MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasumiflem1 Structured version   Visualization version   GIF version

Theorem dchrvmasumiflem1 27449
Description: Lemma for dchrvmasumif 27451. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrvmasumif.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
dchrvmasumif.c (𝜑𝐶 ∈ (0[,)+∞))
dchrvmasumif.s (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
dchrvmasumif.1 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / 𝑦))
dchrvmasumif.g 𝐾 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · ((log‘𝑎) / 𝑎)))
dchrvmasumif.e (𝜑𝐸 ∈ (0[,)+∞))
dchrvmasumif.t (𝜑 → seq1( + , 𝐾) ⇝ 𝑇)
dchrvmasumif.2 (𝜑 → ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 · ((log‘𝑦) / 𝑦)))
Assertion
Ref Expression
dchrvmasumiflem1 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇)))) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑘,𝑦, 1   𝑥,𝑑,𝑦,𝐶   𝑘,𝑑,𝐹,𝑥,𝑦   𝑎,𝑑,𝑘,𝑥,𝑦   𝐸,𝑑,𝑥,𝑦   𝑘,𝐾,𝑦   𝑘,𝑁,𝑥,𝑦   𝜑,𝑑,𝑘,𝑥   𝑇,𝑑,𝑥,𝑦   𝑆,𝑑,𝑘,𝑥,𝑦   𝑘,𝑍,𝑥,𝑦   𝐷,𝑘,𝑥,𝑦   𝐿,𝑎,𝑑,𝑘,𝑥,𝑦   𝑋,𝑎,𝑑,𝑘,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐶(𝑘,𝑎)   𝐷(𝑎,𝑑)   𝑆(𝑎)   𝑇(𝑘,𝑎)   1 (𝑎,𝑑)   𝐸(𝑘,𝑎)   𝐹(𝑎)   𝐺(𝑥,𝑦,𝑘,𝑎,𝑑)   𝐾(𝑥,𝑎,𝑑)   𝑁(𝑎,𝑑)   𝑍(𝑎,𝑑)

Proof of Theorem dchrvmasumiflem1
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 rpvmasum.z . 2 𝑍 = (ℤ/nℤ‘𝑁)
2 rpvmasum.l . 2 𝐿 = (ℤRHom‘𝑍)
3 rpvmasum.a . 2 (𝜑𝑁 ∈ ℕ)
4 rpvmasum.g . 2 𝐺 = (DChr‘𝑁)
5 rpvmasum.d . 2 𝐷 = (Base‘𝐺)
6 rpvmasum.1 . 2 1 = (0g𝐺)
7 dchrisum.b . 2 (𝜑𝑋𝐷)
8 dchrisum.n1 . 2 (𝜑𝑋1 )
9 fzfid 13890 . . 3 ((𝜑𝑚 ∈ ℝ+) → (1...(⌊‘𝑚)) ∈ Fin)
10 simpl 482 . . . . 5 ((𝜑𝑚 ∈ ℝ+) → 𝜑)
11 elfznn 13463 . . . . 5 (𝑘 ∈ (1...(⌊‘𝑚)) → 𝑘 ∈ ℕ)
127adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝑋𝐷)
13 nnz 12499 . . . . . . 7 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
1413adantl 481 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
154, 1, 5, 2, 12, 14dchrzrhcl 27193 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑋‘(𝐿𝑘)) ∈ ℂ)
1610, 11, 15syl2an 596 . . . 4 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → (𝑋‘(𝐿𝑘)) ∈ ℂ)
17 simpr 484 . . . . . . . 8 ((𝜑𝑚 ∈ ℝ+) → 𝑚 ∈ ℝ+)
1811nnrpd 12942 . . . . . . . 8 (𝑘 ∈ (1...(⌊‘𝑚)) → 𝑘 ∈ ℝ+)
19 ifcl 4522 . . . . . . . 8 ((𝑚 ∈ ℝ+𝑘 ∈ ℝ+) → if(𝑆 = 0, 𝑚, 𝑘) ∈ ℝ+)
2017, 18, 19syl2an 596 . . . . . . 7 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → if(𝑆 = 0, 𝑚, 𝑘) ∈ ℝ+)
2120relogcld 26569 . . . . . 6 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → (log‘if(𝑆 = 0, 𝑚, 𝑘)) ∈ ℝ)
2211adantl 481 . . . . . 6 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → 𝑘 ∈ ℕ)
2321, 22nndivred 12189 . . . . 5 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘) ∈ ℝ)
2423recnd 11150 . . . 4 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘) ∈ ℂ)
2516, 24mulcld 11142 . . 3 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) ∈ ℂ)
269, 25fsumcl 15650 . 2 ((𝜑𝑚 ∈ ℝ+) → Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) ∈ ℂ)
27 fveq2 6831 . . . 4 (𝑚 = (𝑥 / 𝑑) → (⌊‘𝑚) = (⌊‘(𝑥 / 𝑑)))
2827oveq2d 7371 . . 3 (𝑚 = (𝑥 / 𝑑) → (1...(⌊‘𝑚)) = (1...(⌊‘(𝑥 / 𝑑))))
29 ifeq1 4480 . . . . . . 7 (𝑚 = (𝑥 / 𝑑) → if(𝑆 = 0, 𝑚, 𝑘) = if(𝑆 = 0, (𝑥 / 𝑑), 𝑘))
3029fveq2d 6835 . . . . . 6 (𝑚 = (𝑥 / 𝑑) → (log‘if(𝑆 = 0, 𝑚, 𝑘)) = (log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)))
3130oveq1d 7370 . . . . 5 (𝑚 = (𝑥 / 𝑑) → ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘) = ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))
3231oveq2d 7371 . . . 4 (𝑚 = (𝑥 / 𝑑) → ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) = ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)))
3332adantr 480 . . 3 ((𝑚 = (𝑥 / 𝑑) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) = ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)))
3428, 33sumeq12rdv 15624 . 2 (𝑚 = (𝑥 / 𝑑) → Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) = Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)))
35 dchrvmasumif.c . . 3 (𝜑𝐶 ∈ (0[,)+∞))
36 dchrvmasumif.e . . 3 (𝜑𝐸 ∈ (0[,)+∞))
3735, 36ifcld 4523 . 2 (𝜑 → if(𝑆 = 0, 𝐶, 𝐸) ∈ (0[,)+∞))
38 0cn 11114 . . 3 0 ∈ ℂ
39 dchrvmasumif.t . . . 4 (𝜑 → seq1( + , 𝐾) ⇝ 𝑇)
40 climcl 15416 . . . 4 (seq1( + , 𝐾) ⇝ 𝑇𝑇 ∈ ℂ)
4139, 40syl 17 . . 3 (𝜑𝑇 ∈ ℂ)
42 ifcl 4522 . . 3 ((0 ∈ ℂ ∧ 𝑇 ∈ ℂ) → if(𝑆 = 0, 0, 𝑇) ∈ ℂ)
4338, 41, 42sylancr 587 . 2 (𝜑 → if(𝑆 = 0, 0, 𝑇) ∈ ℂ)
44 nnuz 12785 . . . . . . . . 9 ℕ = (ℤ‘1)
45 1zzd 12513 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
46 nncn 12143 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
4746adantl 481 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
48 nnne0 12169 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
4948adantl 481 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝑘 ≠ 0)
5015, 47, 49divcld 11907 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝑋‘(𝐿𝑘)) / 𝑘) ∈ ℂ)
51 dchrvmasumif.f . . . . . . . . . . . 12 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
52 2fveq3 6836 . . . . . . . . . . . . . 14 (𝑎 = 𝑘 → (𝑋‘(𝐿𝑎)) = (𝑋‘(𝐿𝑘)))
53 id 22 . . . . . . . . . . . . . 14 (𝑎 = 𝑘𝑎 = 𝑘)
5452, 53oveq12d 7373 . . . . . . . . . . . . 13 (𝑎 = 𝑘 → ((𝑋‘(𝐿𝑎)) / 𝑎) = ((𝑋‘(𝐿𝑘)) / 𝑘))
5554cbvmptv 5199 . . . . . . . . . . . 12 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)) = (𝑘 ∈ ℕ ↦ ((𝑋‘(𝐿𝑘)) / 𝑘))
5651, 55eqtri 2756 . . . . . . . . . . 11 𝐹 = (𝑘 ∈ ℕ ↦ ((𝑋‘(𝐿𝑘)) / 𝑘))
5750, 56fmptd 7056 . . . . . . . . . 10 (𝜑𝐹:ℕ⟶ℂ)
58 ffvelcdm 7023 . . . . . . . . . 10 ((𝐹:ℕ⟶ℂ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
5957, 58sylan 580 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
6044, 45, 59serf 13947 . . . . . . . 8 (𝜑 → seq1( + , 𝐹):ℕ⟶ℂ)
6160ad2antrr 726 . . . . . . 7 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → seq1( + , 𝐹):ℕ⟶ℂ)
62 3re 12215 . . . . . . . . . . 11 3 ∈ ℝ
63 elicopnf 13355 . . . . . . . . . . 11 (3 ∈ ℝ → (𝑚 ∈ (3[,)+∞) ↔ (𝑚 ∈ ℝ ∧ 3 ≤ 𝑚)))
6462, 63mp1i 13 . . . . . . . . . 10 (𝜑 → (𝑚 ∈ (3[,)+∞) ↔ (𝑚 ∈ ℝ ∧ 3 ≤ 𝑚)))
6564simprbda 498 . . . . . . . . 9 ((𝜑𝑚 ∈ (3[,)+∞)) → 𝑚 ∈ ℝ)
66 1red 11123 . . . . . . . . . 10 ((𝜑𝑚 ∈ (3[,)+∞)) → 1 ∈ ℝ)
6762a1i 11 . . . . . . . . . 10 ((𝜑𝑚 ∈ (3[,)+∞)) → 3 ∈ ℝ)
68 1le3 12342 . . . . . . . . . . 11 1 ≤ 3
6968a1i 11 . . . . . . . . . 10 ((𝜑𝑚 ∈ (3[,)+∞)) → 1 ≤ 3)
7064simplbda 499 . . . . . . . . . 10 ((𝜑𝑚 ∈ (3[,)+∞)) → 3 ≤ 𝑚)
7166, 67, 65, 69, 70letrd 11280 . . . . . . . . 9 ((𝜑𝑚 ∈ (3[,)+∞)) → 1 ≤ 𝑚)
72 flge1nn 13735 . . . . . . . . 9 ((𝑚 ∈ ℝ ∧ 1 ≤ 𝑚) → (⌊‘𝑚) ∈ ℕ)
7365, 71, 72syl2anc 584 . . . . . . . 8 ((𝜑𝑚 ∈ (3[,)+∞)) → (⌊‘𝑚) ∈ ℕ)
7473adantr 480 . . . . . . 7 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (⌊‘𝑚) ∈ ℕ)
7561, 74ffvelcdmd 7027 . . . . . 6 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (seq1( + , 𝐹)‘(⌊‘𝑚)) ∈ ℂ)
7675abscld 15356 . . . . 5 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (abs‘(seq1( + , 𝐹)‘(⌊‘𝑚))) ∈ ℝ)
77 simpl 482 . . . . . . . 8 ((𝜑𝑚 ∈ (3[,)+∞)) → 𝜑)
78 0red 11125 . . . . . . . . . 10 ((𝜑𝑚 ∈ (3[,)+∞)) → 0 ∈ ℝ)
79 3pos 12240 . . . . . . . . . . 11 0 < 3
8079a1i 11 . . . . . . . . . 10 ((𝜑𝑚 ∈ (3[,)+∞)) → 0 < 3)
8178, 67, 65, 80, 70ltletrd 11283 . . . . . . . . 9 ((𝜑𝑚 ∈ (3[,)+∞)) → 0 < 𝑚)
8265, 81elrpd 12941 . . . . . . . 8 ((𝜑𝑚 ∈ (3[,)+∞)) → 𝑚 ∈ ℝ+)
8377, 82jca 511 . . . . . . 7 ((𝜑𝑚 ∈ (3[,)+∞)) → (𝜑𝑚 ∈ ℝ+))
84 elrege0 13364 . . . . . . . . . 10 (𝐶 ∈ (0[,)+∞) ↔ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
8584simplbi 497 . . . . . . . . 9 (𝐶 ∈ (0[,)+∞) → 𝐶 ∈ ℝ)
8635, 85syl 17 . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
87 rerpdivcl 12932 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ 𝑚 ∈ ℝ+) → (𝐶 / 𝑚) ∈ ℝ)
8886, 87sylan 580 . . . . . . 7 ((𝜑𝑚 ∈ ℝ+) → (𝐶 / 𝑚) ∈ ℝ)
8983, 88syl 17 . . . . . 6 ((𝜑𝑚 ∈ (3[,)+∞)) → (𝐶 / 𝑚) ∈ ℝ)
9089adantr 480 . . . . 5 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (𝐶 / 𝑚) ∈ ℝ)
9182relogcld 26569 . . . . . . 7 ((𝜑𝑚 ∈ (3[,)+∞)) → (log‘𝑚) ∈ ℝ)
9265, 71logge0d 26576 . . . . . . 7 ((𝜑𝑚 ∈ (3[,)+∞)) → 0 ≤ (log‘𝑚))
9391, 92jca 511 . . . . . 6 ((𝜑𝑚 ∈ (3[,)+∞)) → ((log‘𝑚) ∈ ℝ ∧ 0 ≤ (log‘𝑚)))
9493adantr 480 . . . . 5 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → ((log‘𝑚) ∈ ℝ ∧ 0 ≤ (log‘𝑚)))
95 oveq2 7363 . . . . . . . 8 (𝑆 = 0 → ((seq1( + , 𝐹)‘(⌊‘𝑚)) − 𝑆) = ((seq1( + , 𝐹)‘(⌊‘𝑚)) − 0))
9660adantr 480 . . . . . . . . . 10 ((𝜑𝑚 ∈ (3[,)+∞)) → seq1( + , 𝐹):ℕ⟶ℂ)
9796, 73ffvelcdmd 7027 . . . . . . . . 9 ((𝜑𝑚 ∈ (3[,)+∞)) → (seq1( + , 𝐹)‘(⌊‘𝑚)) ∈ ℂ)
9897subid1d 11471 . . . . . . . 8 ((𝜑𝑚 ∈ (3[,)+∞)) → ((seq1( + , 𝐹)‘(⌊‘𝑚)) − 0) = (seq1( + , 𝐹)‘(⌊‘𝑚)))
9995, 98sylan9eqr 2790 . . . . . . 7 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → ((seq1( + , 𝐹)‘(⌊‘𝑚)) − 𝑆) = (seq1( + , 𝐹)‘(⌊‘𝑚)))
10099fveq2d 6835 . . . . . 6 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑚)) − 𝑆)) = (abs‘(seq1( + , 𝐹)‘(⌊‘𝑚))))
101 2fveq3 6836 . . . . . . . . . 10 (𝑦 = 𝑚 → (seq1( + , 𝐹)‘(⌊‘𝑦)) = (seq1( + , 𝐹)‘(⌊‘𝑚)))
102101fvoveq1d 7377 . . . . . . . . 9 (𝑦 = 𝑚 → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) = (abs‘((seq1( + , 𝐹)‘(⌊‘𝑚)) − 𝑆)))
103 oveq2 7363 . . . . . . . . 9 (𝑦 = 𝑚 → (𝐶 / 𝑦) = (𝐶 / 𝑚))
104102, 103breq12d 5108 . . . . . . . 8 (𝑦 = 𝑚 → ((abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / 𝑦) ↔ (abs‘((seq1( + , 𝐹)‘(⌊‘𝑚)) − 𝑆)) ≤ (𝐶 / 𝑚)))
105 dchrvmasumif.1 . . . . . . . . 9 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / 𝑦))
106105adantr 480 . . . . . . . 8 ((𝜑𝑚 ∈ (3[,)+∞)) → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / 𝑦))
107 1re 11122 . . . . . . . . . 10 1 ∈ ℝ
108 elicopnf 13355 . . . . . . . . . 10 (1 ∈ ℝ → (𝑚 ∈ (1[,)+∞) ↔ (𝑚 ∈ ℝ ∧ 1 ≤ 𝑚)))
109107, 108ax-mp 5 . . . . . . . . 9 (𝑚 ∈ (1[,)+∞) ↔ (𝑚 ∈ ℝ ∧ 1 ≤ 𝑚))
11065, 71, 109sylanbrc 583 . . . . . . . 8 ((𝜑𝑚 ∈ (3[,)+∞)) → 𝑚 ∈ (1[,)+∞))
111104, 106, 110rspcdva 3575 . . . . . . 7 ((𝜑𝑚 ∈ (3[,)+∞)) → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑚)) − 𝑆)) ≤ (𝐶 / 𝑚))
112111adantr 480 . . . . . 6 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑚)) − 𝑆)) ≤ (𝐶 / 𝑚))
113100, 112eqbrtrrd 5119 . . . . 5 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (abs‘(seq1( + , 𝐹)‘(⌊‘𝑚))) ≤ (𝐶 / 𝑚))
114 lemul2a 11986 . . . . 5 ((((abs‘(seq1( + , 𝐹)‘(⌊‘𝑚))) ∈ ℝ ∧ (𝐶 / 𝑚) ∈ ℝ ∧ ((log‘𝑚) ∈ ℝ ∧ 0 ≤ (log‘𝑚))) ∧ (abs‘(seq1( + , 𝐹)‘(⌊‘𝑚))) ≤ (𝐶 / 𝑚)) → ((log‘𝑚) · (abs‘(seq1( + , 𝐹)‘(⌊‘𝑚)))) ≤ ((log‘𝑚) · (𝐶 / 𝑚)))
11576, 90, 94, 113, 114syl31anc 1375 . . . 4 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → ((log‘𝑚) · (abs‘(seq1( + , 𝐹)‘(⌊‘𝑚)))) ≤ ((log‘𝑚) · (𝐶 / 𝑚)))
116 iftrue 4482 . . . . . . . . . . . . . . 15 (𝑆 = 0 → if(𝑆 = 0, 𝑚, 𝑘) = 𝑚)
117116fveq2d 6835 . . . . . . . . . . . . . 14 (𝑆 = 0 → (log‘if(𝑆 = 0, 𝑚, 𝑘)) = (log‘𝑚))
118117oveq1d 7370 . . . . . . . . . . . . 13 (𝑆 = 0 → ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘) = ((log‘𝑚) / 𝑘))
119118ad2antlr 727 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘) = ((log‘𝑚) / 𝑘))
120119oveq2d 7371 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) = ((𝑋‘(𝐿𝑘)) · ((log‘𝑚) / 𝑘)))
12116adantlr 715 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → (𝑋‘(𝐿𝑘)) ∈ ℂ)
122 relogcl 26521 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℝ+ → (log‘𝑚) ∈ ℝ)
123122adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℝ+) → (log‘𝑚) ∈ ℝ)
124123recnd 11150 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℝ+) → (log‘𝑚) ∈ ℂ)
125124ad2antrr 726 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → (log‘𝑚) ∈ ℂ)
12611adantl 481 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → 𝑘 ∈ ℕ)
127126nncnd 12151 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → 𝑘 ∈ ℂ)
128126nnne0d 12185 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → 𝑘 ≠ 0)
129121, 125, 127, 128div12d 11943 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → ((𝑋‘(𝐿𝑘)) · ((log‘𝑚) / 𝑘)) = ((log‘𝑚) · ((𝑋‘(𝐿𝑘)) / 𝑘)))
130120, 129eqtrd 2768 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) = ((log‘𝑚) · ((𝑋‘(𝐿𝑘)) / 𝑘)))
131130sumeq2dv 15619 . . . . . . . . 9 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) → Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) = Σ𝑘 ∈ (1...(⌊‘𝑚))((log‘𝑚) · ((𝑋‘(𝐿𝑘)) / 𝑘)))
132 iftrue 4482 . . . . . . . . . . 11 (𝑆 = 0 → if(𝑆 = 0, 0, 𝑇) = 0)
133132oveq2d 7371 . . . . . . . . . 10 (𝑆 = 0 → (Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇)) = (Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − 0))
13426subid1d 11471 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℝ+) → (Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − 0) = Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)))
135133, 134sylan9eqr 2790 . . . . . . . . 9 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) → (Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇)) = Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)))
136 ovex 7388 . . . . . . . . . . . . . 14 ((𝑋‘(𝐿𝑘)) / 𝑘) ∈ V
13754, 51, 136fvmpt 6938 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝐹𝑘) = ((𝑋‘(𝐿𝑘)) / 𝑘))
13822, 137syl 17 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → (𝐹𝑘) = ((𝑋‘(𝐿𝑘)) / 𝑘))
13957adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℝ+) → 𝐹:ℕ⟶ℂ)
140139, 11, 58syl2an 596 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → (𝐹𝑘) ∈ ℂ)
141138, 140eqeltrrd 2834 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → ((𝑋‘(𝐿𝑘)) / 𝑘) ∈ ℂ)
1429, 124, 141fsummulc2 15701 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℝ+) → ((log‘𝑚) · Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) / 𝑘)) = Σ𝑘 ∈ (1...(⌊‘𝑚))((log‘𝑚) · ((𝑋‘(𝐿𝑘)) / 𝑘)))
143142adantr 480 . . . . . . . . 9 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) → ((log‘𝑚) · Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) / 𝑘)) = Σ𝑘 ∈ (1...(⌊‘𝑚))((log‘𝑚) · ((𝑋‘(𝐿𝑘)) / 𝑘)))
144131, 135, 1433eqtr4d 2778 . . . . . . . 8 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) → (Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇)) = ((log‘𝑚) · Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) / 𝑘)))
14583, 144sylan 580 . . . . . . 7 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇)) = ((log‘𝑚) · Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) / 𝑘)))
14683, 138sylan 580 . . . . . . . . . 10 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → (𝐹𝑘) = ((𝑋‘(𝐿𝑘)) / 𝑘))
14773, 44eleqtrdi 2843 . . . . . . . . . 10 ((𝜑𝑚 ∈ (3[,)+∞)) → (⌊‘𝑚) ∈ (ℤ‘1))
14877, 11, 50syl2an 596 . . . . . . . . . 10 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → ((𝑋‘(𝐿𝑘)) / 𝑘) ∈ ℂ)
149146, 147, 148fsumser 15647 . . . . . . . . 9 ((𝜑𝑚 ∈ (3[,)+∞)) → Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) / 𝑘) = (seq1( + , 𝐹)‘(⌊‘𝑚)))
150149adantr 480 . . . . . . . 8 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) / 𝑘) = (seq1( + , 𝐹)‘(⌊‘𝑚)))
151150oveq2d 7371 . . . . . . 7 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → ((log‘𝑚) · Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) / 𝑘)) = ((log‘𝑚) · (seq1( + , 𝐹)‘(⌊‘𝑚))))
152145, 151eqtrd 2768 . . . . . 6 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇)) = ((log‘𝑚) · (seq1( + , 𝐹)‘(⌊‘𝑚))))
153152fveq2d 6835 . . . . 5 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) = (abs‘((log‘𝑚) · (seq1( + , 𝐹)‘(⌊‘𝑚)))))
154122ad2antlr 727 . . . . . . . 8 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) → (log‘𝑚) ∈ ℝ)
155154recnd 11150 . . . . . . 7 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) → (log‘𝑚) ∈ ℂ)
15683, 155sylan 580 . . . . . 6 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (log‘𝑚) ∈ ℂ)
157156, 75absmuld 15374 . . . . 5 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (abs‘((log‘𝑚) · (seq1( + , 𝐹)‘(⌊‘𝑚)))) = ((abs‘(log‘𝑚)) · (abs‘(seq1( + , 𝐹)‘(⌊‘𝑚)))))
15891, 92absidd 15340 . . . . . . 7 ((𝜑𝑚 ∈ (3[,)+∞)) → (abs‘(log‘𝑚)) = (log‘𝑚))
159158oveq1d 7370 . . . . . 6 ((𝜑𝑚 ∈ (3[,)+∞)) → ((abs‘(log‘𝑚)) · (abs‘(seq1( + , 𝐹)‘(⌊‘𝑚)))) = ((log‘𝑚) · (abs‘(seq1( + , 𝐹)‘(⌊‘𝑚)))))
160159adantr 480 . . . . 5 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → ((abs‘(log‘𝑚)) · (abs‘(seq1( + , 𝐹)‘(⌊‘𝑚)))) = ((log‘𝑚) · (abs‘(seq1( + , 𝐹)‘(⌊‘𝑚)))))
161153, 157, 1603eqtrd 2772 . . . 4 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) = ((log‘𝑚) · (abs‘(seq1( + , 𝐹)‘(⌊‘𝑚)))))
162 iftrue 4482 . . . . . . . 8 (𝑆 = 0 → if(𝑆 = 0, 𝐶, 𝐸) = 𝐶)
163162adantl 481 . . . . . . 7 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) → if(𝑆 = 0, 𝐶, 𝐸) = 𝐶)
164163oveq1d 7370 . . . . . 6 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) → (if(𝑆 = 0, 𝐶, 𝐸) · ((log‘𝑚) / 𝑚)) = (𝐶 · ((log‘𝑚) / 𝑚)))
16586recnd 11150 . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
166165ad2antrr 726 . . . . . . 7 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) → 𝐶 ∈ ℂ)
167 rpcnne0 12919 . . . . . . . 8 (𝑚 ∈ ℝ+ → (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0))
168167ad2antlr 727 . . . . . . 7 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) → (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0))
169 div12 11808 . . . . . . 7 ((𝐶 ∈ ℂ ∧ (log‘𝑚) ∈ ℂ ∧ (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0)) → (𝐶 · ((log‘𝑚) / 𝑚)) = ((log‘𝑚) · (𝐶 / 𝑚)))
170166, 155, 168, 169syl3anc 1373 . . . . . 6 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) → (𝐶 · ((log‘𝑚) / 𝑚)) = ((log‘𝑚) · (𝐶 / 𝑚)))
171164, 170eqtrd 2768 . . . . 5 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) → (if(𝑆 = 0, 𝐶, 𝐸) · ((log‘𝑚) / 𝑚)) = ((log‘𝑚) · (𝐶 / 𝑚)))
17283, 171sylan 580 . . . 4 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (if(𝑆 = 0, 𝐶, 𝐸) · ((log‘𝑚) / 𝑚)) = ((log‘𝑚) · (𝐶 / 𝑚)))
173115, 161, 1723brtr4d 5127 . . 3 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) ≤ (if(𝑆 = 0, 𝐶, 𝐸) · ((log‘𝑚) / 𝑚)))
174 dchrvmasumif.2 . . . . . 6 (𝜑 → ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 · ((log‘𝑦) / 𝑦)))
175 2fveq3 6836 . . . . . . . . 9 (𝑦 = 𝑚 → (seq1( + , 𝐾)‘(⌊‘𝑦)) = (seq1( + , 𝐾)‘(⌊‘𝑚)))
176175fvoveq1d 7377 . . . . . . . 8 (𝑦 = 𝑚 → (abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) = (abs‘((seq1( + , 𝐾)‘(⌊‘𝑚)) − 𝑇)))
177 fveq2 6831 . . . . . . . . . 10 (𝑦 = 𝑚 → (log‘𝑦) = (log‘𝑚))
178 id 22 . . . . . . . . . 10 (𝑦 = 𝑚𝑦 = 𝑚)
179177, 178oveq12d 7373 . . . . . . . . 9 (𝑦 = 𝑚 → ((log‘𝑦) / 𝑦) = ((log‘𝑚) / 𝑚))
180179oveq2d 7371 . . . . . . . 8 (𝑦 = 𝑚 → (𝐸 · ((log‘𝑦) / 𝑦)) = (𝐸 · ((log‘𝑚) / 𝑚)))
181176, 180breq12d 5108 . . . . . . 7 (𝑦 = 𝑚 → ((abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 · ((log‘𝑦) / 𝑦)) ↔ (abs‘((seq1( + , 𝐾)‘(⌊‘𝑚)) − 𝑇)) ≤ (𝐸 · ((log‘𝑚) / 𝑚))))
182181rspccva 3573 . . . . . 6 ((∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 · ((log‘𝑦) / 𝑦)) ∧ 𝑚 ∈ (3[,)+∞)) → (abs‘((seq1( + , 𝐾)‘(⌊‘𝑚)) − 𝑇)) ≤ (𝐸 · ((log‘𝑚) / 𝑚)))
183174, 182sylan 580 . . . . 5 ((𝜑𝑚 ∈ (3[,)+∞)) → (abs‘((seq1( + , 𝐾)‘(⌊‘𝑚)) − 𝑇)) ≤ (𝐸 · ((log‘𝑚) / 𝑚)))
184183adantr 480 . . . 4 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) → (abs‘((seq1( + , 𝐾)‘(⌊‘𝑚)) − 𝑇)) ≤ (𝐸 · ((log‘𝑚) / 𝑚)))
185 fveq2 6831 . . . . . . . . . . . 12 (𝑎 = 𝑘 → (log‘𝑎) = (log‘𝑘))
186185, 53oveq12d 7373 . . . . . . . . . . 11 (𝑎 = 𝑘 → ((log‘𝑎) / 𝑎) = ((log‘𝑘) / 𝑘))
18752, 186oveq12d 7373 . . . . . . . . . 10 (𝑎 = 𝑘 → ((𝑋‘(𝐿𝑎)) · ((log‘𝑎) / 𝑎)) = ((𝑋‘(𝐿𝑘)) · ((log‘𝑘) / 𝑘)))
188 dchrvmasumif.g . . . . . . . . . 10 𝐾 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · ((log‘𝑎) / 𝑎)))
189 ovex 7388 . . . . . . . . . 10 ((𝑋‘(𝐿𝑘)) · ((log‘𝑘) / 𝑘)) ∈ V
190187, 188, 189fvmpt 6938 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐾𝑘) = ((𝑋‘(𝐿𝑘)) · ((log‘𝑘) / 𝑘)))
19111, 190syl 17 . . . . . . . 8 (𝑘 ∈ (1...(⌊‘𝑚)) → (𝐾𝑘) = ((𝑋‘(𝐿𝑘)) · ((log‘𝑘) / 𝑘)))
192 ifnefalse 4488 . . . . . . . . . . . . 13 (𝑆 ≠ 0 → if(𝑆 = 0, 𝑚, 𝑘) = 𝑘)
193192fveq2d 6835 . . . . . . . . . . . 12 (𝑆 ≠ 0 → (log‘if(𝑆 = 0, 𝑚, 𝑘)) = (log‘𝑘))
194193oveq1d 7370 . . . . . . . . . . 11 (𝑆 ≠ 0 → ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘) = ((log‘𝑘) / 𝑘))
195194oveq2d 7371 . . . . . . . . . 10 (𝑆 ≠ 0 → ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) = ((𝑋‘(𝐿𝑘)) · ((log‘𝑘) / 𝑘)))
196195adantl 481 . . . . . . . . 9 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) → ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) = ((𝑋‘(𝐿𝑘)) · ((log‘𝑘) / 𝑘)))
197196eqcomd 2739 . . . . . . . 8 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) → ((𝑋‘(𝐿𝑘)) · ((log‘𝑘) / 𝑘)) = ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)))
198191, 197sylan9eqr 2790 . . . . . . 7 ((((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → (𝐾𝑘) = ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)))
199147adantr 480 . . . . . . 7 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) → (⌊‘𝑚) ∈ (ℤ‘1))
200 nnrp 12912 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
201200adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℝ+)
202201relogcld 26569 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (log‘𝑘) ∈ ℝ)
203202recnd 11150 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (log‘𝑘) ∈ ℂ)
204203, 47, 49divcld 11907 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((log‘𝑘) / 𝑘) ∈ ℂ)
20515, 204mulcld 11142 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝑋‘(𝐿𝑘)) · ((log‘𝑘) / 𝑘)) ∈ ℂ)
206187cbvmptv 5199 . . . . . . . . . . . 12 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · ((log‘𝑎) / 𝑎))) = (𝑘 ∈ ℕ ↦ ((𝑋‘(𝐿𝑘)) · ((log‘𝑘) / 𝑘)))
207188, 206eqtri 2756 . . . . . . . . . . 11 𝐾 = (𝑘 ∈ ℕ ↦ ((𝑋‘(𝐿𝑘)) · ((log‘𝑘) / 𝑘)))
208205, 207fmptd 7056 . . . . . . . . . 10 (𝜑𝐾:ℕ⟶ℂ)
209208ad2antrr 726 . . . . . . . . 9 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) → 𝐾:ℕ⟶ℂ)
210 ffvelcdm 7023 . . . . . . . . 9 ((𝐾:ℕ⟶ℂ ∧ 𝑘 ∈ ℕ) → (𝐾𝑘) ∈ ℂ)
211209, 11, 210syl2an 596 . . . . . . . 8 ((((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → (𝐾𝑘) ∈ ℂ)
212198, 211eqeltrrd 2834 . . . . . . 7 ((((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) ∈ ℂ)
213198, 199, 212fsumser 15647 . . . . . 6 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) → Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) = (seq1( + , 𝐾)‘(⌊‘𝑚)))
214 ifnefalse 4488 . . . . . . 7 (𝑆 ≠ 0 → if(𝑆 = 0, 0, 𝑇) = 𝑇)
215214adantl 481 . . . . . 6 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) → if(𝑆 = 0, 0, 𝑇) = 𝑇)
216213, 215oveq12d 7373 . . . . 5 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) → (Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇)) = ((seq1( + , 𝐾)‘(⌊‘𝑚)) − 𝑇))
217216fveq2d 6835 . . . 4 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) = (abs‘((seq1( + , 𝐾)‘(⌊‘𝑚)) − 𝑇)))
218 ifnefalse 4488 . . . . . 6 (𝑆 ≠ 0 → if(𝑆 = 0, 𝐶, 𝐸) = 𝐸)
219218adantl 481 . . . . 5 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) → if(𝑆 = 0, 𝐶, 𝐸) = 𝐸)
220219oveq1d 7370 . . . 4 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) → (if(𝑆 = 0, 𝐶, 𝐸) · ((log‘𝑚) / 𝑚)) = (𝐸 · ((log‘𝑚) / 𝑚)))
221184, 217, 2203brtr4d 5127 . . 3 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) ≤ (if(𝑆 = 0, 𝐶, 𝐸) · ((log‘𝑚) / 𝑚)))
222173, 221pm2.61dane 3017 . 2 ((𝜑𝑚 ∈ (3[,)+∞)) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) ≤ (if(𝑆 = 0, 𝐶, 𝐸) · ((log‘𝑚) / 𝑚)))
223 fzfid 13890 . . . 4 (𝜑 → (1...2) ∈ Fin)
2247adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (1...2)) → 𝑋𝐷)
225 elfzelz 13434 . . . . . . . 8 (𝑘 ∈ (1...2) → 𝑘 ∈ ℤ)
226225adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ (1...2)) → 𝑘 ∈ ℤ)
2274, 1, 5, 2, 224, 226dchrzrhcl 27193 . . . . . 6 ((𝜑𝑘 ∈ (1...2)) → (𝑋‘(𝐿𝑘)) ∈ ℂ)
228227abscld 15356 . . . . 5 ((𝜑𝑘 ∈ (1...2)) → (abs‘(𝑋‘(𝐿𝑘))) ∈ ℝ)
229 3rp 12906 . . . . . . 7 3 ∈ ℝ+
230 relogcl 26521 . . . . . . 7 (3 ∈ ℝ+ → (log‘3) ∈ ℝ)
231229, 230ax-mp 5 . . . . . 6 (log‘3) ∈ ℝ
232 elfznn 13463 . . . . . . 7 (𝑘 ∈ (1...2) → 𝑘 ∈ ℕ)
233232adantl 481 . . . . . 6 ((𝜑𝑘 ∈ (1...2)) → 𝑘 ∈ ℕ)
234 nndivre 12176 . . . . . 6 (((log‘3) ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((log‘3) / 𝑘) ∈ ℝ)
235231, 233, 234sylancr 587 . . . . 5 ((𝜑𝑘 ∈ (1...2)) → ((log‘3) / 𝑘) ∈ ℝ)
236228, 235remulcld 11152 . . . 4 ((𝜑𝑘 ∈ (1...2)) → ((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)) ∈ ℝ)
237223, 236fsumrecl 15651 . . 3 (𝜑 → Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)) ∈ ℝ)
23843abscld 15356 . . 3 (𝜑 → (abs‘if(𝑆 = 0, 0, 𝑇)) ∈ ℝ)
239237, 238readdcld 11151 . 2 (𝜑 → (Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)) + (abs‘if(𝑆 = 0, 0, 𝑇))) ∈ ℝ)
240 simpl 482 . . . . . . 7 ((𝜑𝑚 ∈ (1[,)3)) → 𝜑)
24162rexri 11180 . . . . . . . . . . 11 3 ∈ ℝ*
242 elico2 13320 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 3 ∈ ℝ*) → (𝑚 ∈ (1[,)3) ↔ (𝑚 ∈ ℝ ∧ 1 ≤ 𝑚𝑚 < 3)))
243107, 241, 242mp2an 692 . . . . . . . . . 10 (𝑚 ∈ (1[,)3) ↔ (𝑚 ∈ ℝ ∧ 1 ≤ 𝑚𝑚 < 3))
244243simp1bi 1145 . . . . . . . . 9 (𝑚 ∈ (1[,)3) → 𝑚 ∈ ℝ)
245244adantl 481 . . . . . . . 8 ((𝜑𝑚 ∈ (1[,)3)) → 𝑚 ∈ ℝ)
246 0red 11125 . . . . . . . . 9 ((𝜑𝑚 ∈ (1[,)3)) → 0 ∈ ℝ)
247 1red 11123 . . . . . . . . 9 ((𝜑𝑚 ∈ (1[,)3)) → 1 ∈ ℝ)
248 0lt1 11649 . . . . . . . . . 10 0 < 1
249248a1i 11 . . . . . . . . 9 ((𝜑𝑚 ∈ (1[,)3)) → 0 < 1)
250243simp2bi 1146 . . . . . . . . . 10 (𝑚 ∈ (1[,)3) → 1 ≤ 𝑚)
251250adantl 481 . . . . . . . . 9 ((𝜑𝑚 ∈ (1[,)3)) → 1 ≤ 𝑚)
252246, 247, 245, 249, 251ltletrd 11283 . . . . . . . 8 ((𝜑𝑚 ∈ (1[,)3)) → 0 < 𝑚)
253245, 252elrpd 12941 . . . . . . 7 ((𝜑𝑚 ∈ (1[,)3)) → 𝑚 ∈ ℝ+)
254240, 253jca 511 . . . . . 6 ((𝜑𝑚 ∈ (1[,)3)) → (𝜑𝑚 ∈ ℝ+))
25543adantr 480 . . . . . . 7 ((𝜑𝑚 ∈ ℝ+) → if(𝑆 = 0, 0, 𝑇) ∈ ℂ)
25626, 255subcld 11482 . . . . . 6 ((𝜑𝑚 ∈ ℝ+) → (Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇)) ∈ ℂ)
257254, 256syl 17 . . . . 5 ((𝜑𝑚 ∈ (1[,)3)) → (Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇)) ∈ ℂ)
258257abscld 15356 . . . 4 ((𝜑𝑚 ∈ (1[,)3)) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) ∈ ℝ)
259254, 26syl 17 . . . . . 6 ((𝜑𝑚 ∈ (1[,)3)) → Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) ∈ ℂ)
260259abscld 15356 . . . . 5 ((𝜑𝑚 ∈ (1[,)3)) → (abs‘Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ∈ ℝ)
261238adantr 480 . . . . 5 ((𝜑𝑚 ∈ (1[,)3)) → (abs‘if(𝑆 = 0, 0, 𝑇)) ∈ ℝ)
262260, 261readdcld 11151 . . . 4 ((𝜑𝑚 ∈ (1[,)3)) → ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) + (abs‘if(𝑆 = 0, 0, 𝑇))) ∈ ℝ)
263237adantr 480 . . . . 5 ((𝜑𝑚 ∈ (1[,)3)) → Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)) ∈ ℝ)
264263, 261readdcld 11151 . . . 4 ((𝜑𝑚 ∈ (1[,)3)) → (Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)) + (abs‘if(𝑆 = 0, 0, 𝑇))) ∈ ℝ)
26526, 255abs2dif2d 15378 . . . . 5 ((𝜑𝑚 ∈ ℝ+) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) ≤ ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) + (abs‘if(𝑆 = 0, 0, 𝑇))))
266254, 265syl 17 . . . 4 ((𝜑𝑚 ∈ (1[,)3)) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) ≤ ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) + (abs‘if(𝑆 = 0, 0, 𝑇))))
26725abscld 15356 . . . . . . . 8 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → (abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ∈ ℝ)
2689, 267fsumrecl 15651 . . . . . . 7 ((𝜑𝑚 ∈ ℝ+) → Σ𝑘 ∈ (1...(⌊‘𝑚))(abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ∈ ℝ)
269254, 268syl 17 . . . . . 6 ((𝜑𝑚 ∈ (1[,)3)) → Σ𝑘 ∈ (1...(⌊‘𝑚))(abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ∈ ℝ)
2709, 25fsumabs 15718 . . . . . . 7 ((𝜑𝑚 ∈ ℝ+) → (abs‘Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ≤ Σ𝑘 ∈ (1...(⌊‘𝑚))(abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))))
271254, 270syl 17 . . . . . 6 ((𝜑𝑚 ∈ (1[,)3)) → (abs‘Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ≤ Σ𝑘 ∈ (1...(⌊‘𝑚))(abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))))
272 fzfid 13890 . . . . . . . . 9 ((𝜑𝑚 ∈ ℝ+) → (1...2) ∈ Fin)
273227adantlr 715 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → (𝑋‘(𝐿𝑘)) ∈ ℂ)
27417adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → 𝑚 ∈ ℝ+)
275232adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → 𝑘 ∈ ℕ)
276275nnrpd 12942 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → 𝑘 ∈ ℝ+)
277274, 276ifcld 4523 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → if(𝑆 = 0, 𝑚, 𝑘) ∈ ℝ+)
278277relogcld 26569 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → (log‘if(𝑆 = 0, 𝑚, 𝑘)) ∈ ℝ)
279278, 275nndivred 12189 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘) ∈ ℝ)
280279recnd 11150 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘) ∈ ℂ)
281273, 280mulcld 11142 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) ∈ ℂ)
282281abscld 15356 . . . . . . . . 9 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → (abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ∈ ℝ)
283272, 282fsumrecl 15651 . . . . . . . 8 ((𝜑𝑚 ∈ ℝ+) → Σ𝑘 ∈ (1...2)(abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ∈ ℝ)
284254, 283syl 17 . . . . . . 7 ((𝜑𝑚 ∈ (1[,)3)) → Σ𝑘 ∈ (1...2)(abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ∈ ℝ)
285 fzfid 13890 . . . . . . . 8 ((𝜑𝑚 ∈ (1[,)3)) → (1...2) ∈ Fin)
286254, 281sylan 580 . . . . . . . . 9 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) ∈ ℂ)
287286abscld 15356 . . . . . . . 8 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → (abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ∈ ℝ)
288286absge0d 15364 . . . . . . . 8 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → 0 ≤ (abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))))
289245flcld 13712 . . . . . . . . . 10 ((𝜑𝑚 ∈ (1[,)3)) → (⌊‘𝑚) ∈ ℤ)
290 2z 12514 . . . . . . . . . . 11 2 ∈ ℤ
291290a1i 11 . . . . . . . . . 10 ((𝜑𝑚 ∈ (1[,)3)) → 2 ∈ ℤ)
292243simp3bi 1147 . . . . . . . . . . . . . 14 (𝑚 ∈ (1[,)3) → 𝑚 < 3)
293292adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (1[,)3)) → 𝑚 < 3)
294 3z 12515 . . . . . . . . . . . . . 14 3 ∈ ℤ
295 fllt 13720 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℝ ∧ 3 ∈ ℤ) → (𝑚 < 3 ↔ (⌊‘𝑚) < 3))
296245, 294, 295sylancl 586 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (1[,)3)) → (𝑚 < 3 ↔ (⌊‘𝑚) < 3))
297293, 296mpbid 232 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (1[,)3)) → (⌊‘𝑚) < 3)
298 df-3 12199 . . . . . . . . . . . 12 3 = (2 + 1)
299297, 298breqtrdi 5136 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (1[,)3)) → (⌊‘𝑚) < (2 + 1))
300 rpre 12909 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℝ+𝑚 ∈ ℝ)
301300adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℝ+) → 𝑚 ∈ ℝ)
302301flcld 13712 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℝ+) → (⌊‘𝑚) ∈ ℤ)
303 zleltp1 12533 . . . . . . . . . . . . 13 (((⌊‘𝑚) ∈ ℤ ∧ 2 ∈ ℤ) → ((⌊‘𝑚) ≤ 2 ↔ (⌊‘𝑚) < (2 + 1)))
304302, 290, 303sylancl 586 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℝ+) → ((⌊‘𝑚) ≤ 2 ↔ (⌊‘𝑚) < (2 + 1)))
305254, 304syl 17 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (1[,)3)) → ((⌊‘𝑚) ≤ 2 ↔ (⌊‘𝑚) < (2 + 1)))
306299, 305mpbird 257 . . . . . . . . . 10 ((𝜑𝑚 ∈ (1[,)3)) → (⌊‘𝑚) ≤ 2)
307 eluz2 12748 . . . . . . . . . 10 (2 ∈ (ℤ‘(⌊‘𝑚)) ↔ ((⌊‘𝑚) ∈ ℤ ∧ 2 ∈ ℤ ∧ (⌊‘𝑚) ≤ 2))
308289, 291, 306, 307syl3anbrc 1344 . . . . . . . . 9 ((𝜑𝑚 ∈ (1[,)3)) → 2 ∈ (ℤ‘(⌊‘𝑚)))
309 fzss2 13474 . . . . . . . . 9 (2 ∈ (ℤ‘(⌊‘𝑚)) → (1...(⌊‘𝑚)) ⊆ (1...2))
310308, 309syl 17 . . . . . . . 8 ((𝜑𝑚 ∈ (1[,)3)) → (1...(⌊‘𝑚)) ⊆ (1...2))
311285, 287, 288, 310fsumless 15713 . . . . . . 7 ((𝜑𝑚 ∈ (1[,)3)) → Σ𝑘 ∈ (1...(⌊‘𝑚))(abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ≤ Σ𝑘 ∈ (1...2)(abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))))
312236adantlr 715 . . . . . . . 8 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → ((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)) ∈ ℝ)
313273, 280absmuld 15374 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → (abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) = ((abs‘(𝑋‘(𝐿𝑘))) · (abs‘((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))))
314254, 313sylan 580 . . . . . . . . 9 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → (abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) = ((abs‘(𝑋‘(𝐿𝑘))) · (abs‘((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))))
315254, 279sylan 580 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘) ∈ ℝ)
316254, 278sylan 580 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → (log‘if(𝑆 = 0, 𝑚, 𝑘)) ∈ ℝ)
317 log1 26531 . . . . . . . . . . . . . 14 (log‘1) = 0
318 elfzle1 13437 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...2) → 1 ≤ 𝑘)
319 breq2 5099 . . . . . . . . . . . . . . . . 17 (𝑚 = if(𝑆 = 0, 𝑚, 𝑘) → (1 ≤ 𝑚 ↔ 1 ≤ if(𝑆 = 0, 𝑚, 𝑘)))
320 breq2 5099 . . . . . . . . . . . . . . . . 17 (𝑘 = if(𝑆 = 0, 𝑚, 𝑘) → (1 ≤ 𝑘 ↔ 1 ≤ if(𝑆 = 0, 𝑚, 𝑘)))
321319, 320ifboth 4516 . . . . . . . . . . . . . . . 16 ((1 ≤ 𝑚 ∧ 1 ≤ 𝑘) → 1 ≤ if(𝑆 = 0, 𝑚, 𝑘))
322251, 318, 321syl2an 596 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → 1 ≤ if(𝑆 = 0, 𝑚, 𝑘))
323 1rp 12904 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ+
324 logleb 26549 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ+ ∧ if(𝑆 = 0, 𝑚, 𝑘) ∈ ℝ+) → (1 ≤ if(𝑆 = 0, 𝑚, 𝑘) ↔ (log‘1) ≤ (log‘if(𝑆 = 0, 𝑚, 𝑘))))
325323, 277, 324sylancr 587 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → (1 ≤ if(𝑆 = 0, 𝑚, 𝑘) ↔ (log‘1) ≤ (log‘if(𝑆 = 0, 𝑚, 𝑘))))
326254, 325sylan 580 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → (1 ≤ if(𝑆 = 0, 𝑚, 𝑘) ↔ (log‘1) ≤ (log‘if(𝑆 = 0, 𝑚, 𝑘))))
327322, 326mpbid 232 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → (log‘1) ≤ (log‘if(𝑆 = 0, 𝑚, 𝑘)))
328317, 327eqbrtrrid 5131 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → 0 ≤ (log‘if(𝑆 = 0, 𝑚, 𝑘)))
329276rpregt0d 12950 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → (𝑘 ∈ ℝ ∧ 0 < 𝑘))
330254, 329sylan 580 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → (𝑘 ∈ ℝ ∧ 0 < 𝑘))
331 divge0 12001 . . . . . . . . . . . . 13 ((((log‘if(𝑆 = 0, 𝑚, 𝑘)) ∈ ℝ ∧ 0 ≤ (log‘if(𝑆 = 0, 𝑚, 𝑘))) ∧ (𝑘 ∈ ℝ ∧ 0 < 𝑘)) → 0 ≤ ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))
332316, 328, 330, 331syl21anc 837 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → 0 ≤ ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))
333315, 332absidd 15340 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → (abs‘((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) = ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))
334333, 315eqeltrd 2833 . . . . . . . . . 10 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → (abs‘((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) ∈ ℝ)
335235adantlr 715 . . . . . . . . . 10 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → ((log‘3) / 𝑘) ∈ ℝ)
336228adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → (abs‘(𝑋‘(𝐿𝑘))) ∈ ℝ)
337273absge0d 15364 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → 0 ≤ (abs‘(𝑋‘(𝐿𝑘))))
338336, 337jca 511 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → ((abs‘(𝑋‘(𝐿𝑘))) ∈ ℝ ∧ 0 ≤ (abs‘(𝑋‘(𝐿𝑘)))))
339254, 338sylan 580 . . . . . . . . . 10 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → ((abs‘(𝑋‘(𝐿𝑘))) ∈ ℝ ∧ 0 ≤ (abs‘(𝑋‘(𝐿𝑘)))))
340292ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → 𝑚 < 3)
341275nnred 12150 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → 𝑘 ∈ ℝ)
342 2re 12209 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
343342a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → 2 ∈ ℝ)
34462a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → 3 ∈ ℝ)
345 elfzle2 13438 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...2) → 𝑘 ≤ 2)
346345adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → 𝑘 ≤ 2)
347 2lt3 12302 . . . . . . . . . . . . . . . . . 18 2 < 3
348347a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → 2 < 3)
349341, 343, 344, 346, 348lelttrd 11281 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → 𝑘 < 3)
350254, 349sylan 580 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → 𝑘 < 3)
351 breq1 5098 . . . . . . . . . . . . . . . 16 (𝑚 = if(𝑆 = 0, 𝑚, 𝑘) → (𝑚 < 3 ↔ if(𝑆 = 0, 𝑚, 𝑘) < 3))
352 breq1 5098 . . . . . . . . . . . . . . . 16 (𝑘 = if(𝑆 = 0, 𝑚, 𝑘) → (𝑘 < 3 ↔ if(𝑆 = 0, 𝑚, 𝑘) < 3))
353351, 352ifboth 4516 . . . . . . . . . . . . . . 15 ((𝑚 < 3 ∧ 𝑘 < 3) → if(𝑆 = 0, 𝑚, 𝑘) < 3)
354340, 350, 353syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → if(𝑆 = 0, 𝑚, 𝑘) < 3)
355277rpred 12944 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → if(𝑆 = 0, 𝑚, 𝑘) ∈ ℝ)
356 ltle 11211 . . . . . . . . . . . . . . . 16 ((if(𝑆 = 0, 𝑚, 𝑘) ∈ ℝ ∧ 3 ∈ ℝ) → (if(𝑆 = 0, 𝑚, 𝑘) < 3 → if(𝑆 = 0, 𝑚, 𝑘) ≤ 3))
357355, 62, 356sylancl 586 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → (if(𝑆 = 0, 𝑚, 𝑘) < 3 → if(𝑆 = 0, 𝑚, 𝑘) ≤ 3))
358254, 357sylan 580 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → (if(𝑆 = 0, 𝑚, 𝑘) < 3 → if(𝑆 = 0, 𝑚, 𝑘) ≤ 3))
359354, 358mpd 15 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → if(𝑆 = 0, 𝑚, 𝑘) ≤ 3)
360 logleb 26549 . . . . . . . . . . . . . . 15 ((if(𝑆 = 0, 𝑚, 𝑘) ∈ ℝ+ ∧ 3 ∈ ℝ+) → (if(𝑆 = 0, 𝑚, 𝑘) ≤ 3 ↔ (log‘if(𝑆 = 0, 𝑚, 𝑘)) ≤ (log‘3)))
361277, 229, 360sylancl 586 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → (if(𝑆 = 0, 𝑚, 𝑘) ≤ 3 ↔ (log‘if(𝑆 = 0, 𝑚, 𝑘)) ≤ (log‘3)))
362254, 361sylan 580 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → (if(𝑆 = 0, 𝑚, 𝑘) ≤ 3 ↔ (log‘if(𝑆 = 0, 𝑚, 𝑘)) ≤ (log‘3)))
363359, 362mpbid 232 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → (log‘if(𝑆 = 0, 𝑚, 𝑘)) ≤ (log‘3))
364231a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → (log‘3) ∈ ℝ)
365278, 364, 276lediv1d 12990 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → ((log‘if(𝑆 = 0, 𝑚, 𝑘)) ≤ (log‘3) ↔ ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘) ≤ ((log‘3) / 𝑘)))
366254, 365sylan 580 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → ((log‘if(𝑆 = 0, 𝑚, 𝑘)) ≤ (log‘3) ↔ ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘) ≤ ((log‘3) / 𝑘)))
367363, 366mpbid 232 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘) ≤ ((log‘3) / 𝑘))
368333, 367eqbrtrd 5117 . . . . . . . . . 10 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → (abs‘((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) ≤ ((log‘3) / 𝑘))
369 lemul2a 11986 . . . . . . . . . 10 ((((abs‘((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) ∈ ℝ ∧ ((log‘3) / 𝑘) ∈ ℝ ∧ ((abs‘(𝑋‘(𝐿𝑘))) ∈ ℝ ∧ 0 ≤ (abs‘(𝑋‘(𝐿𝑘))))) ∧ (abs‘((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) ≤ ((log‘3) / 𝑘)) → ((abs‘(𝑋‘(𝐿𝑘))) · (abs‘((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ≤ ((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)))
370334, 335, 339, 368, 369syl31anc 1375 . . . . . . . . 9 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → ((abs‘(𝑋‘(𝐿𝑘))) · (abs‘((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ≤ ((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)))
371314, 370eqbrtrd 5117 . . . . . . . 8 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → (abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ≤ ((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)))
372285, 287, 312, 371fsumle 15716 . . . . . . 7 ((𝜑𝑚 ∈ (1[,)3)) → Σ𝑘 ∈ (1...2)(abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ≤ Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)))
373269, 284, 263, 311, 372letrd 11280 . . . . . 6 ((𝜑𝑚 ∈ (1[,)3)) → Σ𝑘 ∈ (1...(⌊‘𝑚))(abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ≤ Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)))
374260, 269, 263, 271, 373letrd 11280 . . . . 5 ((𝜑𝑚 ∈ (1[,)3)) → (abs‘Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ≤ Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)))
37526abscld 15356 . . . . . . 7 ((𝜑𝑚 ∈ ℝ+) → (abs‘Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ∈ ℝ)
376237adantr 480 . . . . . . 7 ((𝜑𝑚 ∈ ℝ+) → Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)) ∈ ℝ)
377255abscld 15356 . . . . . . 7 ((𝜑𝑚 ∈ ℝ+) → (abs‘if(𝑆 = 0, 0, 𝑇)) ∈ ℝ)
378375, 376, 377leadd1d 11721 . . . . . 6 ((𝜑𝑚 ∈ ℝ+) → ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ≤ Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)) ↔ ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) + (abs‘if(𝑆 = 0, 0, 𝑇))) ≤ (Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)) + (abs‘if(𝑆 = 0, 0, 𝑇)))))
379254, 378syl 17 . . . . 5 ((𝜑𝑚 ∈ (1[,)3)) → ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ≤ Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)) ↔ ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) + (abs‘if(𝑆 = 0, 0, 𝑇))) ≤ (Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)) + (abs‘if(𝑆 = 0, 0, 𝑇)))))
380374, 379mpbid 232 . . . 4 ((𝜑𝑚 ∈ (1[,)3)) → ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) + (abs‘if(𝑆 = 0, 0, 𝑇))) ≤ (Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)) + (abs‘if(𝑆 = 0, 0, 𝑇))))
381258, 262, 264, 266, 380letrd 11280 . . 3 ((𝜑𝑚 ∈ (1[,)3)) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) ≤ (Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)) + (abs‘if(𝑆 = 0, 0, 𝑇))))
382381ralrimiva 3126 . 2 (𝜑 → ∀𝑚 ∈ (1[,)3)(abs‘(Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) ≤ (Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)) + (abs‘if(𝑆 = 0, 0, 𝑇))))
3831, 2, 3, 4, 5, 6, 7, 8, 26, 34, 37, 43, 222, 239, 382dchrvmasumlem3 27447 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇)))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2930  wral 3049  wss 3899  ifcif 4476   class class class wbr 5095  cmpt 5176  wf 6485  cfv 6489  (class class class)co 7355  cc 11014  cr 11015  0cc0 11016  1c1 11017   + caddc 11019   · cmul 11021  +∞cpnf 11153  *cxr 11155   < clt 11156  cle 11157  cmin 11354   / cdiv 11784  cn 12135  2c2 12190  3c3 12191  cz 12478  cuz 12742  +crp 12900  [,)cico 13257  ...cfz 13417  cfl 13704  seqcseq 13918  abscabs 15151  cli 15401  𝑂(1)co1 15403  Σcsu 15603  Basecbs 17130  0gc0g 17353  ℤRHomczrh 21446  ℤ/nczn 21449  logclog 26500  μcmu 27042  DChrcdchr 27180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9541  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094  ax-addf 11095  ax-mulf 11096
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-omul 8399  df-er 8631  df-ec 8633  df-qs 8637  df-map 8761  df-pm 8762  df-ixp 8831  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-fsupp 9256  df-fi 9305  df-sup 9336  df-inf 9337  df-oi 9406  df-card 9842  df-acn 9845  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-7 12203  df-8 12204  df-9 12205  df-n0 12392  df-xnn0 12465  df-z 12479  df-dec 12599  df-uz 12743  df-q 12857  df-rp 12901  df-xneg 13021  df-xadd 13022  df-xmul 13023  df-ioo 13259  df-ioc 13260  df-ico 13261  df-icc 13262  df-fz 13418  df-fzo 13565  df-fl 13706  df-mod 13784  df-seq 13919  df-exp 13979  df-fac 14191  df-bc 14220  df-hash 14248  df-shft 14984  df-cj 15016  df-re 15017  df-im 15018  df-sqrt 15152  df-abs 15153  df-limsup 15388  df-clim 15405  df-rlim 15406  df-o1 15407  df-lo1 15408  df-sum 15604  df-ef 15984  df-e 15985  df-sin 15986  df-cos 15987  df-tan 15988  df-pi 15989  df-dvds 16174  df-prm 16593  df-struct 17068  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-ress 17152  df-plusg 17184  df-mulr 17185  df-starv 17186  df-sca 17187  df-vsca 17188  df-ip 17189  df-tset 17190  df-ple 17191  df-ds 17193  df-unif 17194  df-hom 17195  df-cco 17196  df-rest 17336  df-topn 17337  df-0g 17355  df-gsum 17356  df-topgen 17357  df-pt 17358  df-prds 17361  df-xrs 17416  df-qtop 17421  df-imas 17422  df-qus 17423  df-xps 17424  df-mre 17498  df-mrc 17499  df-acs 17501  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-mhm 18701  df-submnd 18702  df-grp 18859  df-minusg 18860  df-sbg 18861  df-mulg 18991  df-subg 19046  df-nsg 19047  df-eqg 19048  df-ghm 19135  df-cntz 19239  df-od 19450  df-cmn 19704  df-abl 19705  df-mgp 20069  df-rng 20081  df-ur 20110  df-ring 20163  df-cring 20164  df-oppr 20265  df-dvdsr 20285  df-unit 20286  df-invr 20316  df-dvr 20329  df-rhm 20400  df-subrng 20471  df-subrg 20495  df-drng 20656  df-lmod 20805  df-lss 20875  df-lsp 20915  df-sra 21117  df-rgmod 21118  df-lidl 21155  df-rsp 21156  df-2idl 21197  df-psmet 21293  df-xmet 21294  df-met 21295  df-bl 21296  df-mopn 21297  df-fbas 21298  df-fg 21299  df-cnfld 21302  df-zring 21394  df-zrh 21450  df-zn 21453  df-top 22819  df-topon 22836  df-topsp 22858  df-bases 22871  df-cld 22944  df-ntr 22945  df-cls 22946  df-nei 23023  df-lp 23061  df-perf 23062  df-cn 23152  df-cnp 23153  df-haus 23240  df-cmp 23312  df-tx 23487  df-hmeo 23680  df-fil 23771  df-fm 23863  df-flim 23864  df-flf 23865  df-xms 24245  df-ms 24246  df-tms 24247  df-cncf 24808  df-limc 25804  df-dv 25805  df-ulm 26323  df-log 26502  df-cxp 26503  df-atan 26814  df-em 26940  df-mu 27048  df-dchr 27181
This theorem is referenced by:  dchrvmasumiflem2  27450
  Copyright terms: Public domain W3C validator