MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplcoe3 Structured version   Visualization version   GIF version

Theorem mplcoe3 21966
Description: Decompose a monomial in one variable into a power of a variable. (Contributed by Mario Carneiro, 7-Jan-2015.) (Proof shortened by AV, 18-Jul-2019.)
Hypotheses
Ref Expression
mplcoe1.p 𝑃 = (𝐼 mPoly 𝑅)
mplcoe1.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplcoe1.z 0 = (0g𝑅)
mplcoe1.o 1 = (1r𝑅)
mplcoe1.i (𝜑𝐼𝑊)
mplcoe2.g 𝐺 = (mulGrp‘𝑃)
mplcoe2.m = (.g𝐺)
mplcoe2.v 𝑉 = (𝐼 mVar 𝑅)
mplcoe3.r (𝜑𝑅 ∈ Ring)
mplcoe3.x (𝜑𝑋𝐼)
mplcoe3.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
mplcoe3 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0)), 1 , 0 )) = (𝑁 (𝑉𝑋)))
Distinct variable groups:   ,𝑘   𝑦,𝑘, 1   𝑘,𝐺   𝑓,𝑘,𝑦,𝐼   𝑘,𝑁,𝑦   𝜑,𝑘,𝑦   𝑅,𝑓,𝑦   𝐷,𝑘,𝑦   𝑃,𝑘   𝑘,𝑉   0 ,𝑓,𝑘,𝑦   𝑓,𝑋,𝑘,𝑦   𝑘,𝑊,𝑦
Allowed substitution hints:   𝜑(𝑓)   𝐷(𝑓)   𝑃(𝑦,𝑓)   𝑅(𝑘)   1 (𝑓)   (𝑦,𝑓)   𝐺(𝑦,𝑓)   𝑁(𝑓)   𝑉(𝑦,𝑓)   𝑊(𝑓)

Proof of Theorem mplcoe3
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplcoe3.n . 2 (𝜑𝑁 ∈ ℕ0)
2 ifeq1 4477 . . . . . . . . . . 11 (𝑥 = 0 → if(𝑘 = 𝑋, 𝑥, 0) = if(𝑘 = 𝑋, 0, 0))
3 ifid 4514 . . . . . . . . . . 11 if(𝑘 = 𝑋, 0, 0) = 0
42, 3eqtrdi 2781 . . . . . . . . . 10 (𝑥 = 0 → if(𝑘 = 𝑋, 𝑥, 0) = 0)
54mpteq2dv 5183 . . . . . . . . 9 (𝑥 = 0 → (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) = (𝑘𝐼 ↦ 0))
6 fconstmpt 5676 . . . . . . . . 9 (𝐼 × {0}) = (𝑘𝐼 ↦ 0)
75, 6eqtr4di 2783 . . . . . . . 8 (𝑥 = 0 → (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) = (𝐼 × {0}))
87eqeq2d 2741 . . . . . . 7 (𝑥 = 0 → (𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) ↔ 𝑦 = (𝐼 × {0})))
98ifbid 4497 . . . . . 6 (𝑥 = 0 → if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 ) = if(𝑦 = (𝐼 × {0}), 1 , 0 ))
109mpteq2dv 5183 . . . . 5 (𝑥 = 0 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )))
11 oveq1 7348 . . . . 5 (𝑥 = 0 → (𝑥 (𝑉𝑋)) = (0 (𝑉𝑋)))
1210, 11eqeq12d 2746 . . . 4 (𝑥 = 0 → ((𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑥 (𝑉𝑋)) ↔ (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) = (0 (𝑉𝑋))))
1312imbi2d 340 . . 3 (𝑥 = 0 → ((𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑥 (𝑉𝑋))) ↔ (𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) = (0 (𝑉𝑋)))))
14 ifeq1 4477 . . . . . . . . 9 (𝑥 = 𝑛 → if(𝑘 = 𝑋, 𝑥, 0) = if(𝑘 = 𝑋, 𝑛, 0))
1514mpteq2dv 5183 . . . . . . . 8 (𝑥 = 𝑛 → (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)))
1615eqeq2d 2741 . . . . . . 7 (𝑥 = 𝑛 → (𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) ↔ 𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0))))
1716ifbid 4497 . . . . . 6 (𝑥 = 𝑛 → if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 ) = if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 ))
1817mpteq2dv 5183 . . . . 5 (𝑥 = 𝑛 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 )))
19 oveq1 7348 . . . . 5 (𝑥 = 𝑛 → (𝑥 (𝑉𝑋)) = (𝑛 (𝑉𝑋)))
2018, 19eqeq12d 2746 . . . 4 (𝑥 = 𝑛 → ((𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑥 (𝑉𝑋)) ↔ (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 )) = (𝑛 (𝑉𝑋))))
2120imbi2d 340 . . 3 (𝑥 = 𝑛 → ((𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑥 (𝑉𝑋))) ↔ (𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 )) = (𝑛 (𝑉𝑋)))))
22 ifeq1 4477 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → if(𝑘 = 𝑋, 𝑥, 0) = if(𝑘 = 𝑋, (𝑛 + 1), 0))
2322mpteq2dv 5183 . . . . . . . 8 (𝑥 = (𝑛 + 1) → (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)))
2423eqeq2d 2741 . . . . . . 7 (𝑥 = (𝑛 + 1) → (𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) ↔ 𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0))))
2524ifbid 4497 . . . . . 6 (𝑥 = (𝑛 + 1) → if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 ) = if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 ))
2625mpteq2dv 5183 . . . . 5 (𝑥 = (𝑛 + 1) → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )))
27 oveq1 7348 . . . . 5 (𝑥 = (𝑛 + 1) → (𝑥 (𝑉𝑋)) = ((𝑛 + 1) (𝑉𝑋)))
2826, 27eqeq12d 2746 . . . 4 (𝑥 = (𝑛 + 1) → ((𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑥 (𝑉𝑋)) ↔ (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )) = ((𝑛 + 1) (𝑉𝑋))))
2928imbi2d 340 . . 3 (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑥 (𝑉𝑋))) ↔ (𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )) = ((𝑛 + 1) (𝑉𝑋)))))
30 ifeq1 4477 . . . . . . . . 9 (𝑥 = 𝑁 → if(𝑘 = 𝑋, 𝑥, 0) = if(𝑘 = 𝑋, 𝑁, 0))
3130mpteq2dv 5183 . . . . . . . 8 (𝑥 = 𝑁 → (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0)))
3231eqeq2d 2741 . . . . . . 7 (𝑥 = 𝑁 → (𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) ↔ 𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0))))
3332ifbid 4497 . . . . . 6 (𝑥 = 𝑁 → if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 ) = if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0)), 1 , 0 ))
3433mpteq2dv 5183 . . . . 5 (𝑥 = 𝑁 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0)), 1 , 0 )))
35 oveq1 7348 . . . . 5 (𝑥 = 𝑁 → (𝑥 (𝑉𝑋)) = (𝑁 (𝑉𝑋)))
3634, 35eqeq12d 2746 . . . 4 (𝑥 = 𝑁 → ((𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑥 (𝑉𝑋)) ↔ (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0)), 1 , 0 )) = (𝑁 (𝑉𝑋))))
3736imbi2d 340 . . 3 (𝑥 = 𝑁 → ((𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑥 (𝑉𝑋))) ↔ (𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0)), 1 , 0 )) = (𝑁 (𝑉𝑋)))))
38 mplcoe1.p . . . . . 6 𝑃 = (𝐼 mPoly 𝑅)
39 mplcoe2.v . . . . . 6 𝑉 = (𝐼 mVar 𝑅)
40 eqid 2730 . . . . . 6 (Base‘𝑃) = (Base‘𝑃)
41 mplcoe1.i . . . . . 6 (𝜑𝐼𝑊)
42 mplcoe3.r . . . . . 6 (𝜑𝑅 ∈ Ring)
43 mplcoe3.x . . . . . 6 (𝜑𝑋𝐼)
4438, 39, 40, 41, 42, 43mvrcl 21922 . . . . 5 (𝜑 → (𝑉𝑋) ∈ (Base‘𝑃))
45 mplcoe2.g . . . . . . 7 𝐺 = (mulGrp‘𝑃)
4645, 40mgpbas 20056 . . . . . 6 (Base‘𝑃) = (Base‘𝐺)
47 eqid 2730 . . . . . . 7 (1r𝑃) = (1r𝑃)
4845, 47ringidval 20094 . . . . . 6 (1r𝑃) = (0g𝐺)
49 mplcoe2.m . . . . . 6 = (.g𝐺)
5046, 48, 49mulg0 18979 . . . . 5 ((𝑉𝑋) ∈ (Base‘𝑃) → (0 (𝑉𝑋)) = (1r𝑃))
5144, 50syl 17 . . . 4 (𝜑 → (0 (𝑉𝑋)) = (1r𝑃))
52 mplcoe1.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
53 mplcoe1.z . . . . 5 0 = (0g𝑅)
54 mplcoe1.o . . . . 5 1 = (1r𝑅)
5538, 52, 53, 54, 47, 41, 42mpl1 21942 . . . 4 (𝜑 → (1r𝑃) = (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )))
5651, 55eqtr2d 2766 . . 3 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) = (0 (𝑉𝑋)))
57 oveq1 7348 . . . . . 6 ((𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 )) = (𝑛 (𝑉𝑋)) → ((𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 ))(.r𝑃)(𝑉𝑋)) = ((𝑛 (𝑉𝑋))(.r𝑃)(𝑉𝑋)))
5841adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → 𝐼𝑊)
5942adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → 𝑅 ∈ Ring)
6052snifpsrbag 21850 . . . . . . . . . 10 ((𝐼𝑊𝑛 ∈ ℕ0) → (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) ∈ 𝐷)
6141, 60sylan 580 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) ∈ 𝐷)
62 eqid 2730 . . . . . . . . 9 (.r𝑃) = (.r𝑃)
63 1nn0 12389 . . . . . . . . . . 11 1 ∈ ℕ0
6463a1i 11 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → 1 ∈ ℕ0)
6552snifpsrbag 21850 . . . . . . . . . 10 ((𝐼𝑊 ∧ 1 ∈ ℕ0) → (𝑘𝐼 ↦ if(𝑘 = 𝑋, 1, 0)) ∈ 𝐷)
6641, 64, 65syl2an 596 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝑘𝐼 ↦ if(𝑘 = 𝑋, 1, 0)) ∈ 𝐷)
6738, 40, 53, 54, 52, 58, 59, 61, 62, 66mplmonmul 21964 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → ((𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 ))(.r𝑃)(𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 1, 0)), 1 , 0 ))) = (𝑦𝐷 ↦ if(𝑦 = ((𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) ∘f + (𝑘𝐼 ↦ if(𝑘 = 𝑋, 1, 0))), 1 , 0 )))
6843adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → 𝑋𝐼)
6939, 52, 53, 54, 58, 59, 68mvrval 21912 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝑉𝑋) = (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 1, 0)), 1 , 0 )))
7069eqcomd 2736 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 1, 0)), 1 , 0 )) = (𝑉𝑋))
7170oveq2d 7357 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → ((𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 ))(.r𝑃)(𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 1, 0)), 1 , 0 ))) = ((𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 ))(.r𝑃)(𝑉𝑋)))
72 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑘𝐼) → 𝑛 ∈ ℕ0)
73 0nn0 12388 . . . . . . . . . . . . . 14 0 ∈ ℕ0
74 ifcl 4519 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0 ∧ 0 ∈ ℕ0) → if(𝑘 = 𝑋, 𝑛, 0) ∈ ℕ0)
7572, 73, 74sylancl 586 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑘𝐼) → if(𝑘 = 𝑋, 𝑛, 0) ∈ ℕ0)
7663, 73ifcli 4521 . . . . . . . . . . . . . 14 if(𝑘 = 𝑋, 1, 0) ∈ ℕ0
7776a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑘𝐼) → if(𝑘 = 𝑋, 1, 0) ∈ ℕ0)
78 eqidd 2731 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)))
79 eqidd 2731 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → (𝑘𝐼 ↦ if(𝑘 = 𝑋, 1, 0)) = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 1, 0)))
8058, 75, 77, 78, 79offval2 7625 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ0) → ((𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) ∘f + (𝑘𝐼 ↦ if(𝑘 = 𝑋, 1, 0))) = (𝑘𝐼 ↦ (if(𝑘 = 𝑋, 𝑛, 0) + if(𝑘 = 𝑋, 1, 0))))
81 iftrue 4479 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑋 → if(𝑘 = 𝑋, 𝑛, 0) = 𝑛)
82 iftrue 4479 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑋 → if(𝑘 = 𝑋, 1, 0) = 1)
8381, 82oveq12d 7359 . . . . . . . . . . . . . . 15 (𝑘 = 𝑋 → (if(𝑘 = 𝑋, 𝑛, 0) + if(𝑘 = 𝑋, 1, 0)) = (𝑛 + 1))
84 iftrue 4479 . . . . . . . . . . . . . . 15 (𝑘 = 𝑋 → if(𝑘 = 𝑋, (𝑛 + 1), 0) = (𝑛 + 1))
8583, 84eqtr4d 2768 . . . . . . . . . . . . . 14 (𝑘 = 𝑋 → (if(𝑘 = 𝑋, 𝑛, 0) + if(𝑘 = 𝑋, 1, 0)) = if(𝑘 = 𝑋, (𝑛 + 1), 0))
86 00id 11280 . . . . . . . . . . . . . . 15 (0 + 0) = 0
87 iffalse 4482 . . . . . . . . . . . . . . . 16 𝑘 = 𝑋 → if(𝑘 = 𝑋, 𝑛, 0) = 0)
88 iffalse 4482 . . . . . . . . . . . . . . . 16 𝑘 = 𝑋 → if(𝑘 = 𝑋, 1, 0) = 0)
8987, 88oveq12d 7359 . . . . . . . . . . . . . . 15 𝑘 = 𝑋 → (if(𝑘 = 𝑋, 𝑛, 0) + if(𝑘 = 𝑋, 1, 0)) = (0 + 0))
90 iffalse 4482 . . . . . . . . . . . . . . 15 𝑘 = 𝑋 → if(𝑘 = 𝑋, (𝑛 + 1), 0) = 0)
9186, 89, 903eqtr4a 2791 . . . . . . . . . . . . . 14 𝑘 = 𝑋 → (if(𝑘 = 𝑋, 𝑛, 0) + if(𝑘 = 𝑋, 1, 0)) = if(𝑘 = 𝑋, (𝑛 + 1), 0))
9285, 91pm2.61i 182 . . . . . . . . . . . . 13 (if(𝑘 = 𝑋, 𝑛, 0) + if(𝑘 = 𝑋, 1, 0)) = if(𝑘 = 𝑋, (𝑛 + 1), 0)
9392mpteq2i 5185 . . . . . . . . . . . 12 (𝑘𝐼 ↦ (if(𝑘 = 𝑋, 𝑛, 0) + if(𝑘 = 𝑋, 1, 0))) = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0))
9480, 93eqtrdi 2781 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → ((𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) ∘f + (𝑘𝐼 ↦ if(𝑘 = 𝑋, 1, 0))) = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)))
9594eqeq2d 2741 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝑦 = ((𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) ∘f + (𝑘𝐼 ↦ if(𝑘 = 𝑋, 1, 0))) ↔ 𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0))))
9695ifbid 4497 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → if(𝑦 = ((𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) ∘f + (𝑘𝐼 ↦ if(𝑘 = 𝑋, 1, 0))), 1 , 0 ) = if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 ))
9796mpteq2dv 5183 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → (𝑦𝐷 ↦ if(𝑦 = ((𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) ∘f + (𝑘𝐼 ↦ if(𝑘 = 𝑋, 1, 0))), 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )))
9867, 71, 973eqtr3rd 2774 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )) = ((𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 ))(.r𝑃)(𝑉𝑋)))
9938, 41, 42mplringd 21953 . . . . . . . . . 10 (𝜑𝑃 ∈ Ring)
10045ringmgp 20150 . . . . . . . . . 10 (𝑃 ∈ Ring → 𝐺 ∈ Mnd)
10199, 100syl 17 . . . . . . . . 9 (𝜑𝐺 ∈ Mnd)
102101adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → 𝐺 ∈ Mnd)
103 simpr 484 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
10444adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → (𝑉𝑋) ∈ (Base‘𝑃))
10545, 62mgpplusg 20055 . . . . . . . . 9 (.r𝑃) = (+g𝐺)
10646, 49, 105mulgnn0p1 18990 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝑛 ∈ ℕ0 ∧ (𝑉𝑋) ∈ (Base‘𝑃)) → ((𝑛 + 1) (𝑉𝑋)) = ((𝑛 (𝑉𝑋))(.r𝑃)(𝑉𝑋)))
107102, 103, 104, 106syl3anc 1373 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 + 1) (𝑉𝑋)) = ((𝑛 (𝑉𝑋))(.r𝑃)(𝑉𝑋)))
10898, 107eqeq12d 2746 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → ((𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )) = ((𝑛 + 1) (𝑉𝑋)) ↔ ((𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 ))(.r𝑃)(𝑉𝑋)) = ((𝑛 (𝑉𝑋))(.r𝑃)(𝑉𝑋))))
10957, 108imbitrrid 246 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → ((𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 )) = (𝑛 (𝑉𝑋)) → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )) = ((𝑛 + 1) (𝑉𝑋))))
110109expcom 413 . . . 4 (𝑛 ∈ ℕ0 → (𝜑 → ((𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 )) = (𝑛 (𝑉𝑋)) → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )) = ((𝑛 + 1) (𝑉𝑋)))))
111110a2d 29 . . 3 (𝑛 ∈ ℕ0 → ((𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 )) = (𝑛 (𝑉𝑋))) → (𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )) = ((𝑛 + 1) (𝑉𝑋)))))
11213, 21, 29, 37, 56, 111nn0ind 12560 . 2 (𝑁 ∈ ℕ0 → (𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0)), 1 , 0 )) = (𝑁 (𝑉𝑋))))
1131, 112mpcom 38 1 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0)), 1 , 0 )) = (𝑁 (𝑉𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2110  {crab 3393  ifcif 4473  {csn 4574  cmpt 5170   × cxp 5612  ccnv 5613  cima 5617  cfv 6477  (class class class)co 7341  f cof 7603  m cmap 8745  Fincfn 8864  0cc0 10998  1c1 10999   + caddc 11001  cn 12117  0cn0 12373  Basecbs 17112  .rcmulr 17154  0gc0g 17335  Mndcmnd 18634  .gcmg 18972  mulGrpcmgp 20051  1rcur 20092  Ringcrg 20144   mVar cmvr 21835   mPoly cmpl 21836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-ofr 7606  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-sup 9321  df-oi 9391  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-fz 13400  df-fzo 13547  df-seq 13901  df-hash 14230  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-hom 17177  df-cco 17178  df-0g 17337  df-gsum 17338  df-prds 17343  df-pws 17345  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-mhm 18683  df-submnd 18684  df-grp 18841  df-minusg 18842  df-mulg 18973  df-subg 19028  df-ghm 19118  df-cntz 19222  df-cmn 19687  df-abl 19688  df-mgp 20052  df-rng 20064  df-ur 20093  df-ring 20146  df-subrng 20454  df-subrg 20478  df-psr 21839  df-mvr 21840  df-mpl 21841
This theorem is referenced by:  mplcoe5  21968  coe1tm  22180
  Copyright terms: Public domain W3C validator