MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplcoe3 Structured version   Visualization version   GIF version

Theorem mplcoe3 21149
Description: Decompose a monomial in one variable into a power of a variable. (Contributed by Mario Carneiro, 7-Jan-2015.) (Proof shortened by AV, 18-Jul-2019.)
Hypotheses
Ref Expression
mplcoe1.p 𝑃 = (𝐼 mPoly 𝑅)
mplcoe1.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplcoe1.z 0 = (0g𝑅)
mplcoe1.o 1 = (1r𝑅)
mplcoe1.i (𝜑𝐼𝑊)
mplcoe2.g 𝐺 = (mulGrp‘𝑃)
mplcoe2.m = (.g𝐺)
mplcoe2.v 𝑉 = (𝐼 mVar 𝑅)
mplcoe3.r (𝜑𝑅 ∈ Ring)
mplcoe3.x (𝜑𝑋𝐼)
mplcoe3.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
mplcoe3 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0)), 1 , 0 )) = (𝑁 (𝑉𝑋)))
Distinct variable groups:   ,𝑘   𝑦,𝑘, 1   𝑘,𝐺   𝑓,𝑘,𝑦,𝐼   𝑘,𝑁,𝑦   𝜑,𝑘,𝑦   𝑅,𝑓,𝑦   𝐷,𝑘,𝑦   𝑃,𝑘   𝑘,𝑉   0 ,𝑓,𝑘,𝑦   𝑓,𝑋,𝑘,𝑦   𝑘,𝑊,𝑦
Allowed substitution hints:   𝜑(𝑓)   𝐷(𝑓)   𝑃(𝑦,𝑓)   𝑅(𝑘)   1 (𝑓)   (𝑦,𝑓)   𝐺(𝑦,𝑓)   𝑁(𝑓)   𝑉(𝑦,𝑓)   𝑊(𝑓)

Proof of Theorem mplcoe3
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplcoe3.n . 2 (𝜑𝑁 ∈ ℕ0)
2 ifeq1 4460 . . . . . . . . . . 11 (𝑥 = 0 → if(𝑘 = 𝑋, 𝑥, 0) = if(𝑘 = 𝑋, 0, 0))
3 ifid 4496 . . . . . . . . . . 11 if(𝑘 = 𝑋, 0, 0) = 0
42, 3eqtrdi 2795 . . . . . . . . . 10 (𝑥 = 0 → if(𝑘 = 𝑋, 𝑥, 0) = 0)
54mpteq2dv 5172 . . . . . . . . 9 (𝑥 = 0 → (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) = (𝑘𝐼 ↦ 0))
6 fconstmpt 5640 . . . . . . . . 9 (𝐼 × {0}) = (𝑘𝐼 ↦ 0)
75, 6eqtr4di 2797 . . . . . . . 8 (𝑥 = 0 → (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) = (𝐼 × {0}))
87eqeq2d 2749 . . . . . . 7 (𝑥 = 0 → (𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) ↔ 𝑦 = (𝐼 × {0})))
98ifbid 4479 . . . . . 6 (𝑥 = 0 → if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 ) = if(𝑦 = (𝐼 × {0}), 1 , 0 ))
109mpteq2dv 5172 . . . . 5 (𝑥 = 0 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )))
11 oveq1 7262 . . . . 5 (𝑥 = 0 → (𝑥 (𝑉𝑋)) = (0 (𝑉𝑋)))
1210, 11eqeq12d 2754 . . . 4 (𝑥 = 0 → ((𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑥 (𝑉𝑋)) ↔ (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) = (0 (𝑉𝑋))))
1312imbi2d 340 . . 3 (𝑥 = 0 → ((𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑥 (𝑉𝑋))) ↔ (𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) = (0 (𝑉𝑋)))))
14 ifeq1 4460 . . . . . . . . 9 (𝑥 = 𝑛 → if(𝑘 = 𝑋, 𝑥, 0) = if(𝑘 = 𝑋, 𝑛, 0))
1514mpteq2dv 5172 . . . . . . . 8 (𝑥 = 𝑛 → (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)))
1615eqeq2d 2749 . . . . . . 7 (𝑥 = 𝑛 → (𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) ↔ 𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0))))
1716ifbid 4479 . . . . . 6 (𝑥 = 𝑛 → if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 ) = if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 ))
1817mpteq2dv 5172 . . . . 5 (𝑥 = 𝑛 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 )))
19 oveq1 7262 . . . . 5 (𝑥 = 𝑛 → (𝑥 (𝑉𝑋)) = (𝑛 (𝑉𝑋)))
2018, 19eqeq12d 2754 . . . 4 (𝑥 = 𝑛 → ((𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑥 (𝑉𝑋)) ↔ (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 )) = (𝑛 (𝑉𝑋))))
2120imbi2d 340 . . 3 (𝑥 = 𝑛 → ((𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑥 (𝑉𝑋))) ↔ (𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 )) = (𝑛 (𝑉𝑋)))))
22 ifeq1 4460 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → if(𝑘 = 𝑋, 𝑥, 0) = if(𝑘 = 𝑋, (𝑛 + 1), 0))
2322mpteq2dv 5172 . . . . . . . 8 (𝑥 = (𝑛 + 1) → (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)))
2423eqeq2d 2749 . . . . . . 7 (𝑥 = (𝑛 + 1) → (𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) ↔ 𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0))))
2524ifbid 4479 . . . . . 6 (𝑥 = (𝑛 + 1) → if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 ) = if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 ))
2625mpteq2dv 5172 . . . . 5 (𝑥 = (𝑛 + 1) → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )))
27 oveq1 7262 . . . . 5 (𝑥 = (𝑛 + 1) → (𝑥 (𝑉𝑋)) = ((𝑛 + 1) (𝑉𝑋)))
2826, 27eqeq12d 2754 . . . 4 (𝑥 = (𝑛 + 1) → ((𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑥 (𝑉𝑋)) ↔ (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )) = ((𝑛 + 1) (𝑉𝑋))))
2928imbi2d 340 . . 3 (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑥 (𝑉𝑋))) ↔ (𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )) = ((𝑛 + 1) (𝑉𝑋)))))
30 ifeq1 4460 . . . . . . . . 9 (𝑥 = 𝑁 → if(𝑘 = 𝑋, 𝑥, 0) = if(𝑘 = 𝑋, 𝑁, 0))
3130mpteq2dv 5172 . . . . . . . 8 (𝑥 = 𝑁 → (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0)))
3231eqeq2d 2749 . . . . . . 7 (𝑥 = 𝑁 → (𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) ↔ 𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0))))
3332ifbid 4479 . . . . . 6 (𝑥 = 𝑁 → if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 ) = if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0)), 1 , 0 ))
3433mpteq2dv 5172 . . . . 5 (𝑥 = 𝑁 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0)), 1 , 0 )))
35 oveq1 7262 . . . . 5 (𝑥 = 𝑁 → (𝑥 (𝑉𝑋)) = (𝑁 (𝑉𝑋)))
3634, 35eqeq12d 2754 . . . 4 (𝑥 = 𝑁 → ((𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑥 (𝑉𝑋)) ↔ (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0)), 1 , 0 )) = (𝑁 (𝑉𝑋))))
3736imbi2d 340 . . 3 (𝑥 = 𝑁 → ((𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑥 (𝑉𝑋))) ↔ (𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0)), 1 , 0 )) = (𝑁 (𝑉𝑋)))))
38 mplcoe1.p . . . . . 6 𝑃 = (𝐼 mPoly 𝑅)
39 mplcoe2.v . . . . . 6 𝑉 = (𝐼 mVar 𝑅)
40 eqid 2738 . . . . . 6 (Base‘𝑃) = (Base‘𝑃)
41 mplcoe1.i . . . . . 6 (𝜑𝐼𝑊)
42 mplcoe3.r . . . . . 6 (𝜑𝑅 ∈ Ring)
43 mplcoe3.x . . . . . 6 (𝜑𝑋𝐼)
4438, 39, 40, 41, 42, 43mvrcl 21131 . . . . 5 (𝜑 → (𝑉𝑋) ∈ (Base‘𝑃))
45 mplcoe2.g . . . . . . 7 𝐺 = (mulGrp‘𝑃)
4645, 40mgpbas 19641 . . . . . 6 (Base‘𝑃) = (Base‘𝐺)
47 eqid 2738 . . . . . . 7 (1r𝑃) = (1r𝑃)
4845, 47ringidval 19654 . . . . . 6 (1r𝑃) = (0g𝐺)
49 mplcoe2.m . . . . . 6 = (.g𝐺)
5046, 48, 49mulg0 18622 . . . . 5 ((𝑉𝑋) ∈ (Base‘𝑃) → (0 (𝑉𝑋)) = (1r𝑃))
5144, 50syl 17 . . . 4 (𝜑 → (0 (𝑉𝑋)) = (1r𝑃))
52 mplcoe1.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
53 mplcoe1.z . . . . 5 0 = (0g𝑅)
54 mplcoe1.o . . . . 5 1 = (1r𝑅)
5538, 52, 53, 54, 47, 41, 42mpl1 21126 . . . 4 (𝜑 → (1r𝑃) = (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )))
5651, 55eqtr2d 2779 . . 3 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) = (0 (𝑉𝑋)))
57 oveq1 7262 . . . . . 6 ((𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 )) = (𝑛 (𝑉𝑋)) → ((𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 ))(.r𝑃)(𝑉𝑋)) = ((𝑛 (𝑉𝑋))(.r𝑃)(𝑉𝑋)))
5841adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → 𝐼𝑊)
5942adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → 𝑅 ∈ Ring)
6052snifpsrbag 21035 . . . . . . . . . 10 ((𝐼𝑊𝑛 ∈ ℕ0) → (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) ∈ 𝐷)
6141, 60sylan 579 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) ∈ 𝐷)
62 eqid 2738 . . . . . . . . 9 (.r𝑃) = (.r𝑃)
63 1nn0 12179 . . . . . . . . . . 11 1 ∈ ℕ0
6463a1i 11 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → 1 ∈ ℕ0)
6552snifpsrbag 21035 . . . . . . . . . 10 ((𝐼𝑊 ∧ 1 ∈ ℕ0) → (𝑘𝐼 ↦ if(𝑘 = 𝑋, 1, 0)) ∈ 𝐷)
6641, 64, 65syl2an 595 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝑘𝐼 ↦ if(𝑘 = 𝑋, 1, 0)) ∈ 𝐷)
6738, 40, 53, 54, 52, 58, 59, 61, 62, 66mplmonmul 21147 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → ((𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 ))(.r𝑃)(𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 1, 0)), 1 , 0 ))) = (𝑦𝐷 ↦ if(𝑦 = ((𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) ∘f + (𝑘𝐼 ↦ if(𝑘 = 𝑋, 1, 0))), 1 , 0 )))
6843adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → 𝑋𝐼)
6939, 52, 53, 54, 58, 59, 68mvrval 21100 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝑉𝑋) = (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 1, 0)), 1 , 0 )))
7069eqcomd 2744 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 1, 0)), 1 , 0 )) = (𝑉𝑋))
7170oveq2d 7271 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → ((𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 ))(.r𝑃)(𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 1, 0)), 1 , 0 ))) = ((𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 ))(.r𝑃)(𝑉𝑋)))
72 simplr 765 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑘𝐼) → 𝑛 ∈ ℕ0)
73 0nn0 12178 . . . . . . . . . . . . . 14 0 ∈ ℕ0
74 ifcl 4501 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0 ∧ 0 ∈ ℕ0) → if(𝑘 = 𝑋, 𝑛, 0) ∈ ℕ0)
7572, 73, 74sylancl 585 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑘𝐼) → if(𝑘 = 𝑋, 𝑛, 0) ∈ ℕ0)
7663, 73ifcli 4503 . . . . . . . . . . . . . 14 if(𝑘 = 𝑋, 1, 0) ∈ ℕ0
7776a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑘𝐼) → if(𝑘 = 𝑋, 1, 0) ∈ ℕ0)
78 eqidd 2739 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)))
79 eqidd 2739 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → (𝑘𝐼 ↦ if(𝑘 = 𝑋, 1, 0)) = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 1, 0)))
8058, 75, 77, 78, 79offval2 7531 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ0) → ((𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) ∘f + (𝑘𝐼 ↦ if(𝑘 = 𝑋, 1, 0))) = (𝑘𝐼 ↦ (if(𝑘 = 𝑋, 𝑛, 0) + if(𝑘 = 𝑋, 1, 0))))
81 iftrue 4462 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑋 → if(𝑘 = 𝑋, 𝑛, 0) = 𝑛)
82 iftrue 4462 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑋 → if(𝑘 = 𝑋, 1, 0) = 1)
8381, 82oveq12d 7273 . . . . . . . . . . . . . . 15 (𝑘 = 𝑋 → (if(𝑘 = 𝑋, 𝑛, 0) + if(𝑘 = 𝑋, 1, 0)) = (𝑛 + 1))
84 iftrue 4462 . . . . . . . . . . . . . . 15 (𝑘 = 𝑋 → if(𝑘 = 𝑋, (𝑛 + 1), 0) = (𝑛 + 1))
8583, 84eqtr4d 2781 . . . . . . . . . . . . . 14 (𝑘 = 𝑋 → (if(𝑘 = 𝑋, 𝑛, 0) + if(𝑘 = 𝑋, 1, 0)) = if(𝑘 = 𝑋, (𝑛 + 1), 0))
86 00id 11080 . . . . . . . . . . . . . . 15 (0 + 0) = 0
87 iffalse 4465 . . . . . . . . . . . . . . . 16 𝑘 = 𝑋 → if(𝑘 = 𝑋, 𝑛, 0) = 0)
88 iffalse 4465 . . . . . . . . . . . . . . . 16 𝑘 = 𝑋 → if(𝑘 = 𝑋, 1, 0) = 0)
8987, 88oveq12d 7273 . . . . . . . . . . . . . . 15 𝑘 = 𝑋 → (if(𝑘 = 𝑋, 𝑛, 0) + if(𝑘 = 𝑋, 1, 0)) = (0 + 0))
90 iffalse 4465 . . . . . . . . . . . . . . 15 𝑘 = 𝑋 → if(𝑘 = 𝑋, (𝑛 + 1), 0) = 0)
9186, 89, 903eqtr4a 2805 . . . . . . . . . . . . . 14 𝑘 = 𝑋 → (if(𝑘 = 𝑋, 𝑛, 0) + if(𝑘 = 𝑋, 1, 0)) = if(𝑘 = 𝑋, (𝑛 + 1), 0))
9285, 91pm2.61i 182 . . . . . . . . . . . . 13 (if(𝑘 = 𝑋, 𝑛, 0) + if(𝑘 = 𝑋, 1, 0)) = if(𝑘 = 𝑋, (𝑛 + 1), 0)
9392mpteq2i 5175 . . . . . . . . . . . 12 (𝑘𝐼 ↦ (if(𝑘 = 𝑋, 𝑛, 0) + if(𝑘 = 𝑋, 1, 0))) = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0))
9480, 93eqtrdi 2795 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → ((𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) ∘f + (𝑘𝐼 ↦ if(𝑘 = 𝑋, 1, 0))) = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)))
9594eqeq2d 2749 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝑦 = ((𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) ∘f + (𝑘𝐼 ↦ if(𝑘 = 𝑋, 1, 0))) ↔ 𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0))))
9695ifbid 4479 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → if(𝑦 = ((𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) ∘f + (𝑘𝐼 ↦ if(𝑘 = 𝑋, 1, 0))), 1 , 0 ) = if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 ))
9796mpteq2dv 5172 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → (𝑦𝐷 ↦ if(𝑦 = ((𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) ∘f + (𝑘𝐼 ↦ if(𝑘 = 𝑋, 1, 0))), 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )))
9867, 71, 973eqtr3rd 2787 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )) = ((𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 ))(.r𝑃)(𝑉𝑋)))
9938mplring 21134 . . . . . . . . . . 11 ((𝐼𝑊𝑅 ∈ Ring) → 𝑃 ∈ Ring)
10041, 42, 99syl2anc 583 . . . . . . . . . 10 (𝜑𝑃 ∈ Ring)
10145ringmgp 19704 . . . . . . . . . 10 (𝑃 ∈ Ring → 𝐺 ∈ Mnd)
102100, 101syl 17 . . . . . . . . 9 (𝜑𝐺 ∈ Mnd)
103102adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → 𝐺 ∈ Mnd)
104 simpr 484 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
10544adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → (𝑉𝑋) ∈ (Base‘𝑃))
10645, 62mgpplusg 19639 . . . . . . . . 9 (.r𝑃) = (+g𝐺)
10746, 49, 106mulgnn0p1 18630 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝑛 ∈ ℕ0 ∧ (𝑉𝑋) ∈ (Base‘𝑃)) → ((𝑛 + 1) (𝑉𝑋)) = ((𝑛 (𝑉𝑋))(.r𝑃)(𝑉𝑋)))
108103, 104, 105, 107syl3anc 1369 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 + 1) (𝑉𝑋)) = ((𝑛 (𝑉𝑋))(.r𝑃)(𝑉𝑋)))
10998, 108eqeq12d 2754 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → ((𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )) = ((𝑛 + 1) (𝑉𝑋)) ↔ ((𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 ))(.r𝑃)(𝑉𝑋)) = ((𝑛 (𝑉𝑋))(.r𝑃)(𝑉𝑋))))
11057, 109syl5ibr 245 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → ((𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 )) = (𝑛 (𝑉𝑋)) → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )) = ((𝑛 + 1) (𝑉𝑋))))
111110expcom 413 . . . 4 (𝑛 ∈ ℕ0 → (𝜑 → ((𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 )) = (𝑛 (𝑉𝑋)) → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )) = ((𝑛 + 1) (𝑉𝑋)))))
112111a2d 29 . . 3 (𝑛 ∈ ℕ0 → ((𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 )) = (𝑛 (𝑉𝑋))) → (𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )) = ((𝑛 + 1) (𝑉𝑋)))))
11313, 21, 29, 37, 56, 112nn0ind 12345 . 2 (𝑁 ∈ ℕ0 → (𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0)), 1 , 0 )) = (𝑁 (𝑉𝑋))))
1141, 113mpcom 38 1 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0)), 1 , 0 )) = (𝑁 (𝑉𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  {crab 3067  ifcif 4456  {csn 4558  cmpt 5153   × cxp 5578  ccnv 5579  cima 5583  cfv 6418  (class class class)co 7255  f cof 7509  m cmap 8573  Fincfn 8691  0cc0 10802  1c1 10803   + caddc 10805  cn 11903  0cn0 12163  Basecbs 16840  .rcmulr 16889  0gc0g 17067  Mndcmnd 18300  .gcmg 18615  mulGrpcmgp 19635  1rcur 19652  Ringcrg 19698   mVar cmvr 21018   mPoly cmpl 21019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-tset 16907  df-0g 17069  df-gsum 17070  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-mulg 18616  df-subg 18667  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-subrg 19937  df-psr 21022  df-mvr 21023  df-mpl 21024
This theorem is referenced by:  mplcoe5  21151  coe1tm  21354
  Copyright terms: Public domain W3C validator