| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | mplcoe3.n | . 2
⊢ (𝜑 → 𝑁 ∈
ℕ0) | 
| 2 |  | ifeq1 4529 | . . . . . . . . . . 11
⊢ (𝑥 = 0 → if(𝑘 = 𝑋, 𝑥, 0) = if(𝑘 = 𝑋, 0, 0)) | 
| 3 |  | ifid 4566 | . . . . . . . . . . 11
⊢ if(𝑘 = 𝑋, 0, 0) = 0 | 
| 4 | 2, 3 | eqtrdi 2793 | . . . . . . . . . 10
⊢ (𝑥 = 0 → if(𝑘 = 𝑋, 𝑥, 0) = 0) | 
| 5 | 4 | mpteq2dv 5244 | . . . . . . . . 9
⊢ (𝑥 = 0 → (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) = (𝑘 ∈ 𝐼 ↦ 0)) | 
| 6 |  | fconstmpt 5747 | . . . . . . . . 9
⊢ (𝐼 × {0}) = (𝑘 ∈ 𝐼 ↦ 0) | 
| 7 | 5, 6 | eqtr4di 2795 | . . . . . . . 8
⊢ (𝑥 = 0 → (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) = (𝐼 × {0})) | 
| 8 | 7 | eqeq2d 2748 | . . . . . . 7
⊢ (𝑥 = 0 → (𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) ↔ 𝑦 = (𝐼 × {0}))) | 
| 9 | 8 | ifbid 4549 | . . . . . 6
⊢ (𝑥 = 0 → if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 ) = if(𝑦 = (𝐼 × {0}), 1 , 0 )) | 
| 10 | 9 | mpteq2dv 5244 | . . . . 5
⊢ (𝑥 = 0 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 ))) | 
| 11 |  | oveq1 7438 | . . . . 5
⊢ (𝑥 = 0 → (𝑥 ↑ (𝑉‘𝑋)) = (0 ↑ (𝑉‘𝑋))) | 
| 12 | 10, 11 | eqeq12d 2753 | . . . 4
⊢ (𝑥 = 0 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑥 ↑ (𝑉‘𝑋)) ↔ (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) = (0 ↑ (𝑉‘𝑋)))) | 
| 13 | 12 | imbi2d 340 | . . 3
⊢ (𝑥 = 0 → ((𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑥 ↑ (𝑉‘𝑋))) ↔ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) = (0 ↑ (𝑉‘𝑋))))) | 
| 14 |  | ifeq1 4529 | . . . . . . . . 9
⊢ (𝑥 = 𝑛 → if(𝑘 = 𝑋, 𝑥, 0) = if(𝑘 = 𝑋, 𝑛, 0)) | 
| 15 | 14 | mpteq2dv 5244 | . . . . . . . 8
⊢ (𝑥 = 𝑛 → (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0))) | 
| 16 | 15 | eqeq2d 2748 | . . . . . . 7
⊢ (𝑥 = 𝑛 → (𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) ↔ 𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)))) | 
| 17 | 16 | ifbid 4549 | . . . . . 6
⊢ (𝑥 = 𝑛 → if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 ) = if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 )) | 
| 18 | 17 | mpteq2dv 5244 | . . . . 5
⊢ (𝑥 = 𝑛 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 ))) | 
| 19 |  | oveq1 7438 | . . . . 5
⊢ (𝑥 = 𝑛 → (𝑥 ↑ (𝑉‘𝑋)) = (𝑛 ↑ (𝑉‘𝑋))) | 
| 20 | 18, 19 | eqeq12d 2753 | . . . 4
⊢ (𝑥 = 𝑛 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑥 ↑ (𝑉‘𝑋)) ↔ (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 )) = (𝑛 ↑ (𝑉‘𝑋)))) | 
| 21 | 20 | imbi2d 340 | . . 3
⊢ (𝑥 = 𝑛 → ((𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑥 ↑ (𝑉‘𝑋))) ↔ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 )) = (𝑛 ↑ (𝑉‘𝑋))))) | 
| 22 |  | ifeq1 4529 | . . . . . . . . 9
⊢ (𝑥 = (𝑛 + 1) → if(𝑘 = 𝑋, 𝑥, 0) = if(𝑘 = 𝑋, (𝑛 + 1), 0)) | 
| 23 | 22 | mpteq2dv 5244 | . . . . . . . 8
⊢ (𝑥 = (𝑛 + 1) → (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0))) | 
| 24 | 23 | eqeq2d 2748 | . . . . . . 7
⊢ (𝑥 = (𝑛 + 1) → (𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) ↔ 𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)))) | 
| 25 | 24 | ifbid 4549 | . . . . . 6
⊢ (𝑥 = (𝑛 + 1) → if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 ) = if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )) | 
| 26 | 25 | mpteq2dv 5244 | . . . . 5
⊢ (𝑥 = (𝑛 + 1) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 ))) | 
| 27 |  | oveq1 7438 | . . . . 5
⊢ (𝑥 = (𝑛 + 1) → (𝑥 ↑ (𝑉‘𝑋)) = ((𝑛 + 1) ↑ (𝑉‘𝑋))) | 
| 28 | 26, 27 | eqeq12d 2753 | . . . 4
⊢ (𝑥 = (𝑛 + 1) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑥 ↑ (𝑉‘𝑋)) ↔ (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )) = ((𝑛 + 1) ↑ (𝑉‘𝑋)))) | 
| 29 | 28 | imbi2d 340 | . . 3
⊢ (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑥 ↑ (𝑉‘𝑋))) ↔ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )) = ((𝑛 + 1) ↑ (𝑉‘𝑋))))) | 
| 30 |  | ifeq1 4529 | . . . . . . . . 9
⊢ (𝑥 = 𝑁 → if(𝑘 = 𝑋, 𝑥, 0) = if(𝑘 = 𝑋, 𝑁, 0)) | 
| 31 | 30 | mpteq2dv 5244 | . . . . . . . 8
⊢ (𝑥 = 𝑁 → (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0))) | 
| 32 | 31 | eqeq2d 2748 | . . . . . . 7
⊢ (𝑥 = 𝑁 → (𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) ↔ 𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0)))) | 
| 33 | 32 | ifbid 4549 | . . . . . 6
⊢ (𝑥 = 𝑁 → if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 ) = if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0)), 1 , 0 )) | 
| 34 | 33 | mpteq2dv 5244 | . . . . 5
⊢ (𝑥 = 𝑁 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0)), 1 , 0 ))) | 
| 35 |  | oveq1 7438 | . . . . 5
⊢ (𝑥 = 𝑁 → (𝑥 ↑ (𝑉‘𝑋)) = (𝑁 ↑ (𝑉‘𝑋))) | 
| 36 | 34, 35 | eqeq12d 2753 | . . . 4
⊢ (𝑥 = 𝑁 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑥 ↑ (𝑉‘𝑋)) ↔ (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0)), 1 , 0 )) = (𝑁 ↑ (𝑉‘𝑋)))) | 
| 37 | 36 | imbi2d 340 | . . 3
⊢ (𝑥 = 𝑁 → ((𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑥 ↑ (𝑉‘𝑋))) ↔ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0)), 1 , 0 )) = (𝑁 ↑ (𝑉‘𝑋))))) | 
| 38 |  | mplcoe1.p | . . . . . 6
⊢ 𝑃 = (𝐼 mPoly 𝑅) | 
| 39 |  | mplcoe2.v | . . . . . 6
⊢ 𝑉 = (𝐼 mVar 𝑅) | 
| 40 |  | eqid 2737 | . . . . . 6
⊢
(Base‘𝑃) =
(Base‘𝑃) | 
| 41 |  | mplcoe1.i | . . . . . 6
⊢ (𝜑 → 𝐼 ∈ 𝑊) | 
| 42 |  | mplcoe3.r | . . . . . 6
⊢ (𝜑 → 𝑅 ∈ Ring) | 
| 43 |  | mplcoe3.x | . . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝐼) | 
| 44 | 38, 39, 40, 41, 42, 43 | mvrcl 22012 | . . . . 5
⊢ (𝜑 → (𝑉‘𝑋) ∈ (Base‘𝑃)) | 
| 45 |  | mplcoe2.g | . . . . . . 7
⊢ 𝐺 = (mulGrp‘𝑃) | 
| 46 | 45, 40 | mgpbas 20142 | . . . . . 6
⊢
(Base‘𝑃) =
(Base‘𝐺) | 
| 47 |  | eqid 2737 | . . . . . . 7
⊢
(1r‘𝑃) = (1r‘𝑃) | 
| 48 | 45, 47 | ringidval 20180 | . . . . . 6
⊢
(1r‘𝑃) = (0g‘𝐺) | 
| 49 |  | mplcoe2.m | . . . . . 6
⊢  ↑ =
(.g‘𝐺) | 
| 50 | 46, 48, 49 | mulg0 19092 | . . . . 5
⊢ ((𝑉‘𝑋) ∈ (Base‘𝑃) → (0 ↑ (𝑉‘𝑋)) = (1r‘𝑃)) | 
| 51 | 44, 50 | syl 17 | . . . 4
⊢ (𝜑 → (0 ↑ (𝑉‘𝑋)) = (1r‘𝑃)) | 
| 52 |  | mplcoe1.d | . . . . 5
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} | 
| 53 |  | mplcoe1.z | . . . . 5
⊢  0 =
(0g‘𝑅) | 
| 54 |  | mplcoe1.o | . . . . 5
⊢  1 =
(1r‘𝑅) | 
| 55 | 38, 52, 53, 54, 47, 41, 42 | mpl1 22032 | . . . 4
⊢ (𝜑 → (1r‘𝑃) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 ))) | 
| 56 | 51, 55 | eqtr2d 2778 | . . 3
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) = (0 ↑ (𝑉‘𝑋))) | 
| 57 |  | oveq1 7438 | . . . . . 6
⊢ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 )) = (𝑛 ↑ (𝑉‘𝑋)) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0
))(.r‘𝑃)(𝑉‘𝑋)) = ((𝑛 ↑ (𝑉‘𝑋))(.r‘𝑃)(𝑉‘𝑋))) | 
| 58 | 41 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝐼 ∈ 𝑊) | 
| 59 | 42 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring) | 
| 60 | 52 | snifpsrbag 21940 | . . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) ∈ 𝐷) | 
| 61 | 41, 60 | sylan 580 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) ∈ 𝐷) | 
| 62 |  | eqid 2737 | . . . . . . . . 9
⊢
(.r‘𝑃) = (.r‘𝑃) | 
| 63 |  | 1nn0 12542 | . . . . . . . . . . 11
⊢ 1 ∈
ℕ0 | 
| 64 | 63 | a1i 11 | . . . . . . . . . 10
⊢ (𝑛 ∈ ℕ0
→ 1 ∈ ℕ0) | 
| 65 | 52 | snifpsrbag 21940 | . . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑊 ∧ 1 ∈ ℕ0) →
(𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 1, 0)) ∈ 𝐷) | 
| 66 | 41, 64, 65 | syl2an 596 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 1, 0)) ∈ 𝐷) | 
| 67 | 38, 40, 53, 54, 52, 58, 59, 61, 62, 66 | mplmonmul 22054 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0
))(.r‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 1, 0)), 1 , 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = ((𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) ∘f + (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 1, 0))), 1 , 0 ))) | 
| 68 | 43 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝑋 ∈ 𝐼) | 
| 69 | 39, 52, 53, 54, 58, 59, 68 | mvrval 22002 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑉‘𝑋) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 1, 0)), 1 , 0 ))) | 
| 70 | 69 | eqcomd 2743 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 1, 0)), 1 , 0 )) = (𝑉‘𝑋)) | 
| 71 | 70 | oveq2d 7447 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0
))(.r‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 1, 0)), 1 , 0 ))) = ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0
))(.r‘𝑃)(𝑉‘𝑋))) | 
| 72 |  | simplr 769 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ 𝐼) → 𝑛 ∈ ℕ0) | 
| 73 |  | 0nn0 12541 | . . . . . . . . . . . . . 14
⊢ 0 ∈
ℕ0 | 
| 74 |  | ifcl 4571 | . . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℕ0
∧ 0 ∈ ℕ0) → if(𝑘 = 𝑋, 𝑛, 0) ∈
ℕ0) | 
| 75 | 72, 73, 74 | sylancl 586 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ 𝐼) → if(𝑘 = 𝑋, 𝑛, 0) ∈
ℕ0) | 
| 76 | 63, 73 | ifcli 4573 | . . . . . . . . . . . . . 14
⊢ if(𝑘 = 𝑋, 1, 0) ∈
ℕ0 | 
| 77 | 76 | a1i 11 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ 𝐼) → if(𝑘 = 𝑋, 1, 0) ∈
ℕ0) | 
| 78 |  | eqidd 2738 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0))) | 
| 79 |  | eqidd 2738 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 1, 0)) = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 1, 0))) | 
| 80 | 58, 75, 77, 78, 79 | offval2 7717 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) ∘f + (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 1, 0))) = (𝑘 ∈ 𝐼 ↦ (if(𝑘 = 𝑋, 𝑛, 0) + if(𝑘 = 𝑋, 1, 0)))) | 
| 81 |  | iftrue 4531 | . . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑋 → if(𝑘 = 𝑋, 𝑛, 0) = 𝑛) | 
| 82 |  | iftrue 4531 | . . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑋 → if(𝑘 = 𝑋, 1, 0) = 1) | 
| 83 | 81, 82 | oveq12d 7449 | . . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑋 → (if(𝑘 = 𝑋, 𝑛, 0) + if(𝑘 = 𝑋, 1, 0)) = (𝑛 + 1)) | 
| 84 |  | iftrue 4531 | . . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑋 → if(𝑘 = 𝑋, (𝑛 + 1), 0) = (𝑛 + 1)) | 
| 85 | 83, 84 | eqtr4d 2780 | . . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑋 → (if(𝑘 = 𝑋, 𝑛, 0) + if(𝑘 = 𝑋, 1, 0)) = if(𝑘 = 𝑋, (𝑛 + 1), 0)) | 
| 86 |  | 00id 11436 | . . . . . . . . . . . . . . 15
⊢ (0 + 0) =
0 | 
| 87 |  | iffalse 4534 | . . . . . . . . . . . . . . . 16
⊢ (¬
𝑘 = 𝑋 → if(𝑘 = 𝑋, 𝑛, 0) = 0) | 
| 88 |  | iffalse 4534 | . . . . . . . . . . . . . . . 16
⊢ (¬
𝑘 = 𝑋 → if(𝑘 = 𝑋, 1, 0) = 0) | 
| 89 | 87, 88 | oveq12d 7449 | . . . . . . . . . . . . . . 15
⊢ (¬
𝑘 = 𝑋 → (if(𝑘 = 𝑋, 𝑛, 0) + if(𝑘 = 𝑋, 1, 0)) = (0 + 0)) | 
| 90 |  | iffalse 4534 | . . . . . . . . . . . . . . 15
⊢ (¬
𝑘 = 𝑋 → if(𝑘 = 𝑋, (𝑛 + 1), 0) = 0) | 
| 91 | 86, 89, 90 | 3eqtr4a 2803 | . . . . . . . . . . . . . 14
⊢ (¬
𝑘 = 𝑋 → (if(𝑘 = 𝑋, 𝑛, 0) + if(𝑘 = 𝑋, 1, 0)) = if(𝑘 = 𝑋, (𝑛 + 1), 0)) | 
| 92 | 85, 91 | pm2.61i 182 | . . . . . . . . . . . . 13
⊢ (if(𝑘 = 𝑋, 𝑛, 0) + if(𝑘 = 𝑋, 1, 0)) = if(𝑘 = 𝑋, (𝑛 + 1), 0) | 
| 93 | 92 | mpteq2i 5247 | . . . . . . . . . . . 12
⊢ (𝑘 ∈ 𝐼 ↦ (if(𝑘 = 𝑋, 𝑛, 0) + if(𝑘 = 𝑋, 1, 0))) = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)) | 
| 94 | 80, 93 | eqtrdi 2793 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) ∘f + (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 1, 0))) = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0))) | 
| 95 | 94 | eqeq2d 2748 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑦 = ((𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) ∘f + (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 1, 0))) ↔ 𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)))) | 
| 96 | 95 | ifbid 4549 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → if(𝑦 = ((𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) ∘f + (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 1, 0))), 1 , 0 ) = if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )) | 
| 97 | 96 | mpteq2dv 5244 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = ((𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) ∘f + (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 1, 0))), 1 , 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 ))) | 
| 98 | 67, 71, 97 | 3eqtr3rd 2786 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )) = ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0
))(.r‘𝑃)(𝑉‘𝑋))) | 
| 99 | 38, 41, 42 | mplringd 22043 | . . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ Ring) | 
| 100 | 45 | ringmgp 20236 | . . . . . . . . . 10
⊢ (𝑃 ∈ Ring → 𝐺 ∈ Mnd) | 
| 101 | 99, 100 | syl 17 | . . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ Mnd) | 
| 102 | 101 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝐺 ∈ Mnd) | 
| 103 |  | simpr 484 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℕ0) | 
| 104 | 44 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑉‘𝑋) ∈ (Base‘𝑃)) | 
| 105 | 45, 62 | mgpplusg 20141 | . . . . . . . . 9
⊢
(.r‘𝑃) = (+g‘𝐺) | 
| 106 | 46, 49, 105 | mulgnn0p1 19103 | . . . . . . . 8
⊢ ((𝐺 ∈ Mnd ∧ 𝑛 ∈ ℕ0
∧ (𝑉‘𝑋) ∈ (Base‘𝑃)) → ((𝑛 + 1) ↑ (𝑉‘𝑋)) = ((𝑛 ↑ (𝑉‘𝑋))(.r‘𝑃)(𝑉‘𝑋))) | 
| 107 | 102, 103,
104, 106 | syl3anc 1373 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑛 + 1) ↑ (𝑉‘𝑋)) = ((𝑛 ↑ (𝑉‘𝑋))(.r‘𝑃)(𝑉‘𝑋))) | 
| 108 | 98, 107 | eqeq12d 2753 | . . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )) = ((𝑛 + 1) ↑ (𝑉‘𝑋)) ↔ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0
))(.r‘𝑃)(𝑉‘𝑋)) = ((𝑛 ↑ (𝑉‘𝑋))(.r‘𝑃)(𝑉‘𝑋)))) | 
| 109 | 57, 108 | imbitrrid 246 | . . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 )) = (𝑛 ↑ (𝑉‘𝑋)) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )) = ((𝑛 + 1) ↑ (𝑉‘𝑋)))) | 
| 110 | 109 | expcom 413 | . . . 4
⊢ (𝑛 ∈ ℕ0
→ (𝜑 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 )) = (𝑛 ↑ (𝑉‘𝑋)) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )) = ((𝑛 + 1) ↑ (𝑉‘𝑋))))) | 
| 111 | 110 | a2d 29 | . . 3
⊢ (𝑛 ∈ ℕ0
→ ((𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 )) = (𝑛 ↑ (𝑉‘𝑋))) → (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )) = ((𝑛 + 1) ↑ (𝑉‘𝑋))))) | 
| 112 | 13, 21, 29, 37, 56, 111 | nn0ind 12713 | . 2
⊢ (𝑁 ∈ ℕ0
→ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0)), 1 , 0 )) = (𝑁 ↑ (𝑉‘𝑋)))) | 
| 113 | 1, 112 | mpcom 38 | 1
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0)), 1 , 0 )) = (𝑁 ↑ (𝑉‘𝑋))) |