MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasumiflem1 Structured version   Visualization version   GIF version

Theorem dchrvmasumiflem1 26085
Description: Lemma for dchrvmasumif 26087. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrvmasumif.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
dchrvmasumif.c (𝜑𝐶 ∈ (0[,)+∞))
dchrvmasumif.s (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
dchrvmasumif.1 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / 𝑦))
dchrvmasumif.g 𝐾 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · ((log‘𝑎) / 𝑎)))
dchrvmasumif.e (𝜑𝐸 ∈ (0[,)+∞))
dchrvmasumif.t (𝜑 → seq1( + , 𝐾) ⇝ 𝑇)
dchrvmasumif.2 (𝜑 → ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 · ((log‘𝑦) / 𝑦)))
Assertion
Ref Expression
dchrvmasumiflem1 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇)))) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑘,𝑦, 1   𝑥,𝑑,𝑦,𝐶   𝑘,𝑑,𝐹,𝑥,𝑦   𝑎,𝑑,𝑘,𝑥,𝑦   𝐸,𝑑,𝑥,𝑦   𝑘,𝐾,𝑦   𝑘,𝑁,𝑥,𝑦   𝜑,𝑑,𝑘,𝑥   𝑇,𝑑,𝑥,𝑦   𝑆,𝑑,𝑘,𝑥,𝑦   𝑘,𝑍,𝑥,𝑦   𝐷,𝑘,𝑥,𝑦   𝐿,𝑎,𝑑,𝑘,𝑥,𝑦   𝑋,𝑎,𝑑,𝑘,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐶(𝑘,𝑎)   𝐷(𝑎,𝑑)   𝑆(𝑎)   𝑇(𝑘,𝑎)   1 (𝑎,𝑑)   𝐸(𝑘,𝑎)   𝐹(𝑎)   𝐺(𝑥,𝑦,𝑘,𝑎,𝑑)   𝐾(𝑥,𝑎,𝑑)   𝑁(𝑎,𝑑)   𝑍(𝑎,𝑑)

Proof of Theorem dchrvmasumiflem1
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 rpvmasum.z . 2 𝑍 = (ℤ/nℤ‘𝑁)
2 rpvmasum.l . 2 𝐿 = (ℤRHom‘𝑍)
3 rpvmasum.a . 2 (𝜑𝑁 ∈ ℕ)
4 rpvmasum.g . 2 𝐺 = (DChr‘𝑁)
5 rpvmasum.d . 2 𝐷 = (Base‘𝐺)
6 rpvmasum.1 . 2 1 = (0g𝐺)
7 dchrisum.b . 2 (𝜑𝑋𝐷)
8 dchrisum.n1 . 2 (𝜑𝑋1 )
9 fzfid 13336 . . 3 ((𝜑𝑚 ∈ ℝ+) → (1...(⌊‘𝑚)) ∈ Fin)
10 simpl 486 . . . . 5 ((𝜑𝑚 ∈ ℝ+) → 𝜑)
11 elfznn 12931 . . . . 5 (𝑘 ∈ (1...(⌊‘𝑚)) → 𝑘 ∈ ℕ)
127adantr 484 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝑋𝐷)
13 nnz 11992 . . . . . . 7 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
1413adantl 485 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
154, 1, 5, 2, 12, 14dchrzrhcl 25829 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑋‘(𝐿𝑘)) ∈ ℂ)
1610, 11, 15syl2an 598 . . . 4 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → (𝑋‘(𝐿𝑘)) ∈ ℂ)
17 simpr 488 . . . . . . . 8 ((𝜑𝑚 ∈ ℝ+) → 𝑚 ∈ ℝ+)
1811nnrpd 12417 . . . . . . . 8 (𝑘 ∈ (1...(⌊‘𝑚)) → 𝑘 ∈ ℝ+)
19 ifcl 4469 . . . . . . . 8 ((𝑚 ∈ ℝ+𝑘 ∈ ℝ+) → if(𝑆 = 0, 𝑚, 𝑘) ∈ ℝ+)
2017, 18, 19syl2an 598 . . . . . . 7 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → if(𝑆 = 0, 𝑚, 𝑘) ∈ ℝ+)
2120relogcld 25214 . . . . . 6 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → (log‘if(𝑆 = 0, 𝑚, 𝑘)) ∈ ℝ)
2211adantl 485 . . . . . 6 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → 𝑘 ∈ ℕ)
2321, 22nndivred 11679 . . . . 5 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘) ∈ ℝ)
2423recnd 10658 . . . 4 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘) ∈ ℂ)
2516, 24mulcld 10650 . . 3 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) ∈ ℂ)
269, 25fsumcl 15082 . 2 ((𝜑𝑚 ∈ ℝ+) → Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) ∈ ℂ)
27 fveq2 6645 . . . 4 (𝑚 = (𝑥 / 𝑑) → (⌊‘𝑚) = (⌊‘(𝑥 / 𝑑)))
2827oveq2d 7151 . . 3 (𝑚 = (𝑥 / 𝑑) → (1...(⌊‘𝑚)) = (1...(⌊‘(𝑥 / 𝑑))))
29 ifeq1 4429 . . . . . . 7 (𝑚 = (𝑥 / 𝑑) → if(𝑆 = 0, 𝑚, 𝑘) = if(𝑆 = 0, (𝑥 / 𝑑), 𝑘))
3029fveq2d 6649 . . . . . 6 (𝑚 = (𝑥 / 𝑑) → (log‘if(𝑆 = 0, 𝑚, 𝑘)) = (log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)))
3130oveq1d 7150 . . . . 5 (𝑚 = (𝑥 / 𝑑) → ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘) = ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))
3231oveq2d 7151 . . . 4 (𝑚 = (𝑥 / 𝑑) → ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) = ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)))
3332adantr 484 . . 3 ((𝑚 = (𝑥 / 𝑑) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) = ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)))
3428, 33sumeq12rdv 15056 . 2 (𝑚 = (𝑥 / 𝑑) → Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) = Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)))
35 dchrvmasumif.c . . 3 (𝜑𝐶 ∈ (0[,)+∞))
36 dchrvmasumif.e . . 3 (𝜑𝐸 ∈ (0[,)+∞))
3735, 36ifcld 4470 . 2 (𝜑 → if(𝑆 = 0, 𝐶, 𝐸) ∈ (0[,)+∞))
38 0cn 10622 . . 3 0 ∈ ℂ
39 dchrvmasumif.t . . . 4 (𝜑 → seq1( + , 𝐾) ⇝ 𝑇)
40 climcl 14848 . . . 4 (seq1( + , 𝐾) ⇝ 𝑇𝑇 ∈ ℂ)
4139, 40syl 17 . . 3 (𝜑𝑇 ∈ ℂ)
42 ifcl 4469 . . 3 ((0 ∈ ℂ ∧ 𝑇 ∈ ℂ) → if(𝑆 = 0, 0, 𝑇) ∈ ℂ)
4338, 41, 42sylancr 590 . 2 (𝜑 → if(𝑆 = 0, 0, 𝑇) ∈ ℂ)
44 nnuz 12269 . . . . . . . . 9 ℕ = (ℤ‘1)
45 1zzd 12001 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
46 nncn 11633 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
4746adantl 485 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
48 nnne0 11659 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
4948adantl 485 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝑘 ≠ 0)
5015, 47, 49divcld 11405 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝑋‘(𝐿𝑘)) / 𝑘) ∈ ℂ)
51 dchrvmasumif.f . . . . . . . . . . . 12 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
52 2fveq3 6650 . . . . . . . . . . . . . 14 (𝑎 = 𝑘 → (𝑋‘(𝐿𝑎)) = (𝑋‘(𝐿𝑘)))
53 id 22 . . . . . . . . . . . . . 14 (𝑎 = 𝑘𝑎 = 𝑘)
5452, 53oveq12d 7153 . . . . . . . . . . . . 13 (𝑎 = 𝑘 → ((𝑋‘(𝐿𝑎)) / 𝑎) = ((𝑋‘(𝐿𝑘)) / 𝑘))
5554cbvmptv 5133 . . . . . . . . . . . 12 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)) = (𝑘 ∈ ℕ ↦ ((𝑋‘(𝐿𝑘)) / 𝑘))
5651, 55eqtri 2821 . . . . . . . . . . 11 𝐹 = (𝑘 ∈ ℕ ↦ ((𝑋‘(𝐿𝑘)) / 𝑘))
5750, 56fmptd 6855 . . . . . . . . . 10 (𝜑𝐹:ℕ⟶ℂ)
58 ffvelrn 6826 . . . . . . . . . 10 ((𝐹:ℕ⟶ℂ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
5957, 58sylan 583 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
6044, 45, 59serf 13394 . . . . . . . 8 (𝜑 → seq1( + , 𝐹):ℕ⟶ℂ)
6160ad2antrr 725 . . . . . . 7 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → seq1( + , 𝐹):ℕ⟶ℂ)
62 3re 11705 . . . . . . . . . . 11 3 ∈ ℝ
63 elicopnf 12823 . . . . . . . . . . 11 (3 ∈ ℝ → (𝑚 ∈ (3[,)+∞) ↔ (𝑚 ∈ ℝ ∧ 3 ≤ 𝑚)))
6462, 63mp1i 13 . . . . . . . . . 10 (𝜑 → (𝑚 ∈ (3[,)+∞) ↔ (𝑚 ∈ ℝ ∧ 3 ≤ 𝑚)))
6564simprbda 502 . . . . . . . . 9 ((𝜑𝑚 ∈ (3[,)+∞)) → 𝑚 ∈ ℝ)
66 1red 10631 . . . . . . . . . 10 ((𝜑𝑚 ∈ (3[,)+∞)) → 1 ∈ ℝ)
6762a1i 11 . . . . . . . . . 10 ((𝜑𝑚 ∈ (3[,)+∞)) → 3 ∈ ℝ)
68 1le3 11837 . . . . . . . . . . 11 1 ≤ 3
6968a1i 11 . . . . . . . . . 10 ((𝜑𝑚 ∈ (3[,)+∞)) → 1 ≤ 3)
7064simplbda 503 . . . . . . . . . 10 ((𝜑𝑚 ∈ (3[,)+∞)) → 3 ≤ 𝑚)
7166, 67, 65, 69, 70letrd 10786 . . . . . . . . 9 ((𝜑𝑚 ∈ (3[,)+∞)) → 1 ≤ 𝑚)
72 flge1nn 13186 . . . . . . . . 9 ((𝑚 ∈ ℝ ∧ 1 ≤ 𝑚) → (⌊‘𝑚) ∈ ℕ)
7365, 71, 72syl2anc 587 . . . . . . . 8 ((𝜑𝑚 ∈ (3[,)+∞)) → (⌊‘𝑚) ∈ ℕ)
7473adantr 484 . . . . . . 7 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (⌊‘𝑚) ∈ ℕ)
7561, 74ffvelrnd 6829 . . . . . 6 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (seq1( + , 𝐹)‘(⌊‘𝑚)) ∈ ℂ)
7675abscld 14788 . . . . 5 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (abs‘(seq1( + , 𝐹)‘(⌊‘𝑚))) ∈ ℝ)
77 simpl 486 . . . . . . . 8 ((𝜑𝑚 ∈ (3[,)+∞)) → 𝜑)
78 0red 10633 . . . . . . . . . 10 ((𝜑𝑚 ∈ (3[,)+∞)) → 0 ∈ ℝ)
79 3pos 11730 . . . . . . . . . . 11 0 < 3
8079a1i 11 . . . . . . . . . 10 ((𝜑𝑚 ∈ (3[,)+∞)) → 0 < 3)
8178, 67, 65, 80, 70ltletrd 10789 . . . . . . . . 9 ((𝜑𝑚 ∈ (3[,)+∞)) → 0 < 𝑚)
8265, 81elrpd 12416 . . . . . . . 8 ((𝜑𝑚 ∈ (3[,)+∞)) → 𝑚 ∈ ℝ+)
8377, 82jca 515 . . . . . . 7 ((𝜑𝑚 ∈ (3[,)+∞)) → (𝜑𝑚 ∈ ℝ+))
84 elrege0 12832 . . . . . . . . . 10 (𝐶 ∈ (0[,)+∞) ↔ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
8584simplbi 501 . . . . . . . . 9 (𝐶 ∈ (0[,)+∞) → 𝐶 ∈ ℝ)
8635, 85syl 17 . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
87 rerpdivcl 12407 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ 𝑚 ∈ ℝ+) → (𝐶 / 𝑚) ∈ ℝ)
8886, 87sylan 583 . . . . . . 7 ((𝜑𝑚 ∈ ℝ+) → (𝐶 / 𝑚) ∈ ℝ)
8983, 88syl 17 . . . . . 6 ((𝜑𝑚 ∈ (3[,)+∞)) → (𝐶 / 𝑚) ∈ ℝ)
9089adantr 484 . . . . 5 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (𝐶 / 𝑚) ∈ ℝ)
9182relogcld 25214 . . . . . . 7 ((𝜑𝑚 ∈ (3[,)+∞)) → (log‘𝑚) ∈ ℝ)
9265, 71logge0d 25221 . . . . . . 7 ((𝜑𝑚 ∈ (3[,)+∞)) → 0 ≤ (log‘𝑚))
9391, 92jca 515 . . . . . 6 ((𝜑𝑚 ∈ (3[,)+∞)) → ((log‘𝑚) ∈ ℝ ∧ 0 ≤ (log‘𝑚)))
9493adantr 484 . . . . 5 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → ((log‘𝑚) ∈ ℝ ∧ 0 ≤ (log‘𝑚)))
95 oveq2 7143 . . . . . . . 8 (𝑆 = 0 → ((seq1( + , 𝐹)‘(⌊‘𝑚)) − 𝑆) = ((seq1( + , 𝐹)‘(⌊‘𝑚)) − 0))
9660adantr 484 . . . . . . . . . 10 ((𝜑𝑚 ∈ (3[,)+∞)) → seq1( + , 𝐹):ℕ⟶ℂ)
9796, 73ffvelrnd 6829 . . . . . . . . 9 ((𝜑𝑚 ∈ (3[,)+∞)) → (seq1( + , 𝐹)‘(⌊‘𝑚)) ∈ ℂ)
9897subid1d 10975 . . . . . . . 8 ((𝜑𝑚 ∈ (3[,)+∞)) → ((seq1( + , 𝐹)‘(⌊‘𝑚)) − 0) = (seq1( + , 𝐹)‘(⌊‘𝑚)))
9995, 98sylan9eqr 2855 . . . . . . 7 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → ((seq1( + , 𝐹)‘(⌊‘𝑚)) − 𝑆) = (seq1( + , 𝐹)‘(⌊‘𝑚)))
10099fveq2d 6649 . . . . . 6 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑚)) − 𝑆)) = (abs‘(seq1( + , 𝐹)‘(⌊‘𝑚))))
101 2fveq3 6650 . . . . . . . . . 10 (𝑦 = 𝑚 → (seq1( + , 𝐹)‘(⌊‘𝑦)) = (seq1( + , 𝐹)‘(⌊‘𝑚)))
102101fvoveq1d 7157 . . . . . . . . 9 (𝑦 = 𝑚 → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) = (abs‘((seq1( + , 𝐹)‘(⌊‘𝑚)) − 𝑆)))
103 oveq2 7143 . . . . . . . . 9 (𝑦 = 𝑚 → (𝐶 / 𝑦) = (𝐶 / 𝑚))
104102, 103breq12d 5043 . . . . . . . 8 (𝑦 = 𝑚 → ((abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / 𝑦) ↔ (abs‘((seq1( + , 𝐹)‘(⌊‘𝑚)) − 𝑆)) ≤ (𝐶 / 𝑚)))
105 dchrvmasumif.1 . . . . . . . . 9 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / 𝑦))
106105adantr 484 . . . . . . . 8 ((𝜑𝑚 ∈ (3[,)+∞)) → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / 𝑦))
107 1re 10630 . . . . . . . . . 10 1 ∈ ℝ
108 elicopnf 12823 . . . . . . . . . 10 (1 ∈ ℝ → (𝑚 ∈ (1[,)+∞) ↔ (𝑚 ∈ ℝ ∧ 1 ≤ 𝑚)))
109107, 108ax-mp 5 . . . . . . . . 9 (𝑚 ∈ (1[,)+∞) ↔ (𝑚 ∈ ℝ ∧ 1 ≤ 𝑚))
11065, 71, 109sylanbrc 586 . . . . . . . 8 ((𝜑𝑚 ∈ (3[,)+∞)) → 𝑚 ∈ (1[,)+∞))
111104, 106, 110rspcdva 3573 . . . . . . 7 ((𝜑𝑚 ∈ (3[,)+∞)) → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑚)) − 𝑆)) ≤ (𝐶 / 𝑚))
112111adantr 484 . . . . . 6 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑚)) − 𝑆)) ≤ (𝐶 / 𝑚))
113100, 112eqbrtrrd 5054 . . . . 5 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (abs‘(seq1( + , 𝐹)‘(⌊‘𝑚))) ≤ (𝐶 / 𝑚))
114 lemul2a 11484 . . . . 5 ((((abs‘(seq1( + , 𝐹)‘(⌊‘𝑚))) ∈ ℝ ∧ (𝐶 / 𝑚) ∈ ℝ ∧ ((log‘𝑚) ∈ ℝ ∧ 0 ≤ (log‘𝑚))) ∧ (abs‘(seq1( + , 𝐹)‘(⌊‘𝑚))) ≤ (𝐶 / 𝑚)) → ((log‘𝑚) · (abs‘(seq1( + , 𝐹)‘(⌊‘𝑚)))) ≤ ((log‘𝑚) · (𝐶 / 𝑚)))
11576, 90, 94, 113, 114syl31anc 1370 . . . 4 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → ((log‘𝑚) · (abs‘(seq1( + , 𝐹)‘(⌊‘𝑚)))) ≤ ((log‘𝑚) · (𝐶 / 𝑚)))
116 iftrue 4431 . . . . . . . . . . . . . . 15 (𝑆 = 0 → if(𝑆 = 0, 𝑚, 𝑘) = 𝑚)
117116fveq2d 6649 . . . . . . . . . . . . . 14 (𝑆 = 0 → (log‘if(𝑆 = 0, 𝑚, 𝑘)) = (log‘𝑚))
118117oveq1d 7150 . . . . . . . . . . . . 13 (𝑆 = 0 → ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘) = ((log‘𝑚) / 𝑘))
119118ad2antlr 726 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘) = ((log‘𝑚) / 𝑘))
120119oveq2d 7151 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) = ((𝑋‘(𝐿𝑘)) · ((log‘𝑚) / 𝑘)))
12116adantlr 714 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → (𝑋‘(𝐿𝑘)) ∈ ℂ)
122 relogcl 25167 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℝ+ → (log‘𝑚) ∈ ℝ)
123122adantl 485 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℝ+) → (log‘𝑚) ∈ ℝ)
124123recnd 10658 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℝ+) → (log‘𝑚) ∈ ℂ)
125124ad2antrr 725 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → (log‘𝑚) ∈ ℂ)
12611adantl 485 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → 𝑘 ∈ ℕ)
127126nncnd 11641 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → 𝑘 ∈ ℂ)
128126nnne0d 11675 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → 𝑘 ≠ 0)
129121, 125, 127, 128div12d 11441 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → ((𝑋‘(𝐿𝑘)) · ((log‘𝑚) / 𝑘)) = ((log‘𝑚) · ((𝑋‘(𝐿𝑘)) / 𝑘)))
130120, 129eqtrd 2833 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) = ((log‘𝑚) · ((𝑋‘(𝐿𝑘)) / 𝑘)))
131130sumeq2dv 15052 . . . . . . . . 9 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) → Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) = Σ𝑘 ∈ (1...(⌊‘𝑚))((log‘𝑚) · ((𝑋‘(𝐿𝑘)) / 𝑘)))
132 iftrue 4431 . . . . . . . . . . 11 (𝑆 = 0 → if(𝑆 = 0, 0, 𝑇) = 0)
133132oveq2d 7151 . . . . . . . . . 10 (𝑆 = 0 → (Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇)) = (Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − 0))
13426subid1d 10975 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℝ+) → (Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − 0) = Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)))
135133, 134sylan9eqr 2855 . . . . . . . . 9 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) → (Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇)) = Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)))
136 ovex 7168 . . . . . . . . . . . . . 14 ((𝑋‘(𝐿𝑘)) / 𝑘) ∈ V
13754, 51, 136fvmpt 6745 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝐹𝑘) = ((𝑋‘(𝐿𝑘)) / 𝑘))
13822, 137syl 17 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → (𝐹𝑘) = ((𝑋‘(𝐿𝑘)) / 𝑘))
13957adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℝ+) → 𝐹:ℕ⟶ℂ)
140139, 11, 58syl2an 598 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → (𝐹𝑘) ∈ ℂ)
141138, 140eqeltrrd 2891 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → ((𝑋‘(𝐿𝑘)) / 𝑘) ∈ ℂ)
1429, 124, 141fsummulc2 15131 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℝ+) → ((log‘𝑚) · Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) / 𝑘)) = Σ𝑘 ∈ (1...(⌊‘𝑚))((log‘𝑚) · ((𝑋‘(𝐿𝑘)) / 𝑘)))
143142adantr 484 . . . . . . . . 9 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) → ((log‘𝑚) · Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) / 𝑘)) = Σ𝑘 ∈ (1...(⌊‘𝑚))((log‘𝑚) · ((𝑋‘(𝐿𝑘)) / 𝑘)))
144131, 135, 1433eqtr4d 2843 . . . . . . . 8 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) → (Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇)) = ((log‘𝑚) · Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) / 𝑘)))
14583, 144sylan 583 . . . . . . 7 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇)) = ((log‘𝑚) · Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) / 𝑘)))
14683, 138sylan 583 . . . . . . . . . 10 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → (𝐹𝑘) = ((𝑋‘(𝐿𝑘)) / 𝑘))
14773, 44eleqtrdi 2900 . . . . . . . . . 10 ((𝜑𝑚 ∈ (3[,)+∞)) → (⌊‘𝑚) ∈ (ℤ‘1))
14877, 11, 50syl2an 598 . . . . . . . . . 10 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → ((𝑋‘(𝐿𝑘)) / 𝑘) ∈ ℂ)
149146, 147, 148fsumser 15079 . . . . . . . . 9 ((𝜑𝑚 ∈ (3[,)+∞)) → Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) / 𝑘) = (seq1( + , 𝐹)‘(⌊‘𝑚)))
150149adantr 484 . . . . . . . 8 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) / 𝑘) = (seq1( + , 𝐹)‘(⌊‘𝑚)))
151150oveq2d 7151 . . . . . . 7 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → ((log‘𝑚) · Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) / 𝑘)) = ((log‘𝑚) · (seq1( + , 𝐹)‘(⌊‘𝑚))))
152145, 151eqtrd 2833 . . . . . 6 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇)) = ((log‘𝑚) · (seq1( + , 𝐹)‘(⌊‘𝑚))))
153152fveq2d 6649 . . . . 5 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) = (abs‘((log‘𝑚) · (seq1( + , 𝐹)‘(⌊‘𝑚)))))
154122ad2antlr 726 . . . . . . . 8 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) → (log‘𝑚) ∈ ℝ)
155154recnd 10658 . . . . . . 7 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) → (log‘𝑚) ∈ ℂ)
15683, 155sylan 583 . . . . . 6 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (log‘𝑚) ∈ ℂ)
157156, 75absmuld 14806 . . . . 5 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (abs‘((log‘𝑚) · (seq1( + , 𝐹)‘(⌊‘𝑚)))) = ((abs‘(log‘𝑚)) · (abs‘(seq1( + , 𝐹)‘(⌊‘𝑚)))))
15891, 92absidd 14774 . . . . . . 7 ((𝜑𝑚 ∈ (3[,)+∞)) → (abs‘(log‘𝑚)) = (log‘𝑚))
159158oveq1d 7150 . . . . . 6 ((𝜑𝑚 ∈ (3[,)+∞)) → ((abs‘(log‘𝑚)) · (abs‘(seq1( + , 𝐹)‘(⌊‘𝑚)))) = ((log‘𝑚) · (abs‘(seq1( + , 𝐹)‘(⌊‘𝑚)))))
160159adantr 484 . . . . 5 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → ((abs‘(log‘𝑚)) · (abs‘(seq1( + , 𝐹)‘(⌊‘𝑚)))) = ((log‘𝑚) · (abs‘(seq1( + , 𝐹)‘(⌊‘𝑚)))))
161153, 157, 1603eqtrd 2837 . . . 4 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) = ((log‘𝑚) · (abs‘(seq1( + , 𝐹)‘(⌊‘𝑚)))))
162 iftrue 4431 . . . . . . . 8 (𝑆 = 0 → if(𝑆 = 0, 𝐶, 𝐸) = 𝐶)
163162adantl 485 . . . . . . 7 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) → if(𝑆 = 0, 𝐶, 𝐸) = 𝐶)
164163oveq1d 7150 . . . . . 6 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) → (if(𝑆 = 0, 𝐶, 𝐸) · ((log‘𝑚) / 𝑚)) = (𝐶 · ((log‘𝑚) / 𝑚)))
16586recnd 10658 . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
166165ad2antrr 725 . . . . . . 7 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) → 𝐶 ∈ ℂ)
167 rpcnne0 12395 . . . . . . . 8 (𝑚 ∈ ℝ+ → (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0))
168167ad2antlr 726 . . . . . . 7 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) → (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0))
169 div12 11309 . . . . . . 7 ((𝐶 ∈ ℂ ∧ (log‘𝑚) ∈ ℂ ∧ (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0)) → (𝐶 · ((log‘𝑚) / 𝑚)) = ((log‘𝑚) · (𝐶 / 𝑚)))
170166, 155, 168, 169syl3anc 1368 . . . . . 6 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) → (𝐶 · ((log‘𝑚) / 𝑚)) = ((log‘𝑚) · (𝐶 / 𝑚)))
171164, 170eqtrd 2833 . . . . 5 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑆 = 0) → (if(𝑆 = 0, 𝐶, 𝐸) · ((log‘𝑚) / 𝑚)) = ((log‘𝑚) · (𝐶 / 𝑚)))
17283, 171sylan 583 . . . 4 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (if(𝑆 = 0, 𝐶, 𝐸) · ((log‘𝑚) / 𝑚)) = ((log‘𝑚) · (𝐶 / 𝑚)))
173115, 161, 1723brtr4d 5062 . . 3 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 = 0) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) ≤ (if(𝑆 = 0, 𝐶, 𝐸) · ((log‘𝑚) / 𝑚)))
174 dchrvmasumif.2 . . . . . 6 (𝜑 → ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 · ((log‘𝑦) / 𝑦)))
175 2fveq3 6650 . . . . . . . . 9 (𝑦 = 𝑚 → (seq1( + , 𝐾)‘(⌊‘𝑦)) = (seq1( + , 𝐾)‘(⌊‘𝑚)))
176175fvoveq1d 7157 . . . . . . . 8 (𝑦 = 𝑚 → (abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) = (abs‘((seq1( + , 𝐾)‘(⌊‘𝑚)) − 𝑇)))
177 fveq2 6645 . . . . . . . . . 10 (𝑦 = 𝑚 → (log‘𝑦) = (log‘𝑚))
178 id 22 . . . . . . . . . 10 (𝑦 = 𝑚𝑦 = 𝑚)
179177, 178oveq12d 7153 . . . . . . . . 9 (𝑦 = 𝑚 → ((log‘𝑦) / 𝑦) = ((log‘𝑚) / 𝑚))
180179oveq2d 7151 . . . . . . . 8 (𝑦 = 𝑚 → (𝐸 · ((log‘𝑦) / 𝑦)) = (𝐸 · ((log‘𝑚) / 𝑚)))
181176, 180breq12d 5043 . . . . . . 7 (𝑦 = 𝑚 → ((abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 · ((log‘𝑦) / 𝑦)) ↔ (abs‘((seq1( + , 𝐾)‘(⌊‘𝑚)) − 𝑇)) ≤ (𝐸 · ((log‘𝑚) / 𝑚))))
182181rspccva 3570 . . . . . 6 ((∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 · ((log‘𝑦) / 𝑦)) ∧ 𝑚 ∈ (3[,)+∞)) → (abs‘((seq1( + , 𝐾)‘(⌊‘𝑚)) − 𝑇)) ≤ (𝐸 · ((log‘𝑚) / 𝑚)))
183174, 182sylan 583 . . . . 5 ((𝜑𝑚 ∈ (3[,)+∞)) → (abs‘((seq1( + , 𝐾)‘(⌊‘𝑚)) − 𝑇)) ≤ (𝐸 · ((log‘𝑚) / 𝑚)))
184183adantr 484 . . . 4 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) → (abs‘((seq1( + , 𝐾)‘(⌊‘𝑚)) − 𝑇)) ≤ (𝐸 · ((log‘𝑚) / 𝑚)))
185 fveq2 6645 . . . . . . . . . . . 12 (𝑎 = 𝑘 → (log‘𝑎) = (log‘𝑘))
186185, 53oveq12d 7153 . . . . . . . . . . 11 (𝑎 = 𝑘 → ((log‘𝑎) / 𝑎) = ((log‘𝑘) / 𝑘))
18752, 186oveq12d 7153 . . . . . . . . . 10 (𝑎 = 𝑘 → ((𝑋‘(𝐿𝑎)) · ((log‘𝑎) / 𝑎)) = ((𝑋‘(𝐿𝑘)) · ((log‘𝑘) / 𝑘)))
188 dchrvmasumif.g . . . . . . . . . 10 𝐾 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · ((log‘𝑎) / 𝑎)))
189 ovex 7168 . . . . . . . . . 10 ((𝑋‘(𝐿𝑘)) · ((log‘𝑘) / 𝑘)) ∈ V
190187, 188, 189fvmpt 6745 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐾𝑘) = ((𝑋‘(𝐿𝑘)) · ((log‘𝑘) / 𝑘)))
19111, 190syl 17 . . . . . . . 8 (𝑘 ∈ (1...(⌊‘𝑚)) → (𝐾𝑘) = ((𝑋‘(𝐿𝑘)) · ((log‘𝑘) / 𝑘)))
192 ifnefalse 4437 . . . . . . . . . . . . 13 (𝑆 ≠ 0 → if(𝑆 = 0, 𝑚, 𝑘) = 𝑘)
193192fveq2d 6649 . . . . . . . . . . . 12 (𝑆 ≠ 0 → (log‘if(𝑆 = 0, 𝑚, 𝑘)) = (log‘𝑘))
194193oveq1d 7150 . . . . . . . . . . 11 (𝑆 ≠ 0 → ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘) = ((log‘𝑘) / 𝑘))
195194oveq2d 7151 . . . . . . . . . 10 (𝑆 ≠ 0 → ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) = ((𝑋‘(𝐿𝑘)) · ((log‘𝑘) / 𝑘)))
196195adantl 485 . . . . . . . . 9 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) → ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) = ((𝑋‘(𝐿𝑘)) · ((log‘𝑘) / 𝑘)))
197196eqcomd 2804 . . . . . . . 8 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) → ((𝑋‘(𝐿𝑘)) · ((log‘𝑘) / 𝑘)) = ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)))
198191, 197sylan9eqr 2855 . . . . . . 7 ((((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → (𝐾𝑘) = ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)))
199147adantr 484 . . . . . . 7 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) → (⌊‘𝑚) ∈ (ℤ‘1))
200 nnrp 12388 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
201200adantl 485 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℝ+)
202201relogcld 25214 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (log‘𝑘) ∈ ℝ)
203202recnd 10658 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (log‘𝑘) ∈ ℂ)
204203, 47, 49divcld 11405 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((log‘𝑘) / 𝑘) ∈ ℂ)
20515, 204mulcld 10650 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝑋‘(𝐿𝑘)) · ((log‘𝑘) / 𝑘)) ∈ ℂ)
206187cbvmptv 5133 . . . . . . . . . . . 12 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · ((log‘𝑎) / 𝑎))) = (𝑘 ∈ ℕ ↦ ((𝑋‘(𝐿𝑘)) · ((log‘𝑘) / 𝑘)))
207188, 206eqtri 2821 . . . . . . . . . . 11 𝐾 = (𝑘 ∈ ℕ ↦ ((𝑋‘(𝐿𝑘)) · ((log‘𝑘) / 𝑘)))
208205, 207fmptd 6855 . . . . . . . . . 10 (𝜑𝐾:ℕ⟶ℂ)
209208ad2antrr 725 . . . . . . . . 9 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) → 𝐾:ℕ⟶ℂ)
210 ffvelrn 6826 . . . . . . . . 9 ((𝐾:ℕ⟶ℂ ∧ 𝑘 ∈ ℕ) → (𝐾𝑘) ∈ ℂ)
211209, 11, 210syl2an 598 . . . . . . . 8 ((((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → (𝐾𝑘) ∈ ℂ)
212198, 211eqeltrrd 2891 . . . . . . 7 ((((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) ∈ ℂ)
213198, 199, 212fsumser 15079 . . . . . 6 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) → Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) = (seq1( + , 𝐾)‘(⌊‘𝑚)))
214 ifnefalse 4437 . . . . . . 7 (𝑆 ≠ 0 → if(𝑆 = 0, 0, 𝑇) = 𝑇)
215214adantl 485 . . . . . 6 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) → if(𝑆 = 0, 0, 𝑇) = 𝑇)
216213, 215oveq12d 7153 . . . . 5 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) → (Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇)) = ((seq1( + , 𝐾)‘(⌊‘𝑚)) − 𝑇))
217216fveq2d 6649 . . . 4 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) = (abs‘((seq1( + , 𝐾)‘(⌊‘𝑚)) − 𝑇)))
218 ifnefalse 4437 . . . . . 6 (𝑆 ≠ 0 → if(𝑆 = 0, 𝐶, 𝐸) = 𝐸)
219218adantl 485 . . . . 5 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) → if(𝑆 = 0, 𝐶, 𝐸) = 𝐸)
220219oveq1d 7150 . . . 4 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) → (if(𝑆 = 0, 𝐶, 𝐸) · ((log‘𝑚) / 𝑚)) = (𝐸 · ((log‘𝑚) / 𝑚)))
221184, 217, 2203brtr4d 5062 . . 3 (((𝜑𝑚 ∈ (3[,)+∞)) ∧ 𝑆 ≠ 0) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) ≤ (if(𝑆 = 0, 𝐶, 𝐸) · ((log‘𝑚) / 𝑚)))
222173, 221pm2.61dane 3074 . 2 ((𝜑𝑚 ∈ (3[,)+∞)) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) ≤ (if(𝑆 = 0, 𝐶, 𝐸) · ((log‘𝑚) / 𝑚)))
223 fzfid 13336 . . . 4 (𝜑 → (1...2) ∈ Fin)
2247adantr 484 . . . . . . 7 ((𝜑𝑘 ∈ (1...2)) → 𝑋𝐷)
225 elfzelz 12902 . . . . . . . 8 (𝑘 ∈ (1...2) → 𝑘 ∈ ℤ)
226225adantl 485 . . . . . . 7 ((𝜑𝑘 ∈ (1...2)) → 𝑘 ∈ ℤ)
2274, 1, 5, 2, 224, 226dchrzrhcl 25829 . . . . . 6 ((𝜑𝑘 ∈ (1...2)) → (𝑋‘(𝐿𝑘)) ∈ ℂ)
228227abscld 14788 . . . . 5 ((𝜑𝑘 ∈ (1...2)) → (abs‘(𝑋‘(𝐿𝑘))) ∈ ℝ)
229 3rp 12383 . . . . . . 7 3 ∈ ℝ+
230 relogcl 25167 . . . . . . 7 (3 ∈ ℝ+ → (log‘3) ∈ ℝ)
231229, 230ax-mp 5 . . . . . 6 (log‘3) ∈ ℝ
232 elfznn 12931 . . . . . . 7 (𝑘 ∈ (1...2) → 𝑘 ∈ ℕ)
233232adantl 485 . . . . . 6 ((𝜑𝑘 ∈ (1...2)) → 𝑘 ∈ ℕ)
234 nndivre 11666 . . . . . 6 (((log‘3) ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((log‘3) / 𝑘) ∈ ℝ)
235231, 233, 234sylancr 590 . . . . 5 ((𝜑𝑘 ∈ (1...2)) → ((log‘3) / 𝑘) ∈ ℝ)
236228, 235remulcld 10660 . . . 4 ((𝜑𝑘 ∈ (1...2)) → ((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)) ∈ ℝ)
237223, 236fsumrecl 15083 . . 3 (𝜑 → Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)) ∈ ℝ)
23843abscld 14788 . . 3 (𝜑 → (abs‘if(𝑆 = 0, 0, 𝑇)) ∈ ℝ)
239237, 238readdcld 10659 . 2 (𝜑 → (Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)) + (abs‘if(𝑆 = 0, 0, 𝑇))) ∈ ℝ)
240 simpl 486 . . . . . . 7 ((𝜑𝑚 ∈ (1[,)3)) → 𝜑)
24162rexri 10688 . . . . . . . . . . 11 3 ∈ ℝ*
242 elico2 12789 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 3 ∈ ℝ*) → (𝑚 ∈ (1[,)3) ↔ (𝑚 ∈ ℝ ∧ 1 ≤ 𝑚𝑚 < 3)))
243107, 241, 242mp2an 691 . . . . . . . . . 10 (𝑚 ∈ (1[,)3) ↔ (𝑚 ∈ ℝ ∧ 1 ≤ 𝑚𝑚 < 3))
244243simp1bi 1142 . . . . . . . . 9 (𝑚 ∈ (1[,)3) → 𝑚 ∈ ℝ)
245244adantl 485 . . . . . . . 8 ((𝜑𝑚 ∈ (1[,)3)) → 𝑚 ∈ ℝ)
246 0red 10633 . . . . . . . . 9 ((𝜑𝑚 ∈ (1[,)3)) → 0 ∈ ℝ)
247 1red 10631 . . . . . . . . 9 ((𝜑𝑚 ∈ (1[,)3)) → 1 ∈ ℝ)
248 0lt1 11151 . . . . . . . . . 10 0 < 1
249248a1i 11 . . . . . . . . 9 ((𝜑𝑚 ∈ (1[,)3)) → 0 < 1)
250243simp2bi 1143 . . . . . . . . . 10 (𝑚 ∈ (1[,)3) → 1 ≤ 𝑚)
251250adantl 485 . . . . . . . . 9 ((𝜑𝑚 ∈ (1[,)3)) → 1 ≤ 𝑚)
252246, 247, 245, 249, 251ltletrd 10789 . . . . . . . 8 ((𝜑𝑚 ∈ (1[,)3)) → 0 < 𝑚)
253245, 252elrpd 12416 . . . . . . 7 ((𝜑𝑚 ∈ (1[,)3)) → 𝑚 ∈ ℝ+)
254240, 253jca 515 . . . . . 6 ((𝜑𝑚 ∈ (1[,)3)) → (𝜑𝑚 ∈ ℝ+))
25543adantr 484 . . . . . . 7 ((𝜑𝑚 ∈ ℝ+) → if(𝑆 = 0, 0, 𝑇) ∈ ℂ)
25626, 255subcld 10986 . . . . . 6 ((𝜑𝑚 ∈ ℝ+) → (Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇)) ∈ ℂ)
257254, 256syl 17 . . . . 5 ((𝜑𝑚 ∈ (1[,)3)) → (Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇)) ∈ ℂ)
258257abscld 14788 . . . 4 ((𝜑𝑚 ∈ (1[,)3)) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) ∈ ℝ)
259254, 26syl 17 . . . . . 6 ((𝜑𝑚 ∈ (1[,)3)) → Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) ∈ ℂ)
260259abscld 14788 . . . . 5 ((𝜑𝑚 ∈ (1[,)3)) → (abs‘Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ∈ ℝ)
261238adantr 484 . . . . 5 ((𝜑𝑚 ∈ (1[,)3)) → (abs‘if(𝑆 = 0, 0, 𝑇)) ∈ ℝ)
262260, 261readdcld 10659 . . . 4 ((𝜑𝑚 ∈ (1[,)3)) → ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) + (abs‘if(𝑆 = 0, 0, 𝑇))) ∈ ℝ)
263237adantr 484 . . . . 5 ((𝜑𝑚 ∈ (1[,)3)) → Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)) ∈ ℝ)
264263, 261readdcld 10659 . . . 4 ((𝜑𝑚 ∈ (1[,)3)) → (Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)) + (abs‘if(𝑆 = 0, 0, 𝑇))) ∈ ℝ)
26526, 255abs2dif2d 14810 . . . . 5 ((𝜑𝑚 ∈ ℝ+) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) ≤ ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) + (abs‘if(𝑆 = 0, 0, 𝑇))))
266254, 265syl 17 . . . 4 ((𝜑𝑚 ∈ (1[,)3)) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) ≤ ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) + (abs‘if(𝑆 = 0, 0, 𝑇))))
26725abscld 14788 . . . . . . . 8 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑚))) → (abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ∈ ℝ)
2689, 267fsumrecl 15083 . . . . . . 7 ((𝜑𝑚 ∈ ℝ+) → Σ𝑘 ∈ (1...(⌊‘𝑚))(abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ∈ ℝ)
269254, 268syl 17 . . . . . 6 ((𝜑𝑚 ∈ (1[,)3)) → Σ𝑘 ∈ (1...(⌊‘𝑚))(abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ∈ ℝ)
2709, 25fsumabs 15148 . . . . . . 7 ((𝜑𝑚 ∈ ℝ+) → (abs‘Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ≤ Σ𝑘 ∈ (1...(⌊‘𝑚))(abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))))
271254, 270syl 17 . . . . . 6 ((𝜑𝑚 ∈ (1[,)3)) → (abs‘Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ≤ Σ𝑘 ∈ (1...(⌊‘𝑚))(abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))))
272 fzfid 13336 . . . . . . . . 9 ((𝜑𝑚 ∈ ℝ+) → (1...2) ∈ Fin)
273227adantlr 714 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → (𝑋‘(𝐿𝑘)) ∈ ℂ)
27417adantr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → 𝑚 ∈ ℝ+)
275232adantl 485 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → 𝑘 ∈ ℕ)
276275nnrpd 12417 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → 𝑘 ∈ ℝ+)
277274, 276ifcld 4470 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → if(𝑆 = 0, 𝑚, 𝑘) ∈ ℝ+)
278277relogcld 25214 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → (log‘if(𝑆 = 0, 𝑚, 𝑘)) ∈ ℝ)
279278, 275nndivred 11679 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘) ∈ ℝ)
280279recnd 10658 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘) ∈ ℂ)
281273, 280mulcld 10650 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) ∈ ℂ)
282281abscld 14788 . . . . . . . . 9 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → (abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ∈ ℝ)
283272, 282fsumrecl 15083 . . . . . . . 8 ((𝜑𝑚 ∈ ℝ+) → Σ𝑘 ∈ (1...2)(abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ∈ ℝ)
284254, 283syl 17 . . . . . . 7 ((𝜑𝑚 ∈ (1[,)3)) → Σ𝑘 ∈ (1...2)(abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ∈ ℝ)
285 fzfid 13336 . . . . . . . 8 ((𝜑𝑚 ∈ (1[,)3)) → (1...2) ∈ Fin)
286254, 281sylan 583 . . . . . . . . 9 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) ∈ ℂ)
287286abscld 14788 . . . . . . . 8 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → (abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ∈ ℝ)
288286absge0d 14796 . . . . . . . 8 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → 0 ≤ (abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))))
289245flcld 13163 . . . . . . . . . 10 ((𝜑𝑚 ∈ (1[,)3)) → (⌊‘𝑚) ∈ ℤ)
290 2z 12002 . . . . . . . . . . 11 2 ∈ ℤ
291290a1i 11 . . . . . . . . . 10 ((𝜑𝑚 ∈ (1[,)3)) → 2 ∈ ℤ)
292243simp3bi 1144 . . . . . . . . . . . . . 14 (𝑚 ∈ (1[,)3) → 𝑚 < 3)
293292adantl 485 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (1[,)3)) → 𝑚 < 3)
294 3z 12003 . . . . . . . . . . . . . 14 3 ∈ ℤ
295 fllt 13171 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℝ ∧ 3 ∈ ℤ) → (𝑚 < 3 ↔ (⌊‘𝑚) < 3))
296245, 294, 295sylancl 589 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (1[,)3)) → (𝑚 < 3 ↔ (⌊‘𝑚) < 3))
297293, 296mpbid 235 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (1[,)3)) → (⌊‘𝑚) < 3)
298 df-3 11689 . . . . . . . . . . . 12 3 = (2 + 1)
299297, 298breqtrdi 5071 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (1[,)3)) → (⌊‘𝑚) < (2 + 1))
300 rpre 12385 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℝ+𝑚 ∈ ℝ)
301300adantl 485 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℝ+) → 𝑚 ∈ ℝ)
302301flcld 13163 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℝ+) → (⌊‘𝑚) ∈ ℤ)
303 zleltp1 12021 . . . . . . . . . . . . 13 (((⌊‘𝑚) ∈ ℤ ∧ 2 ∈ ℤ) → ((⌊‘𝑚) ≤ 2 ↔ (⌊‘𝑚) < (2 + 1)))
304302, 290, 303sylancl 589 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℝ+) → ((⌊‘𝑚) ≤ 2 ↔ (⌊‘𝑚) < (2 + 1)))
305254, 304syl 17 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (1[,)3)) → ((⌊‘𝑚) ≤ 2 ↔ (⌊‘𝑚) < (2 + 1)))
306299, 305mpbird 260 . . . . . . . . . 10 ((𝜑𝑚 ∈ (1[,)3)) → (⌊‘𝑚) ≤ 2)
307 eluz2 12237 . . . . . . . . . 10 (2 ∈ (ℤ‘(⌊‘𝑚)) ↔ ((⌊‘𝑚) ∈ ℤ ∧ 2 ∈ ℤ ∧ (⌊‘𝑚) ≤ 2))
308289, 291, 306, 307syl3anbrc 1340 . . . . . . . . 9 ((𝜑𝑚 ∈ (1[,)3)) → 2 ∈ (ℤ‘(⌊‘𝑚)))
309 fzss2 12942 . . . . . . . . 9 (2 ∈ (ℤ‘(⌊‘𝑚)) → (1...(⌊‘𝑚)) ⊆ (1...2))
310308, 309syl 17 . . . . . . . 8 ((𝜑𝑚 ∈ (1[,)3)) → (1...(⌊‘𝑚)) ⊆ (1...2))
311285, 287, 288, 310fsumless 15143 . . . . . . 7 ((𝜑𝑚 ∈ (1[,)3)) → Σ𝑘 ∈ (1...(⌊‘𝑚))(abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ≤ Σ𝑘 ∈ (1...2)(abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))))
312236adantlr 714 . . . . . . . 8 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → ((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)) ∈ ℝ)
313273, 280absmuld 14806 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → (abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) = ((abs‘(𝑋‘(𝐿𝑘))) · (abs‘((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))))
314254, 313sylan 583 . . . . . . . . 9 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → (abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) = ((abs‘(𝑋‘(𝐿𝑘))) · (abs‘((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))))
315254, 279sylan 583 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘) ∈ ℝ)
316254, 278sylan 583 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → (log‘if(𝑆 = 0, 𝑚, 𝑘)) ∈ ℝ)
317 log1 25177 . . . . . . . . . . . . . 14 (log‘1) = 0
318 elfzle1 12905 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...2) → 1 ≤ 𝑘)
319 breq2 5034 . . . . . . . . . . . . . . . . 17 (𝑚 = if(𝑆 = 0, 𝑚, 𝑘) → (1 ≤ 𝑚 ↔ 1 ≤ if(𝑆 = 0, 𝑚, 𝑘)))
320 breq2 5034 . . . . . . . . . . . . . . . . 17 (𝑘 = if(𝑆 = 0, 𝑚, 𝑘) → (1 ≤ 𝑘 ↔ 1 ≤ if(𝑆 = 0, 𝑚, 𝑘)))
321319, 320ifboth 4463 . . . . . . . . . . . . . . . 16 ((1 ≤ 𝑚 ∧ 1 ≤ 𝑘) → 1 ≤ if(𝑆 = 0, 𝑚, 𝑘))
322251, 318, 321syl2an 598 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → 1 ≤ if(𝑆 = 0, 𝑚, 𝑘))
323 1rp 12381 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ+
324 logleb 25194 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ+ ∧ if(𝑆 = 0, 𝑚, 𝑘) ∈ ℝ+) → (1 ≤ if(𝑆 = 0, 𝑚, 𝑘) ↔ (log‘1) ≤ (log‘if(𝑆 = 0, 𝑚, 𝑘))))
325323, 277, 324sylancr 590 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → (1 ≤ if(𝑆 = 0, 𝑚, 𝑘) ↔ (log‘1) ≤ (log‘if(𝑆 = 0, 𝑚, 𝑘))))
326254, 325sylan 583 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → (1 ≤ if(𝑆 = 0, 𝑚, 𝑘) ↔ (log‘1) ≤ (log‘if(𝑆 = 0, 𝑚, 𝑘))))
327322, 326mpbid 235 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → (log‘1) ≤ (log‘if(𝑆 = 0, 𝑚, 𝑘)))
328317, 327eqbrtrrid 5066 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → 0 ≤ (log‘if(𝑆 = 0, 𝑚, 𝑘)))
329276rpregt0d 12425 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → (𝑘 ∈ ℝ ∧ 0 < 𝑘))
330254, 329sylan 583 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → (𝑘 ∈ ℝ ∧ 0 < 𝑘))
331 divge0 11498 . . . . . . . . . . . . 13 ((((log‘if(𝑆 = 0, 𝑚, 𝑘)) ∈ ℝ ∧ 0 ≤ (log‘if(𝑆 = 0, 𝑚, 𝑘))) ∧ (𝑘 ∈ ℝ ∧ 0 < 𝑘)) → 0 ≤ ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))
332316, 328, 330, 331syl21anc 836 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → 0 ≤ ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))
333315, 332absidd 14774 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → (abs‘((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) = ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))
334333, 315eqeltrd 2890 . . . . . . . . . 10 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → (abs‘((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) ∈ ℝ)
335235adantlr 714 . . . . . . . . . 10 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → ((log‘3) / 𝑘) ∈ ℝ)
336228adantlr 714 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → (abs‘(𝑋‘(𝐿𝑘))) ∈ ℝ)
337273absge0d 14796 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → 0 ≤ (abs‘(𝑋‘(𝐿𝑘))))
338336, 337jca 515 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → ((abs‘(𝑋‘(𝐿𝑘))) ∈ ℝ ∧ 0 ≤ (abs‘(𝑋‘(𝐿𝑘)))))
339254, 338sylan 583 . . . . . . . . . 10 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → ((abs‘(𝑋‘(𝐿𝑘))) ∈ ℝ ∧ 0 ≤ (abs‘(𝑋‘(𝐿𝑘)))))
340292ad2antlr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → 𝑚 < 3)
341275nnred 11640 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → 𝑘 ∈ ℝ)
342 2re 11699 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
343342a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → 2 ∈ ℝ)
34462a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → 3 ∈ ℝ)
345 elfzle2 12906 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...2) → 𝑘 ≤ 2)
346345adantl 485 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → 𝑘 ≤ 2)
347 2lt3 11797 . . . . . . . . . . . . . . . . . 18 2 < 3
348347a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → 2 < 3)
349341, 343, 344, 346, 348lelttrd 10787 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → 𝑘 < 3)
350254, 349sylan 583 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → 𝑘 < 3)
351 breq1 5033 . . . . . . . . . . . . . . . 16 (𝑚 = if(𝑆 = 0, 𝑚, 𝑘) → (𝑚 < 3 ↔ if(𝑆 = 0, 𝑚, 𝑘) < 3))
352 breq1 5033 . . . . . . . . . . . . . . . 16 (𝑘 = if(𝑆 = 0, 𝑚, 𝑘) → (𝑘 < 3 ↔ if(𝑆 = 0, 𝑚, 𝑘) < 3))
353351, 352ifboth 4463 . . . . . . . . . . . . . . 15 ((𝑚 < 3 ∧ 𝑘 < 3) → if(𝑆 = 0, 𝑚, 𝑘) < 3)
354340, 350, 353syl2anc 587 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → if(𝑆 = 0, 𝑚, 𝑘) < 3)
355277rpred 12419 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → if(𝑆 = 0, 𝑚, 𝑘) ∈ ℝ)
356 ltle 10718 . . . . . . . . . . . . . . . 16 ((if(𝑆 = 0, 𝑚, 𝑘) ∈ ℝ ∧ 3 ∈ ℝ) → (if(𝑆 = 0, 𝑚, 𝑘) < 3 → if(𝑆 = 0, 𝑚, 𝑘) ≤ 3))
357355, 62, 356sylancl 589 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → (if(𝑆 = 0, 𝑚, 𝑘) < 3 → if(𝑆 = 0, 𝑚, 𝑘) ≤ 3))
358254, 357sylan 583 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → (if(𝑆 = 0, 𝑚, 𝑘) < 3 → if(𝑆 = 0, 𝑚, 𝑘) ≤ 3))
359354, 358mpd 15 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → if(𝑆 = 0, 𝑚, 𝑘) ≤ 3)
360 logleb 25194 . . . . . . . . . . . . . . 15 ((if(𝑆 = 0, 𝑚, 𝑘) ∈ ℝ+ ∧ 3 ∈ ℝ+) → (if(𝑆 = 0, 𝑚, 𝑘) ≤ 3 ↔ (log‘if(𝑆 = 0, 𝑚, 𝑘)) ≤ (log‘3)))
361277, 229, 360sylancl 589 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → (if(𝑆 = 0, 𝑚, 𝑘) ≤ 3 ↔ (log‘if(𝑆 = 0, 𝑚, 𝑘)) ≤ (log‘3)))
362254, 361sylan 583 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → (if(𝑆 = 0, 𝑚, 𝑘) ≤ 3 ↔ (log‘if(𝑆 = 0, 𝑚, 𝑘)) ≤ (log‘3)))
363359, 362mpbid 235 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → (log‘if(𝑆 = 0, 𝑚, 𝑘)) ≤ (log‘3))
364231a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → (log‘3) ∈ ℝ)
365278, 364, 276lediv1d 12465 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℝ+) ∧ 𝑘 ∈ (1...2)) → ((log‘if(𝑆 = 0, 𝑚, 𝑘)) ≤ (log‘3) ↔ ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘) ≤ ((log‘3) / 𝑘)))
366254, 365sylan 583 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → ((log‘if(𝑆 = 0, 𝑚, 𝑘)) ≤ (log‘3) ↔ ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘) ≤ ((log‘3) / 𝑘)))
367363, 366mpbid 235 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘) ≤ ((log‘3) / 𝑘))
368333, 367eqbrtrd 5052 . . . . . . . . . 10 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → (abs‘((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) ≤ ((log‘3) / 𝑘))
369 lemul2a 11484 . . . . . . . . . 10 ((((abs‘((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) ∈ ℝ ∧ ((log‘3) / 𝑘) ∈ ℝ ∧ ((abs‘(𝑋‘(𝐿𝑘))) ∈ ℝ ∧ 0 ≤ (abs‘(𝑋‘(𝐿𝑘))))) ∧ (abs‘((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) ≤ ((log‘3) / 𝑘)) → ((abs‘(𝑋‘(𝐿𝑘))) · (abs‘((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ≤ ((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)))
370334, 335, 339, 368, 369syl31anc 1370 . . . . . . . . 9 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → ((abs‘(𝑋‘(𝐿𝑘))) · (abs‘((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ≤ ((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)))
371314, 370eqbrtrd 5052 . . . . . . . 8 (((𝜑𝑚 ∈ (1[,)3)) ∧ 𝑘 ∈ (1...2)) → (abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ≤ ((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)))
372285, 287, 312, 371fsumle 15146 . . . . . . 7 ((𝜑𝑚 ∈ (1[,)3)) → Σ𝑘 ∈ (1...2)(abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ≤ Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)))
373269, 284, 263, 311, 372letrd 10786 . . . . . 6 ((𝜑𝑚 ∈ (1[,)3)) → Σ𝑘 ∈ (1...(⌊‘𝑚))(abs‘((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ≤ Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)))
374260, 269, 263, 271, 373letrd 10786 . . . . 5 ((𝜑𝑚 ∈ (1[,)3)) → (abs‘Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ≤ Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)))
37526abscld 14788 . . . . . . 7 ((𝜑𝑚 ∈ ℝ+) → (abs‘Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ∈ ℝ)
376237adantr 484 . . . . . . 7 ((𝜑𝑚 ∈ ℝ+) → Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)) ∈ ℝ)
377255abscld 14788 . . . . . . 7 ((𝜑𝑚 ∈ ℝ+) → (abs‘if(𝑆 = 0, 0, 𝑇)) ∈ ℝ)
378375, 376, 377leadd1d 11223 . . . . . 6 ((𝜑𝑚 ∈ ℝ+) → ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ≤ Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)) ↔ ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) + (abs‘if(𝑆 = 0, 0, 𝑇))) ≤ (Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)) + (abs‘if(𝑆 = 0, 0, 𝑇)))))
379254, 378syl 17 . . . . 5 ((𝜑𝑚 ∈ (1[,)3)) → ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) ≤ Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)) ↔ ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) + (abs‘if(𝑆 = 0, 0, 𝑇))) ≤ (Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)) + (abs‘if(𝑆 = 0, 0, 𝑇)))))
380374, 379mpbid 235 . . . 4 ((𝜑𝑚 ∈ (1[,)3)) → ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘))) + (abs‘if(𝑆 = 0, 0, 𝑇))) ≤ (Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)) + (abs‘if(𝑆 = 0, 0, 𝑇))))
381258, 262, 264, 266, 380letrd 10786 . . 3 ((𝜑𝑚 ∈ (1[,)3)) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) ≤ (Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)) + (abs‘if(𝑆 = 0, 0, 𝑇))))
382381ralrimiva 3149 . 2 (𝜑 → ∀𝑚 ∈ (1[,)3)(abs‘(Σ𝑘 ∈ (1...(⌊‘𝑚))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, 𝑚, 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) ≤ (Σ𝑘 ∈ (1...2)((abs‘(𝑋‘(𝐿𝑘))) · ((log‘3) / 𝑘)) + (abs‘if(𝑆 = 0, 0, 𝑇))))
3831, 2, 3, 4, 5, 6, 7, 8, 26, 34, 37, 43, 222, 239, 382dchrvmasumlem3 26083 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇)))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  wss 3881  ifcif 4425   class class class wbr 5030  cmpt 5110  wf 6320  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  +∞cpnf 10661  *cxr 10663   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cn 11625  2c2 11680  3c3 11681  cz 11969  cuz 12231  +crp 12377  [,)cico 12728  ...cfz 12885  cfl 13155  seqcseq 13364  abscabs 14585  cli 14833  𝑂(1)co1 14835  Σcsu 15034  Basecbs 16475  0gc0g 16705  ℤRHomczrh 20193  ℤ/nczn 20196  logclog 25146  μcmu 25680  DChrcdchr 25816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-omul 8090  df-er 8272  df-ec 8274  df-qs 8278  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-acn 9355  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-o1 14839  df-lo1 14840  df-sum 15035  df-ef 15413  df-e 15414  df-sin 15415  df-cos 15416  df-tan 15417  df-pi 15418  df-dvds 15600  df-prm 16006  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-qus 16774  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-nsg 18269  df-eqg 18270  df-ghm 18348  df-cntz 18439  df-od 18648  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-rnghom 19463  df-drng 19497  df-subrg 19526  df-lmod 19629  df-lss 19697  df-lsp 19737  df-sra 19937  df-rgmod 19938  df-lidl 19939  df-rsp 19940  df-2idl 19998  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-zring 20164  df-zrh 20197  df-zn 20200  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-cmp 21992  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470  df-ulm 24972  df-log 25148  df-cxp 25149  df-atan 25453  df-em 25578  df-mu 25686  df-dchr 25817
This theorem is referenced by:  dchrvmasumiflem2  26086
  Copyright terms: Public domain W3C validator