Step | Hyp | Ref
| Expression |
1 | | mplcoe3.n |
. 2
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
2 | | ifeq1 4460 |
. . . . . . . . . . 11
⊢ (𝑥 = 0 → if(𝑘 = 𝑋, 𝑥, 0) = if(𝑘 = 𝑋, 0, 0)) |
3 | | ifid 4496 |
. . . . . . . . . . 11
⊢ if(𝑘 = 𝑋, 0, 0) = 0 |
4 | 2, 3 | eqtrdi 2795 |
. . . . . . . . . 10
⊢ (𝑥 = 0 → if(𝑘 = 𝑋, 𝑥, 0) = 0) |
5 | 4 | mpteq2dv 5172 |
. . . . . . . . 9
⊢ (𝑥 = 0 → (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) = (𝑘 ∈ 𝐼 ↦ 0)) |
6 | | fconstmpt 5640 |
. . . . . . . . 9
⊢ (𝐼 × {0}) = (𝑘 ∈ 𝐼 ↦ 0) |
7 | 5, 6 | eqtr4di 2797 |
. . . . . . . 8
⊢ (𝑥 = 0 → (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) = (𝐼 × {0})) |
8 | 7 | eqeq2d 2749 |
. . . . . . 7
⊢ (𝑥 = 0 → (𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) ↔ 𝑦 = (𝐼 × {0}))) |
9 | 8 | ifbid 4479 |
. . . . . 6
⊢ (𝑥 = 0 → if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 ) = if(𝑦 = (𝐼 × {0}), 1 , 0 )) |
10 | 9 | mpteq2dv 5172 |
. . . . 5
⊢ (𝑥 = 0 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 ))) |
11 | | oveq1 7262 |
. . . . 5
⊢ (𝑥 = 0 → (𝑥 ↑ (𝑉‘𝑋)) = (0 ↑ (𝑉‘𝑋))) |
12 | 10, 11 | eqeq12d 2754 |
. . . 4
⊢ (𝑥 = 0 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑥 ↑ (𝑉‘𝑋)) ↔ (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) = (0 ↑ (𝑉‘𝑋)))) |
13 | 12 | imbi2d 340 |
. . 3
⊢ (𝑥 = 0 → ((𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑥 ↑ (𝑉‘𝑋))) ↔ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) = (0 ↑ (𝑉‘𝑋))))) |
14 | | ifeq1 4460 |
. . . . . . . . 9
⊢ (𝑥 = 𝑛 → if(𝑘 = 𝑋, 𝑥, 0) = if(𝑘 = 𝑋, 𝑛, 0)) |
15 | 14 | mpteq2dv 5172 |
. . . . . . . 8
⊢ (𝑥 = 𝑛 → (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0))) |
16 | 15 | eqeq2d 2749 |
. . . . . . 7
⊢ (𝑥 = 𝑛 → (𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) ↔ 𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)))) |
17 | 16 | ifbid 4479 |
. . . . . 6
⊢ (𝑥 = 𝑛 → if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 ) = if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 )) |
18 | 17 | mpteq2dv 5172 |
. . . . 5
⊢ (𝑥 = 𝑛 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 ))) |
19 | | oveq1 7262 |
. . . . 5
⊢ (𝑥 = 𝑛 → (𝑥 ↑ (𝑉‘𝑋)) = (𝑛 ↑ (𝑉‘𝑋))) |
20 | 18, 19 | eqeq12d 2754 |
. . . 4
⊢ (𝑥 = 𝑛 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑥 ↑ (𝑉‘𝑋)) ↔ (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 )) = (𝑛 ↑ (𝑉‘𝑋)))) |
21 | 20 | imbi2d 340 |
. . 3
⊢ (𝑥 = 𝑛 → ((𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑥 ↑ (𝑉‘𝑋))) ↔ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 )) = (𝑛 ↑ (𝑉‘𝑋))))) |
22 | | ifeq1 4460 |
. . . . . . . . 9
⊢ (𝑥 = (𝑛 + 1) → if(𝑘 = 𝑋, 𝑥, 0) = if(𝑘 = 𝑋, (𝑛 + 1), 0)) |
23 | 22 | mpteq2dv 5172 |
. . . . . . . 8
⊢ (𝑥 = (𝑛 + 1) → (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0))) |
24 | 23 | eqeq2d 2749 |
. . . . . . 7
⊢ (𝑥 = (𝑛 + 1) → (𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) ↔ 𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)))) |
25 | 24 | ifbid 4479 |
. . . . . 6
⊢ (𝑥 = (𝑛 + 1) → if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 ) = if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )) |
26 | 25 | mpteq2dv 5172 |
. . . . 5
⊢ (𝑥 = (𝑛 + 1) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 ))) |
27 | | oveq1 7262 |
. . . . 5
⊢ (𝑥 = (𝑛 + 1) → (𝑥 ↑ (𝑉‘𝑋)) = ((𝑛 + 1) ↑ (𝑉‘𝑋))) |
28 | 26, 27 | eqeq12d 2754 |
. . . 4
⊢ (𝑥 = (𝑛 + 1) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑥 ↑ (𝑉‘𝑋)) ↔ (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )) = ((𝑛 + 1) ↑ (𝑉‘𝑋)))) |
29 | 28 | imbi2d 340 |
. . 3
⊢ (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑥 ↑ (𝑉‘𝑋))) ↔ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )) = ((𝑛 + 1) ↑ (𝑉‘𝑋))))) |
30 | | ifeq1 4460 |
. . . . . . . . 9
⊢ (𝑥 = 𝑁 → if(𝑘 = 𝑋, 𝑥, 0) = if(𝑘 = 𝑋, 𝑁, 0)) |
31 | 30 | mpteq2dv 5172 |
. . . . . . . 8
⊢ (𝑥 = 𝑁 → (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0))) |
32 | 31 | eqeq2d 2749 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) ↔ 𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0)))) |
33 | 32 | ifbid 4479 |
. . . . . 6
⊢ (𝑥 = 𝑁 → if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 ) = if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0)), 1 , 0 )) |
34 | 33 | mpteq2dv 5172 |
. . . . 5
⊢ (𝑥 = 𝑁 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0)), 1 , 0 ))) |
35 | | oveq1 7262 |
. . . . 5
⊢ (𝑥 = 𝑁 → (𝑥 ↑ (𝑉‘𝑋)) = (𝑁 ↑ (𝑉‘𝑋))) |
36 | 34, 35 | eqeq12d 2754 |
. . . 4
⊢ (𝑥 = 𝑁 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑥 ↑ (𝑉‘𝑋)) ↔ (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0)), 1 , 0 )) = (𝑁 ↑ (𝑉‘𝑋)))) |
37 | 36 | imbi2d 340 |
. . 3
⊢ (𝑥 = 𝑁 → ((𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑥 ↑ (𝑉‘𝑋))) ↔ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0)), 1 , 0 )) = (𝑁 ↑ (𝑉‘𝑋))))) |
38 | | mplcoe1.p |
. . . . . 6
⊢ 𝑃 = (𝐼 mPoly 𝑅) |
39 | | mplcoe2.v |
. . . . . 6
⊢ 𝑉 = (𝐼 mVar 𝑅) |
40 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑃) =
(Base‘𝑃) |
41 | | mplcoe1.i |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ 𝑊) |
42 | | mplcoe3.r |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ Ring) |
43 | | mplcoe3.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝐼) |
44 | 38, 39, 40, 41, 42, 43 | mvrcl 21131 |
. . . . 5
⊢ (𝜑 → (𝑉‘𝑋) ∈ (Base‘𝑃)) |
45 | | mplcoe2.g |
. . . . . . 7
⊢ 𝐺 = (mulGrp‘𝑃) |
46 | 45, 40 | mgpbas 19641 |
. . . . . 6
⊢
(Base‘𝑃) =
(Base‘𝐺) |
47 | | eqid 2738 |
. . . . . . 7
⊢
(1r‘𝑃) = (1r‘𝑃) |
48 | 45, 47 | ringidval 19654 |
. . . . . 6
⊢
(1r‘𝑃) = (0g‘𝐺) |
49 | | mplcoe2.m |
. . . . . 6
⊢ ↑ =
(.g‘𝐺) |
50 | 46, 48, 49 | mulg0 18622 |
. . . . 5
⊢ ((𝑉‘𝑋) ∈ (Base‘𝑃) → (0 ↑ (𝑉‘𝑋)) = (1r‘𝑃)) |
51 | 44, 50 | syl 17 |
. . . 4
⊢ (𝜑 → (0 ↑ (𝑉‘𝑋)) = (1r‘𝑃)) |
52 | | mplcoe1.d |
. . . . 5
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} |
53 | | mplcoe1.z |
. . . . 5
⊢ 0 =
(0g‘𝑅) |
54 | | mplcoe1.o |
. . . . 5
⊢ 1 =
(1r‘𝑅) |
55 | 38, 52, 53, 54, 47, 41, 42 | mpl1 21126 |
. . . 4
⊢ (𝜑 → (1r‘𝑃) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 ))) |
56 | 51, 55 | eqtr2d 2779 |
. . 3
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) = (0 ↑ (𝑉‘𝑋))) |
57 | | oveq1 7262 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 )) = (𝑛 ↑ (𝑉‘𝑋)) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0
))(.r‘𝑃)(𝑉‘𝑋)) = ((𝑛 ↑ (𝑉‘𝑋))(.r‘𝑃)(𝑉‘𝑋))) |
58 | 41 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝐼 ∈ 𝑊) |
59 | 42 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring) |
60 | 52 | snifpsrbag 21035 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) ∈ 𝐷) |
61 | 41, 60 | sylan 579 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) ∈ 𝐷) |
62 | | eqid 2738 |
. . . . . . . . 9
⊢
(.r‘𝑃) = (.r‘𝑃) |
63 | | 1nn0 12179 |
. . . . . . . . . . 11
⊢ 1 ∈
ℕ0 |
64 | 63 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ0
→ 1 ∈ ℕ0) |
65 | 52 | snifpsrbag 21035 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑊 ∧ 1 ∈ ℕ0) →
(𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 1, 0)) ∈ 𝐷) |
66 | 41, 64, 65 | syl2an 595 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 1, 0)) ∈ 𝐷) |
67 | 38, 40, 53, 54, 52, 58, 59, 61, 62, 66 | mplmonmul 21147 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0
))(.r‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 1, 0)), 1 , 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = ((𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) ∘f + (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 1, 0))), 1 , 0 ))) |
68 | 43 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝑋 ∈ 𝐼) |
69 | 39, 52, 53, 54, 58, 59, 68 | mvrval 21100 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑉‘𝑋) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 1, 0)), 1 , 0 ))) |
70 | 69 | eqcomd 2744 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 1, 0)), 1 , 0 )) = (𝑉‘𝑋)) |
71 | 70 | oveq2d 7271 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0
))(.r‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 1, 0)), 1 , 0 ))) = ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0
))(.r‘𝑃)(𝑉‘𝑋))) |
72 | | simplr 765 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ 𝐼) → 𝑛 ∈ ℕ0) |
73 | | 0nn0 12178 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℕ0 |
74 | | ifcl 4501 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℕ0
∧ 0 ∈ ℕ0) → if(𝑘 = 𝑋, 𝑛, 0) ∈
ℕ0) |
75 | 72, 73, 74 | sylancl 585 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ 𝐼) → if(𝑘 = 𝑋, 𝑛, 0) ∈
ℕ0) |
76 | 63, 73 | ifcli 4503 |
. . . . . . . . . . . . . 14
⊢ if(𝑘 = 𝑋, 1, 0) ∈
ℕ0 |
77 | 76 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ 𝐼) → if(𝑘 = 𝑋, 1, 0) ∈
ℕ0) |
78 | | eqidd 2739 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0))) |
79 | | eqidd 2739 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 1, 0)) = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 1, 0))) |
80 | 58, 75, 77, 78, 79 | offval2 7531 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) ∘f + (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 1, 0))) = (𝑘 ∈ 𝐼 ↦ (if(𝑘 = 𝑋, 𝑛, 0) + if(𝑘 = 𝑋, 1, 0)))) |
81 | | iftrue 4462 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑋 → if(𝑘 = 𝑋, 𝑛, 0) = 𝑛) |
82 | | iftrue 4462 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑋 → if(𝑘 = 𝑋, 1, 0) = 1) |
83 | 81, 82 | oveq12d 7273 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑋 → (if(𝑘 = 𝑋, 𝑛, 0) + if(𝑘 = 𝑋, 1, 0)) = (𝑛 + 1)) |
84 | | iftrue 4462 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑋 → if(𝑘 = 𝑋, (𝑛 + 1), 0) = (𝑛 + 1)) |
85 | 83, 84 | eqtr4d 2781 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑋 → (if(𝑘 = 𝑋, 𝑛, 0) + if(𝑘 = 𝑋, 1, 0)) = if(𝑘 = 𝑋, (𝑛 + 1), 0)) |
86 | | 00id 11080 |
. . . . . . . . . . . . . . 15
⊢ (0 + 0) =
0 |
87 | | iffalse 4465 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑘 = 𝑋 → if(𝑘 = 𝑋, 𝑛, 0) = 0) |
88 | | iffalse 4465 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑘 = 𝑋 → if(𝑘 = 𝑋, 1, 0) = 0) |
89 | 87, 88 | oveq12d 7273 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑘 = 𝑋 → (if(𝑘 = 𝑋, 𝑛, 0) + if(𝑘 = 𝑋, 1, 0)) = (0 + 0)) |
90 | | iffalse 4465 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑘 = 𝑋 → if(𝑘 = 𝑋, (𝑛 + 1), 0) = 0) |
91 | 86, 89, 90 | 3eqtr4a 2805 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑘 = 𝑋 → (if(𝑘 = 𝑋, 𝑛, 0) + if(𝑘 = 𝑋, 1, 0)) = if(𝑘 = 𝑋, (𝑛 + 1), 0)) |
92 | 85, 91 | pm2.61i 182 |
. . . . . . . . . . . . 13
⊢ (if(𝑘 = 𝑋, 𝑛, 0) + if(𝑘 = 𝑋, 1, 0)) = if(𝑘 = 𝑋, (𝑛 + 1), 0) |
93 | 92 | mpteq2i 5175 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ 𝐼 ↦ (if(𝑘 = 𝑋, 𝑛, 0) + if(𝑘 = 𝑋, 1, 0))) = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)) |
94 | 80, 93 | eqtrdi 2795 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) ∘f + (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 1, 0))) = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0))) |
95 | 94 | eqeq2d 2749 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑦 = ((𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) ∘f + (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 1, 0))) ↔ 𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)))) |
96 | 95 | ifbid 4479 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → if(𝑦 = ((𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) ∘f + (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 1, 0))), 1 , 0 ) = if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )) |
97 | 96 | mpteq2dv 5172 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = ((𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) ∘f + (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 1, 0))), 1 , 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 ))) |
98 | 67, 71, 97 | 3eqtr3rd 2787 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )) = ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0
))(.r‘𝑃)(𝑉‘𝑋))) |
99 | 38 | mplring 21134 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ Ring) → 𝑃 ∈ Ring) |
100 | 41, 42, 99 | syl2anc 583 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ Ring) |
101 | 45 | ringmgp 19704 |
. . . . . . . . . 10
⊢ (𝑃 ∈ Ring → 𝐺 ∈ Mnd) |
102 | 100, 101 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ Mnd) |
103 | 102 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝐺 ∈ Mnd) |
104 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℕ0) |
105 | 44 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑉‘𝑋) ∈ (Base‘𝑃)) |
106 | 45, 62 | mgpplusg 19639 |
. . . . . . . . 9
⊢
(.r‘𝑃) = (+g‘𝐺) |
107 | 46, 49, 106 | mulgnn0p1 18630 |
. . . . . . . 8
⊢ ((𝐺 ∈ Mnd ∧ 𝑛 ∈ ℕ0
∧ (𝑉‘𝑋) ∈ (Base‘𝑃)) → ((𝑛 + 1) ↑ (𝑉‘𝑋)) = ((𝑛 ↑ (𝑉‘𝑋))(.r‘𝑃)(𝑉‘𝑋))) |
108 | 103, 104,
105, 107 | syl3anc 1369 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑛 + 1) ↑ (𝑉‘𝑋)) = ((𝑛 ↑ (𝑉‘𝑋))(.r‘𝑃)(𝑉‘𝑋))) |
109 | 98, 108 | eqeq12d 2754 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )) = ((𝑛 + 1) ↑ (𝑉‘𝑋)) ↔ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0
))(.r‘𝑃)(𝑉‘𝑋)) = ((𝑛 ↑ (𝑉‘𝑋))(.r‘𝑃)(𝑉‘𝑋)))) |
110 | 57, 109 | syl5ibr 245 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 )) = (𝑛 ↑ (𝑉‘𝑋)) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )) = ((𝑛 + 1) ↑ (𝑉‘𝑋)))) |
111 | 110 | expcom 413 |
. . . 4
⊢ (𝑛 ∈ ℕ0
→ (𝜑 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 )) = (𝑛 ↑ (𝑉‘𝑋)) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )) = ((𝑛 + 1) ↑ (𝑉‘𝑋))))) |
112 | 111 | a2d 29 |
. . 3
⊢ (𝑛 ∈ ℕ0
→ ((𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 )) = (𝑛 ↑ (𝑉‘𝑋))) → (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )) = ((𝑛 + 1) ↑ (𝑉‘𝑋))))) |
113 | 13, 21, 29, 37, 56, 112 | nn0ind 12345 |
. 2
⊢ (𝑁 ∈ ℕ0
→ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0)), 1 , 0 )) = (𝑁 ↑ (𝑉‘𝑋)))) |
114 | 1, 113 | mpcom 38 |
1
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0)), 1 , 0 )) = (𝑁 ↑ (𝑉‘𝑋))) |