ((log‘𝑚) / 𝑚)))
16586recnd 11003 . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
166165ad2antrr 723 . . . . . . 7 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) → 𝐶 ∈ ℂ)
167 rpcnne0 12748 . . . . . . . 8 (𝑚 ∈ ℝ+ → (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0))
168167ad2antlr 724 . . . . . . 7 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) → (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0))
169 div12 11655 . . . . . . 7 ((𝐶 ∈ ℂ ∧ (log‘𝑚) ∈ ℂ ∧ (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0)) → (𝐶 · ((log‘𝑚) / 𝑚)) = ((log‘𝑚) · (𝐶 / 𝑚)))
170166, 155, 168, 169syl3anc 1370 . . . . . 6 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) → (𝐶 · ((log‘𝑚) / 𝑚)) = ((log‘𝑚) · (𝐶 / 𝑚)))
171164, 170eqtrd 2778 . . . . 5 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) → (if(𝑆 = 0, 𝐶, 𝐸) · ((log‘𝑚) / 𝑚)) = ((log‘𝑚) · (𝐶 / 𝑚)))
17283, 171sylan 580 . . . 4 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (if(𝑆 = 0, 𝐶, 𝐸) · ((log‘𝑚) / 𝑚)) = ((log‘𝑚) · (𝐶 / 𝑚)))
173115, 161, 1723brtr4d 5106 . . 3 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) ≤ (if(𝑆 = 0, 𝐶, 𝐸) · ((log‘𝑚) / 𝑚)))
174 dchrvmasumif.2 . . . . . 6 (𝜑 → ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 · ((log‘𝑦) / 𝑦)))
175 2fveq3 6779 . . . . . . . . 9 (𝑦 = 𝑚 → (seq1( + , 𝐾)‘(⌊‘𝑦)) = (seq1( + , 𝐾)‘(⌊‘𝑚)))
176175fvoveq1d 7297 . . . . . . . 8 (𝑦 = 𝑚 → (abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) = (abs‘((seq1( + , 𝐾)‘(⌊‘𝑚)) − 𝑇)))
177 fveq2 6774 . . . . . . . . . 10 (𝑦 = 𝑚 → (log‘𝑦) = (log‘𝑚))
178 id 22 . . . . . . . . . 10 (𝑦 = 𝑚𝑦 = 𝑚)
179177, 178oveq12d 7293 . . . . . . . . 9 (𝑦 = 𝑚 → ((log‘𝑦) / 𝑦) = ((log‘𝑚) / 𝑚))
180179oveq2d 7291 . . . . . . . 8 (𝑦 = 𝑚 → (𝐸 · ((log‘𝑦) / 𝑦)) = (𝐸 · ((log‘𝑚) / 𝑚)))
181176, 180breq12d 5087 . . . . . . 7 (𝑦 = 𝑚 → ((abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 · ((log‘𝑦) / 𝑦)) ↔ (abs‘((seq1( + , 𝐾)‘(⌊‘𝑚)) − 𝑇)) ≤ (𝐸 · ((log‘𝑚) / 𝑚))))
182181rspccva 3560 . . . . . 6 ((∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 · ((log‘𝑦) / 𝑦)) ∧ 𝑚 ∈ (3[,)+∞)) → (abs‘((seq1( + , 𝐾)‘(⌊‘𝑚)) − 𝑇)) ≤ (𝐸 · ((log‘𝑚) / 𝑚)))
183174, 182sylan 580 . . . . 5 ((𝜑𝑚 ∈ (3[,)+∞)) → (abs‘((seq1( + , 𝐾)‘(⌊‘𝑚)) − 𝑇)) ≤ (𝐸 · ((log‘𝑚) / 𝑚)))
184183adantr 481 . . . 4 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) → (abs‘((seq1( + , 𝐾)‘(⌊‘𝑚)) − 𝑇)) ≤ (𝐸 · ((log‘𝑚) / 𝑚)))
185 fveq2 6774 . . . . . . . . . . . 12 (𝑎 = 𝑘 → (log‘𝑎) = (log‘𝑘))
186185, 53oveq12d 7293 . . . . . . . . . . 11 (𝑎 = 𝑘 → ((log‘𝑎) / 𝑎) = ((log‘𝑘) / 𝑘))
18752, 186oveq12d 7293 . . . . . . . . . 10 (𝑎 = 𝑘 → ((𝑋‘(𝐿𝑎)) · ((log‘𝑎) / 𝑎)) = ((𝑋‘(𝐿𝑘)) · ((log‘𝑘) / 𝑘)))
188 dchrvmasumif.g . . . . . . . . . 10 𝐾 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · ((log‘𝑎) / 𝑎)))
189 ovex 7308 . . . . . . . . . 10 ((𝑋‘(𝐿𝑘)) · ((log‘𝑘) / 𝑘)) ∈ V
190187, 188, 189fvmpt 6875 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐾𝑘) = ((𝑋‘(𝐿𝑘)) · ((log‘𝑘) / 𝑘)))
19111, 190syl 17 . . . . . . . 8 (𝑘 ∈ (1...(⌊‘𝑚)) → (𝐾𝑘) = ((𝑋‘(𝐿𝑘)) · ((log‘𝑘) / 𝑘)))
192 ifnefalse 4471 . . . . . . . . . . . . 13 (𝑆 ≠ 0 → if(𝑆 = 0, 𝑚, 𝑘) = 𝑘)
193192fveq2d 6778 . . . . . . . . . . . 12 (𝑆 ≠ 0 → (log‘if(𝑆 = 0, 𝑚, 𝑘)) = (log‘𝑘))
194193oveq1d 7290 . . . . . . . . . . 11 (𝑆 ≠ 0 → ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘) = ((log‘𝑘) / 𝑘))
195194oveq2d 7291 . . . . . . . . . 10 (𝑆 ≠ 0 → ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) = ((𝑋‘(𝐿𝑘)) · ((log‘𝑘) / 𝑘)))
196195adantl 482 . . . . . . . . 9 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) → ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) = ((𝑋‘(𝐿𝑘)) · ((log‘𝑘) / 𝑘)))
197196eqcomd 2744 . . . . . . . 8 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) → ((𝑋‘(𝐿𝑘)) · ((log‘𝑘) / 𝑘)) = ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)))
198191, 197sylan9eqr 2800 . . . . . . 7 ((((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → (𝐾𝑘) = ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)))
199147adantr 481 . . . . . . 7 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) → (⌊‘𝑚) ∈ (ℤ‘1))
200 nnrp 12741 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
201200adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℝ+)
202201relogcld 25778 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (log‘𝑘) ∈ ℝ)
203202recnd 11003 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (log‘𝑘) ∈ ℂ)
204203, 47, 49divcld 11751 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((log‘𝑘) / 𝑘) ∈ ℂ)
20515, 204mulcld 10995 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝑋‘(𝐿𝑘)) · ((log‘𝑘) / 𝑘)) ∈ ℂ)
206187cbvmptv 5187 . . . . . . . . . . . 12 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · ((log‘𝑎) / 𝑎))) = (𝑘 ∈ ℕ ↦ ((𝑋‘(𝐿𝑘)) · ((log‘𝑘) / 𝑘)))
207188, 206eqtri 2766 . . . . . . . . . . 11 𝐾 = (𝑘 ∈ ℕ ↦ ((𝑋‘(𝐿𝑘)) · ((log‘𝑘) / 𝑘)))
208205, 207fmptd 6988 . . . . . . . . . 10 (𝜑𝐾:ℕ⟶ℂ)
209208ad2antrr 723 . . . . . . . . 9 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) → 𝐾:ℕ⟶ℂ)
210 ffvelrn 6959 . . . . . . . . 9 ((𝐾:ℕ⟶ℂ ∧ 𝑘 ∈ ℕ) → (𝐾𝑘) ∈ ℂ)
211209, 11, 210syl2an 596 . . . . . . . 8 ((((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → (𝐾𝑘) ∈ ℂ)
212198, 211eqeltrrd 2840 . . . . . . 7 ((((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) ∈ ℂ)
213198, 199, 212fsumser 15442 . . . . . 6 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) → Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) = (seq1( + , 𝐾)‘(⌊‘𝑚)))
214 ifnefalse 4471 . . . . . . 7 (𝑆 ≠ 0 → if(𝑆 = 0, 0, 𝑇) = 𝑇)
215214adantl 482 . . . . . 6 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) → if(𝑆 = 0, 0, 𝑇) = 𝑇)
216213, 215oveq12d 7293 . . . . 5 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) → (Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇)) = ((seq1( + , 𝐾)‘(⌊‘𝑚)) − 𝑇))
217216fveq2d 6778 . . . 4 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) = (abs‘((seq1( + , 𝐾)‘(⌊‘𝑚)) − 𝑇)))
218 ifnefalse 4471 . . . . . 6 (𝑆 ≠ 0 → if(𝑆 = 0, 𝐶, 𝐸) = 𝐸)
219218adantl 482 . . . . 5 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) → if(𝑆 = 0, 𝐶, 𝐸) = 𝐸)
220219oveq1d 7290 . . . 4 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) → (if(𝑆 = 0, 𝐶, 𝐸) · ((log‘𝑚) / 𝑚)) = (𝐸 · ((log‘𝑚) / 𝑚)))
221184, 217, 2203brtr4d 5106 . . 3 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) ≤ (if(𝑆 = 0, 𝐶, 𝐸) · ((log‘𝑚) / 𝑚)))
222173, 221pm2.61dane 3032 . 2 ((𝜑𝑚 ∈ (3[,)+∞)) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) ≤ (if(𝑆 = 0, 𝐶, 𝐸) · ((log‘𝑚) / 𝑚)))
223 fzfid 13693 . . . 4 (𝜑 → (1...2) ∈ Fin)
2247adantr 481 . . . . . . 7 ((𝜑𝑘 ∈ (1...2)) → 𝑋𝐷)
225 elfzelz 13256 . . . . . . . 8 (𝑘 ∈ (1...2) → 𝑘 ∈ ℤ)
226225adantl 482 . . . . . . 7 ((𝜑𝑘 ∈ (1...2)) → 𝑘 ∈ ℤ)
2274, 1, 5, 2, 224, 226dchrzrhcl 26393 . . . . . 6 ((𝜑𝑘 ∈ (1...2)) → (𝑋‘(𝐿𝑘)) ∈ ℂ)
228227abscld 15148 . . . . 5 ((𝜑𝑘 ∈ (1...2)) → (abs‘(𝑋‘(𝐿𝑘))) ∈ ℝ)
229 3rp 12736 . . . . . . 7 3 ∈ ℝ+
230 relogcl 25731 . . . . . . 7 (3 ∈ ℝ+ → (log‘3) ∈ ℝ)
231229, 230ax-mp 5 . . . . . 6 (log‘3) ∈ ℝ
232 elfznn 13285 . . . . . . 7 (𝑘 ∈ (1...2) → 𝑘 ∈ ℕ)
233232adantl 482 . . . . . 6 ((𝜑𝑘 ∈ (1...2)) → 𝑘 ∈ ℕ)
234 nndivre 12014 . . . . . 6 (((log‘3) ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((log‘3) / 𝑘) ∈ ℝ)
235231, 233, 234sylancr 587 . . . . 5 ((𝜑𝑘 ∈ (1...2)) → ((log‘3) / 𝑘) ∈ ℝ)
236228, 235remulcld 11005 . . . 4 ((𝜑𝑘 ∈ (1...2)) → ((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)) ∈ ℝ)
237223, 236fsumrecl 15446 . . 3 (𝜑 → Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)) ∈ ℝ)
23843abscld 15148 . . 3 (𝜑 → (abs‘if(𝑆 = 0, 0, 𝑇)) ∈ ℝ)
239237, 238readdcld 11004 . 2 (𝜑 → (Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)) + (abs‘if(𝑆 = 0, 0, 𝑇))) ∈ ℝ)
240 simpl 483 . . . . . . 7 ((𝜑𝑚 ∈ (1[,)3)) → 𝜑)
24162rexri 11033 . . . . . . . . . . 11 3 ∈ ℝ*
242 elico2 13143 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 3 ∈ ℝ*) → (𝑚 ∈ (1[,)3) ↔ (𝑚 ∈ ℝ ∧ 1 ≤ 𝑚𝑚 < 3)))
243107, 241, 242mp2an 689 . . . . . . . . . 10 (𝑚 ∈ (1[,)3) ↔ (𝑚 ∈ ℝ ∧ 1 ≤ 𝑚𝑚 < 3))
244243simp1bi 1144 . . . . . . . . 9 (𝑚 ∈ (1[,)3) → 𝑚 ∈ ℝ)
245244adantl 482 . . . . . . . 8 ((𝜑𝑚 ∈ (1[,)3)) → 𝑚 ∈ ℝ)
246 0red 10978 . . . . . . . . 9 ((𝜑𝑚 ∈ (1[,)3)) → 0 ∈ ℝ)
247 1red 10976 . . . . . . . . 9 ((𝜑𝑚 ∈ (1[,)3)) → 1 ∈ ℝ)
248 0lt1 11497 . . . . . . . . . 10 0 < 1
249248a1i 11 . . . . . . . . 9 ((𝜑𝑚 ∈ (1[,)3)) → 0 < 1)
250243simp2bi 1145 . . . . . . . . . 10 (𝑚 ∈ (1[,)3) → 1 ≤ 𝑚)
251250adantl 482 . . . . . . . . 9 ((𝜑𝑚 ∈ (1[,)3)) → 1 ≤ 𝑚)
252246, 247, 245, 249, 251ltletrd 11135 . . . . . . . 8 ((𝜑𝑚 ∈ (1[,)3)) → 0 < 𝑚)
253245, 252elrpd 12769 . . . . . . 7 ((𝜑𝑚 ∈ (1[,)3)) → 𝑚 ∈ ℝ+)
254240, 253jca 512 . . . . . 6 ((𝜑𝑚 ∈ (1[,)3)) → (𝜑𝑚 ∈ ℝ+))
25543adantr 481 . . . . . . 7 ((𝜑𝑚 ∈ ℝ+) → if(𝑆 = 0, 0, 𝑇) ∈ ℂ)
25626, 255subcld 11332 . . . . . 6 ((𝜑𝑚 ∈ ℝ+) → (Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇)) ∈ ℂ)
257254, 256syl 17 . . . . 5 ((𝜑𝑚 ∈ (1[,)3)) → (Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇)) ∈ ℂ)
258257abscld 15148 . . . 4 ((𝜑𝑚 ∈ (1[,)3)) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) ∈ ℝ)
259254, 26syl 17 . . . . . 6 ((𝜑𝑚 ∈ (1[,)3)) → Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) ∈ ℂ)
260259abscld 15148 . . . . 5 ((𝜑𝑚 ∈ (1[,)3)) → (abs‘Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ∈ ℝ)
261238adantr 481 . . . . 5 ((𝜑𝑚 ∈ (1[,)3)) → (abs‘if(𝑆 = 0, 0, 𝑇)) ∈ ℝ)
262260, 261readdcld 11004 . . . 4 ((𝜑𝑚 ∈ (1[,)3)) → ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) + (abs‘if(𝑆 = 0, 0, 𝑇))) ∈ ℝ)
263237adantr 481 . . . . 5 ((𝜑𝑚 ∈ (1[,)3)) → Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)) ∈ ℝ)
264263, 261readdcld 11004 . . . 4 ((𝜑𝑚 ∈ (1[,)3)) → (Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)) + (abs‘if(𝑆 = 0, 0, 𝑇))) ∈ ℝ)
26526, 255abs2dif2d 15170 . . . . 5 ((𝜑𝑚 ∈ ℝ+) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) ≤ ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) + (abs‘if(𝑆 = 0, 0, 𝑇))))
266254, 265syl 17 . . . 4 ((𝜑𝑚 ∈ (1[,)3)) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) ≤ ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) + (abs‘if(𝑆 = 0, 0, 𝑇))))
26725abscld 15148 . . . . . . . 8 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → (abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ∈ ℝ)
2689, 267fsumrecl 15446 . . . . . . 7 ((𝜑𝑚 ∈ ℝ+) → Σ𝑘 ∈ (1...(⌊‘𝑚))(abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ∈ ℝ)
269254, 268syl 17 . . . . . 6 ((𝜑𝑚 ∈ (1[,)3)) → Σ𝑘 ∈ (1...(⌊‘𝑚))(abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ∈ ℝ)
2709, 25fsumabs 15513 . . . . . . 7 ((𝜑𝑚 ∈ ℝ+) → (abs‘Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ≤ Σ𝑘 ∈ (1...(⌊‘𝑚))(abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))))
271254, 270syl 17 . . . . . 6 ((𝜑𝑚 ∈ (1[,)3)) → (abs‘Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ≤ Σ𝑘 ∈ (1...(⌊‘𝑚))(abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))))
272 fzfid 13693 . . . . . . . . 9 ((𝜑𝑚 ∈ ℝ+) → (1...2) ∈ Fin)
273227adantlr 712 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → (𝑋‘(𝐿𝑘)) ∈ ℂ)
27417adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → 𝑚 ∈ ℝ+)
275232adantl 482 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → 𝑘 ∈ ℕ)
276275nnrpd 12770 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → 𝑘 ∈ ℝ+)
277274, 276ifcld 4505 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → if(𝑆 = 0, 𝑚, 𝑘) ∈ ℝ+)
278277relogcld 25778 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → (log‘if(𝑆 = 0, 𝑚, 𝑘)) ∈ ℝ)
279278, 275nndivred 12027 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘) ∈ ℝ)
280279recnd 11003 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘) ∈ ℂ)
281273, 280mulcld 10995 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) ∈ ℂ)
282281abscld 15148 . . . . . . . . 9 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → (abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ∈ ℝ)
283272, 282fsumrecl 15446 . . . . . . . 8 ((𝜑𝑚 ∈ ℝ+) → Σ𝑘 ∈ (1...2)(abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ∈ ℝ)
284254, 283syl 17 . . . . . . 7 ((𝜑𝑚 ∈ (1[,)3)) → Σ𝑘 ∈ (1...2)(abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ∈ ℝ)
285 fzfid 13693 . . . . . . . 8 ((𝜑𝑚 ∈ (1[,)3)) → (1...2) ∈ Fin)
286254, 281sylan 580 . . . . . . . . 9 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) ∈ ℂ)
287286abscld 15148 . . . . . . . 8 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → (abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ∈ ℝ)
288286absge0d 15156 . . . . . . . 8 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → 0 ≤ (abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))))
289245flcld 13518 . . . . . . . . . 10 ((𝜑𝑚 ∈ (1[,)3)) → (⌊‘𝑚) ∈ ℤ)
290 2z 12352 . . . . . . . . . . 11 2 ∈ ℤ
291290a1i 11 . . . . . . . . . 10 ((𝜑𝑚 ∈ (1[,)3)) → 2 ∈ ℤ)
292243simp3bi 1146 . . . . . . . . . . . . . 14 (𝑚 ∈ (1[,)3) → 𝑚 < 3)
293292adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (1[,)3)) → 𝑚 < 3)
294 3z 12353 . . . . . . . . . . . . . 14 3 ∈ ℤ
295 fllt 13526 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℝ ∧ 3 ∈ ℤ) → (𝑚 < 3 ↔ (⌊‘𝑚) < 3))
296245, 294, 295sylancl 586 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (1[,)3)) → (𝑚 < 3 ↔ (⌊‘𝑚) < 3))
297293, 296mpbid 231 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (1[,)3)) → (⌊‘𝑚) < 3)
298 df-3 12037 . . . . . . . . . . . 12 3 = (2 + 1)
299297, 298breqtrdi 5115 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (1[,)3)) → (⌊‘𝑚) < (2 + 1))
300 rpre 12738 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℝ+𝑚 ∈ ℝ)
301300adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℝ+) → 𝑚 ∈ ℝ)
302301flcld 13518 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℝ+) → (⌊‘𝑚) ∈ ℤ)
303 zleltp1 12371 . . . . . . . . . . . . 13 (((⌊‘𝑚) ∈ ℤ ∧ 2 ∈ ℤ) → ((⌊‘𝑚) ≤ 2 ↔ (⌊‘𝑚) < (2 + 1)))
304302, 290, 303sylancl 586 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℝ+) → ((⌊‘𝑚) ≤ 2 ↔ (⌊‘𝑚) < (2 + 1)))
305254, 304syl 17 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (1[,)3)) → ((⌊‘𝑚) ≤ 2 ↔ (⌊‘𝑚) < (2 + 1)))
306299, 305mpbird 256 . . . . . . . . . 10 ((𝜑𝑚 ∈ (1[,)3)) → (⌊‘𝑚) ≤ 2)
307 eluz2 12588 . . . . . . . . . 10 (2 ∈ (ℤ‘(⌊‘𝑚)) ↔ ((⌊‘𝑚) ∈ ℤ ∧ 2 ∈ ℤ ∧ (⌊‘𝑚) ≤ 2))
308289, 291, 306, 307syl3anbrc 1342 . . . . . . . . 9 ((𝜑𝑚 ∈ (1[,)3)) → 2 ∈ (ℤ‘(⌊‘𝑚)))
309 fzss2 13296 . . . . . . . . 9 (2 ∈ (ℤ‘(⌊‘𝑚)) → (1...(⌊‘𝑚)) ⊆ (1...2))
310308, 309syl 17 . . . . . . . 8 ((𝜑𝑚 ∈ (1[,)3)) → (1...(⌊‘𝑚)) ⊆ (1...2))
311285, 287, 288, 310fsumless 15508 . . . . . . 7 ((𝜑𝑚 ∈ (1[,)3)) → Σ𝑘 ∈ (1...(⌊‘𝑚))(abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ≤ Σ𝑘 ∈ (1...2)(abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))))
312236adantlr 712 . . . . . . . 8 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → ((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)) ∈ ℝ)
313273, 280absmuld 15166 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → (abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) = ((abs‘(𝑋‘(𝐿𝑘))) · (abs‘((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))))
314254, 313sylan 580 . . . . . . . . 9 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → (abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) = ((abs‘(𝑋‘(𝐿𝑘))) · (abs‘((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))))
315254, 279sylan 580 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘) ∈ ℝ)
316254, 278sylan 580 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → (log‘if(𝑆 = 0, 𝑚, 𝑘)) ∈ ℝ)
317 log1 25741 . . . . . . . . . . . . . 14 (log‘1) = 0
318 elfzle1 13259 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...2) → 1 ≤ 𝑘)
319 breq2 5078 . . . . . . . . . . . . . . . . 17 (𝑚 = if(𝑆 = 0, 𝑚, 𝑘) → (1 ≤ 𝑚 ↔ 1 ≤ if(𝑆 = 0, 𝑚, 𝑘)))
320 breq2 5078 . . . . . . . . . . . . . . . . 17 (𝑘 = if(𝑆 = 0, 𝑚, 𝑘) → (1 ≤ 𝑘 ↔ 1 ≤ if(𝑆 = 0, 𝑚, 𝑘)))
321319, 320ifboth 4498 . . . . . . . . . . . . . . . 16 ((1 ≤ 𝑚 ∧ 1 ≤ 𝑘) → 1 ≤ if(𝑆 = 0, 𝑚, 𝑘))
322251, 318, 321syl2an 596 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → 1 ≤ if(𝑆 = 0, 𝑚, 𝑘))
323 1rp 12734 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ+
324 logleb 25758 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ+ ∧ if(𝑆 = 0, 𝑚, 𝑘) ∈ ℝ+) → (1 ≤ if(𝑆 = 0, 𝑚, 𝑘) ↔ (log‘1) ≤ (log‘if(𝑆 = 0, 𝑚, 𝑘))))
325323, 277, 324sylancr 587 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → (1 ≤ if(𝑆 = 0, 𝑚, 𝑘) ↔ (log‘1) ≤ (log‘if(𝑆 = 0, 𝑚, 𝑘))))
326254, 325sylan 580 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → (1 ≤ if(𝑆 = 0, 𝑚, 𝑘) ↔ (log‘1) ≤ (log‘if(𝑆 = 0, 𝑚, 𝑘))))
327322, 326mpbid 231 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → (log‘1) ≤ (log‘if(𝑆 = 0, 𝑚, 𝑘)))
328317, 327eqbrtrrid 5110 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → 0 ≤ (log‘if(𝑆 = 0, 𝑚, 𝑘)))
329276rpregt0d 12778 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → (𝑘 ∈ ℝ ∧ 0 < 𝑘))
330254, 329sylan 580 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → (𝑘 ∈ ℝ ∧ 0 < 𝑘))
331 divge0 11844 . . . . . . . . . . . . 13 ((((log‘if(𝑆 = 0, 𝑚, 𝑘)) ∈ ℝ ∧ 0 ≤ (log‘if(𝑆 = 0, 𝑚, 𝑘))) ∧ (𝑘 ∈ ℝ ∧ 0 < 𝑘)) → 0 ≤ ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))
332316, 328, 330, 331syl21anc 835 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → 0 ≤ ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))
333315, 332absidd 15134 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → (abs‘((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) = ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))
334333, 315eqeltrd 2839 . . . . . . . . . 10 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → (abs‘((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) ∈ ℝ)
335235adantlr 712 . . . . . . . . . 10 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → ((log‘3) / 𝑘) ∈ ℝ)
336228adantlr 712 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → (abs‘(𝑋‘(𝐿𝑘))) ∈ ℝ)
337273absge0d 15156 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → 0 ≤ (abs‘(𝑋‘(𝐿𝑘))))
338336, 337jca 512 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → ((abs‘(𝑋‘(𝐿𝑘))) ∈ ℝ ∧ 0 ≤ (abs‘(𝑋‘(𝐿𝑘)))))
339254, 338sylan 580 . . . . . . . . . 10 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → ((abs‘(𝑋‘(𝐿𝑘))) ∈ ℝ ∧ 0 ≤ (abs‘(𝑋‘(𝐿𝑘)))))
340292ad2antlr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → 𝑚 < 3)
341275nnred 11988 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → 𝑘 ∈ ℝ)
342 2re 12047 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
343342a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → 2 ∈ ℝ)
34462a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → 3 ∈ ℝ)
345 elfzle2 13260 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...2) → 𝑘 ≤ 2)
346345adantl 482 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → 𝑘 ≤ 2)
347 2lt3 12145 . . . . . . . . . . . . . . . . . 18 2 < 3
348347a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → 2 < 3)
349341, 343, 344, 346, 348lelttrd 11133 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → 𝑘 < 3)
350254, 349sylan 580 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → 𝑘 < 3)
351 breq1 5077 . . . . . . . . . . . . . . . 16 (𝑚 = if(𝑆 = 0, 𝑚, 𝑘) → (𝑚 < 3 ↔ if(𝑆 = 0, 𝑚, 𝑘) < 3))
352 breq1 5077 . . . . . . . . . . . . . . . 16 (𝑘 = if(𝑆 = 0, 𝑚, 𝑘) → (𝑘 < 3 ↔ if(𝑆 = 0, 𝑚, 𝑘) < 3))
353351, 352ifboth 4498 . . . . . . . . . . . . . . 15 ((𝑚 < 3 ∧ 𝑘 < 3) → if(𝑆 = 0, 𝑚, 𝑘) < 3)
354340, 350, 353syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → if(𝑆 = 0, 𝑚, 𝑘) < 3)
355277rpred 12772 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → if(𝑆 = 0, 𝑚, 𝑘) ∈ ℝ)
356 ltle 11063 . . . . . . . . . . . . . . . 16 ((if(𝑆 = 0, 𝑚, 𝑘) ∈ ℝ ∧ 3 ∈ ℝ) → (if(𝑆 = 0, 𝑚, 𝑘) < 3 → if(𝑆 = 0, 𝑚, 𝑘) ≤ 3))
357355, 62, 356sylancl 586 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → (if(𝑆 = 0, 𝑚, 𝑘) < 3 → if(𝑆 = 0, 𝑚, 𝑘) ≤ 3))
358254, 357sylan 580 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → (if(𝑆 = 0, 𝑚, 𝑘) < 3 → if(𝑆 = 0, 𝑚, 𝑘) ≤ 3))
359354, 358mpd 15 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → if(𝑆 = 0, 𝑚, 𝑘) ≤ 3)
360 logleb 25758 . . . . . . . . . . . . . . 15 ((if(𝑆 = 0, 𝑚, 𝑘) ∈ ℝ+ ∧ 3 ∈ ℝ+) → (if(𝑆 = 0, 𝑚, 𝑘) ≤ 3 ↔ (log‘if(𝑆 = 0, 𝑚, 𝑘)) ≤ (log‘3)))
361277, 229, 360sylancl 586 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → (if(𝑆 = 0, 𝑚, 𝑘) ≤ 3 ↔ (log‘if(𝑆 = 0, 𝑚, 𝑘)) ≤ (log‘3)))
362254, 361sylan 580 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → (if(𝑆 = 0, 𝑚, 𝑘) ≤ 3 ↔ (log‘if(𝑆 = 0, 𝑚, 𝑘)) ≤ (log‘3)))
363359, 362mpbid 231 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → (log‘if(𝑆 = 0, 𝑚, 𝑘)) ≤ (log‘3))
364231a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → (log‘3) ∈ ℝ)
365278, 364, 276lediv1d 12818 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → ((log‘if(𝑆 = 0, 𝑚, 𝑘)) ≤ (log‘3) ↔ ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘) ≤ ((log‘3) / 𝑘)))
366254, 365sylan 580 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → ((log‘if(𝑆 = 0, 𝑚, 𝑘)) ≤ (log‘3) ↔ ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘) ≤ ((log‘3) / 𝑘)))
367363, 366mpbid 231 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘) ≤ ((log‘3) / 𝑘))
368333, 367eqbrtrd 5096 . . . . . . . . . 10 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → (abs‘((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) ≤ ((log‘3) / 𝑘))
369 lemul2a 11830 . . . . . . . . . 10 ((((abs‘((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) ∈ ℝ ∧ ((log‘3) / 𝑘) ∈ ℝ ∧ ((abs‘(𝑋‘(𝐿𝑘))) ∈ ℝ ∧ 0 ≤ (abs‘(𝑋‘(𝐿𝑘))))) ∧ (abs‘((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) ≤ ((log‘3) / 𝑘)) → ((abs‘(𝑋‘(𝐿𝑘))) · (abs‘((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ≤ ((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)))
370334, 335, 339, 368, 369syl31anc 1372 . . . . . . . . 9 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → ((abs‘(𝑋‘(𝐿𝑘))) · (abs‘((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ≤ ((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)))
371314, 370eqbrtrd 5096 . . . . . . . 8 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → (abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ≤ ((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)))
372285, 287, 312, 371fsumle 15511 . . . . . . 7 ((𝜑𝑚 ∈ (1[,)3)) → Σ𝑘 ∈ (1...2)(abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ≤ Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)))
373269, 284, 263, 311, 372letrd 11132 . . . . . 6 ((𝜑𝑚 ∈ (1[,)3)) → Σ𝑘 ∈ (1...(⌊‘𝑚))(abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ≤ Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)))
374260, 269, 263, 271, 373letrd 11132 . . . . 5 ((𝜑𝑚 ∈ (1[,)3)) → (abs‘Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ≤ Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)))
37526abscld 15148 . . . . . . 7 ((𝜑𝑚 ∈ ℝ+) → (abs‘Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ∈ ℝ)
376237adantr 481 . . . . . . 7 ((𝜑𝑚 ∈ ℝ+) → Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)) ∈ ℝ)
377255abscld 15148 . . . . . . 7 ((𝜑𝑚 ∈ ℝ+) → (abs‘if(𝑆 = 0, 0, 𝑇)) ∈ ℝ)
378375, 376, 377leadd1d 11569 . . . . . 6 ((𝜑𝑚 ∈ ℝ+) → ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ≤ Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)) ↔ ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) + (abs‘if(𝑆 = 0, 0, 𝑇))) ≤ (Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)) + (abs‘if(𝑆 = 0, 0, 𝑇)))))
379254, 378syl 17 . . . . 5 ((𝜑𝑚 ∈ (1[,)3)) → ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ≤ Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)) ↔ ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) + (abs‘if(𝑆 = 0, 0, 𝑇))) ≤ (Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)) + (abs‘if(𝑆 = 0, 0, 𝑇)))))
380374, 379mpbid 231 . . . 4 ((𝜑𝑚 ∈ (1[,)3)) → ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) + (abs‘if(𝑆 = 0, 0, 𝑇))) ≤ (Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)) + (abs‘if(𝑆 = 0, 0, 𝑇))))
381258, 262, 264, 266, 380letrd 11132 . . 3 ((𝜑𝑚 ∈ (1[,)3)) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) ≤ (Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)) + (abs‘if(𝑆 = 0, 0, 𝑇))))
382381ralrimiva 3103 . 2 (𝜑 → ∀𝑚 ∈ (1[,)3)(abs‘(Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) ≤ (Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)) + (abs‘if(𝑆 = 0, 0, 𝑇))))
3831, 2, 3, 4, 5, 6, 7, 8, 26, 34, 37, 43, 222, 239, 382dchrvmasumlem3 26647 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇)))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wss 3887  ifcif 4459   class class class wbr 5074  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  +∞cpnf 11006  *cxr 11008   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  2c2 12028  3c3 12029  cz 12319  cuz 12582  +crp 12730  [,)cico 13081  ...cfz 13239  cfl 13510  seqcseq 13721  abscabs 14945  cli 15193  𝑂(1)co1 15195  Σcsu 15397  Basecbs 16912  0gc0g 17150  ℤRHomczrh 20701  ℤ/nczn 20704  logclog 25710  μcmu 26244  DChrcdchr 26380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-ec 8500  df-qs 8504  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-o1 15199  df-lo1 15200  df-sum 15398  df-ef 15777  df-e 15778  df-sin 15779  df-cos 15780  df-tan 15781  df-pi 15782  df-dvds 15964  df-prm 16377  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-qus 17220  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-nsg 18753  df-eqg 18754  df-ghm 18832  df-cntz 18923  df-od 19136  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-rnghom 19959  df-drng 19993  df-subrg 20022  df-lmod 20125  df-lss 20194  df-lsp 20234  df-sra 20434  df-rgmod 20435  df-lidl 20436  df-rsp 20437  df-2idl 20503  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-zring 20671  df-zrh 20705  df-zn 20708  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-ulm 25536  df-log 25712  df-cxp 25713  df-atan 26017  df-em 26142  df-mu 26250  df-dchr 26381
This theorem is referenced by:  dchrvmasumiflem2  26650
  Copyright terms: Public domain W3C validator