MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplcoe3 Structured version   Visualization version   GIF version

Theorem mplcoe3 22056
Description: Decompose a monomial in one variable into a power of a variable. (Contributed by Mario Carneiro, 7-Jan-2015.) (Proof shortened by AV, 18-Jul-2019.)
Hypotheses
Ref Expression
mplcoe1.p 𝑃 = (𝐼 mPoly 𝑅)
mplcoe1.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplcoe1.z 0 = (0g𝑅)
mplcoe1.o 1 = (1r𝑅)
mplcoe1.i (𝜑𝐼𝑊)
mplcoe2.g 𝐺 = (mulGrp‘𝑃)
mplcoe2.m = (.g𝐺)
mplcoe2.v 𝑉 = (𝐼 mVar 𝑅)
mplcoe3.r (𝜑𝑅 ∈ Ring)
mplcoe3.x (𝜑𝑋𝐼)
mplcoe3.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
mplcoe3 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0)), 1 , 0 )) = (𝑁 (𝑉𝑋)))
Distinct variable groups:   ,𝑘   𝑦,𝑘, 1   𝑘,𝐺   𝑓,𝑘,𝑦,𝐼   𝑘,𝑁,𝑦   𝜑,𝑘,𝑦   𝑅,𝑓,𝑦   𝐷,𝑘,𝑦   𝑃,𝑘   𝑘,𝑉   0 ,𝑓,𝑘,𝑦   𝑓,𝑋,𝑘,𝑦   𝑘,𝑊,𝑦
Allowed substitution hints:   𝜑(𝑓)   𝐷(𝑓)   𝑃(𝑦,𝑓)   𝑅(𝑘)   1 (𝑓)   (𝑦,𝑓)   𝐺(𝑦,𝑓)   𝑁(𝑓)   𝑉(𝑦,𝑓)   𝑊(𝑓)

Proof of Theorem mplcoe3
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplcoe3.n . 2 (𝜑𝑁 ∈ ℕ0)
2 ifeq1 4529 . . . . . . . . . . 11 (𝑥 = 0 → if(𝑘 = 𝑋, 𝑥, 0) = if(𝑘 = 𝑋, 0, 0))
3 ifid 4566 . . . . . . . . . . 11 if(𝑘 = 𝑋, 0, 0) = 0
42, 3eqtrdi 2793 . . . . . . . . . 10 (𝑥 = 0 → if(𝑘 = 𝑋, 𝑥, 0) = 0)
54mpteq2dv 5244 . . . . . . . . 9 (𝑥 = 0 → (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) = (𝑘𝐼 ↦ 0))
6 fconstmpt 5747 . . . . . . . . 9 (𝐼 × {0}) = (𝑘𝐼 ↦ 0)
75, 6eqtr4di 2795 . . . . . . . 8 (𝑥 = 0 → (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) = (𝐼 × {0}))
87eqeq2d 2748 . . . . . . 7 (𝑥 = 0 → (𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) ↔ 𝑦 = (𝐼 × {0})))
98ifbid 4549 . . . . . 6 (𝑥 = 0 → if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 ) = if(𝑦 = (𝐼 × {0}), 1 , 0 ))
109mpteq2dv 5244 . . . . 5 (𝑥 = 0 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )))
11 oveq1 7438 . . . . 5 (𝑥 = 0 → (𝑥 (𝑉𝑋)) = (0 (𝑉𝑋)))
1210, 11eqeq12d 2753 . . . 4 (𝑥 = 0 → ((𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑥 (𝑉𝑋)) ↔ (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) = (0 (𝑉𝑋))))
1312imbi2d 340 . . 3 (𝑥 = 0 → ((𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑥 (𝑉𝑋))) ↔ (𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) = (0 (𝑉𝑋)))))
14 ifeq1 4529 . . . . . . . . 9 (𝑥 = 𝑛 → if(𝑘 = 𝑋, 𝑥, 0) = if(𝑘 = 𝑋, 𝑛, 0))
1514mpteq2dv 5244 . . . . . . . 8 (𝑥 = 𝑛 → (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)))
1615eqeq2d 2748 . . . . . . 7 (𝑥 = 𝑛 → (𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) ↔ 𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0))))
1716ifbid 4549 . . . . . 6 (𝑥 = 𝑛 → if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 ) = if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 ))
1817mpteq2dv 5244 . . . . 5 (𝑥 = 𝑛 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 )))
19 oveq1 7438 . . . . 5 (𝑥 = 𝑛 → (𝑥 (𝑉𝑋)) = (𝑛 (𝑉𝑋)))
2018, 19eqeq12d 2753 . . . 4 (𝑥 = 𝑛 → ((𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑥 (𝑉𝑋)) ↔ (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 )) = (𝑛 (𝑉𝑋))))
2120imbi2d 340 . . 3 (𝑥 = 𝑛 → ((𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑥 (𝑉𝑋))) ↔ (𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 )) = (𝑛 (𝑉𝑋)))))
22 ifeq1 4529 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → if(𝑘 = 𝑋, 𝑥, 0) = if(𝑘 = 𝑋, (𝑛 + 1), 0))
2322mpteq2dv 5244 . . . . . . . 8 (𝑥 = (𝑛 + 1) → (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)))
2423eqeq2d 2748 . . . . . . 7 (𝑥 = (𝑛 + 1) → (𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) ↔ 𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0))))
2524ifbid 4549 . . . . . 6 (𝑥 = (𝑛 + 1) → if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 ) = if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 ))
2625mpteq2dv 5244 . . . . 5 (𝑥 = (𝑛 + 1) → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )))
27 oveq1 7438 . . . . 5 (𝑥 = (𝑛 + 1) → (𝑥 (𝑉𝑋)) = ((𝑛 + 1) (𝑉𝑋)))
2826, 27eqeq12d 2753 . . . 4 (𝑥 = (𝑛 + 1) → ((𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑥 (𝑉𝑋)) ↔ (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )) = ((𝑛 + 1) (𝑉𝑋))))
2928imbi2d 340 . . 3 (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑥 (𝑉𝑋))) ↔ (𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )) = ((𝑛 + 1) (𝑉𝑋)))))
30 ifeq1 4529 . . . . . . . . 9 (𝑥 = 𝑁 → if(𝑘 = 𝑋, 𝑥, 0) = if(𝑘 = 𝑋, 𝑁, 0))
3130mpteq2dv 5244 . . . . . . . 8 (𝑥 = 𝑁 → (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0)))
3231eqeq2d 2748 . . . . . . 7 (𝑥 = 𝑁 → (𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)) ↔ 𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0))))
3332ifbid 4549 . . . . . 6 (𝑥 = 𝑁 → if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 ) = if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0)), 1 , 0 ))
3433mpteq2dv 5244 . . . . 5 (𝑥 = 𝑁 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0)), 1 , 0 )))
35 oveq1 7438 . . . . 5 (𝑥 = 𝑁 → (𝑥 (𝑉𝑋)) = (𝑁 (𝑉𝑋)))
3634, 35eqeq12d 2753 . . . 4 (𝑥 = 𝑁 → ((𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑥 (𝑉𝑋)) ↔ (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0)), 1 , 0 )) = (𝑁 (𝑉𝑋))))
3736imbi2d 340 . . 3 (𝑥 = 𝑁 → ((𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑥, 0)), 1 , 0 )) = (𝑥 (𝑉𝑋))) ↔ (𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0)), 1 , 0 )) = (𝑁 (𝑉𝑋)))))
38 mplcoe1.p . . . . . 6 𝑃 = (𝐼 mPoly 𝑅)
39 mplcoe2.v . . . . . 6 𝑉 = (𝐼 mVar 𝑅)
40 eqid 2737 . . . . . 6 (Base‘𝑃) = (Base‘𝑃)
41 mplcoe1.i . . . . . 6 (𝜑𝐼𝑊)
42 mplcoe3.r . . . . . 6 (𝜑𝑅 ∈ Ring)
43 mplcoe3.x . . . . . 6 (𝜑𝑋𝐼)
4438, 39, 40, 41, 42, 43mvrcl 22012 . . . . 5 (𝜑 → (𝑉𝑋) ∈ (Base‘𝑃))
45 mplcoe2.g . . . . . . 7 𝐺 = (mulGrp‘𝑃)
4645, 40mgpbas 20142 . . . . . 6 (Base‘𝑃) = (Base‘𝐺)
47 eqid 2737 . . . . . . 7 (1r𝑃) = (1r𝑃)
4845, 47ringidval 20180 . . . . . 6 (1r𝑃) = (0g𝐺)
49 mplcoe2.m . . . . . 6 = (.g𝐺)
5046, 48, 49mulg0 19092 . . . . 5 ((𝑉𝑋) ∈ (Base‘𝑃) → (0 (𝑉𝑋)) = (1r𝑃))
5144, 50syl 17 . . . 4 (𝜑 → (0 (𝑉𝑋)) = (1r𝑃))
52 mplcoe1.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
53 mplcoe1.z . . . . 5 0 = (0g𝑅)
54 mplcoe1.o . . . . 5 1 = (1r𝑅)
5538, 52, 53, 54, 47, 41, 42mpl1 22032 . . . 4 (𝜑 → (1r𝑃) = (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )))
5651, 55eqtr2d 2778 . . 3 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) = (0 (𝑉𝑋)))
57 oveq1 7438 . . . . . 6 ((𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 )) = (𝑛 (𝑉𝑋)) → ((𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 ))(.r𝑃)(𝑉𝑋)) = ((𝑛 (𝑉𝑋))(.r𝑃)(𝑉𝑋)))
5841adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → 𝐼𝑊)
5942adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → 𝑅 ∈ Ring)
6052snifpsrbag 21940 . . . . . . . . . 10 ((𝐼𝑊𝑛 ∈ ℕ0) → (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) ∈ 𝐷)
6141, 60sylan 580 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) ∈ 𝐷)
62 eqid 2737 . . . . . . . . 9 (.r𝑃) = (.r𝑃)
63 1nn0 12542 . . . . . . . . . . 11 1 ∈ ℕ0
6463a1i 11 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → 1 ∈ ℕ0)
6552snifpsrbag 21940 . . . . . . . . . 10 ((𝐼𝑊 ∧ 1 ∈ ℕ0) → (𝑘𝐼 ↦ if(𝑘 = 𝑋, 1, 0)) ∈ 𝐷)
6641, 64, 65syl2an 596 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝑘𝐼 ↦ if(𝑘 = 𝑋, 1, 0)) ∈ 𝐷)
6738, 40, 53, 54, 52, 58, 59, 61, 62, 66mplmonmul 22054 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → ((𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 ))(.r𝑃)(𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 1, 0)), 1 , 0 ))) = (𝑦𝐷 ↦ if(𝑦 = ((𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) ∘f + (𝑘𝐼 ↦ if(𝑘 = 𝑋, 1, 0))), 1 , 0 )))
6843adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → 𝑋𝐼)
6939, 52, 53, 54, 58, 59, 68mvrval 22002 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝑉𝑋) = (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 1, 0)), 1 , 0 )))
7069eqcomd 2743 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 1, 0)), 1 , 0 )) = (𝑉𝑋))
7170oveq2d 7447 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → ((𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 ))(.r𝑃)(𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 1, 0)), 1 , 0 ))) = ((𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 ))(.r𝑃)(𝑉𝑋)))
72 simplr 769 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑘𝐼) → 𝑛 ∈ ℕ0)
73 0nn0 12541 . . . . . . . . . . . . . 14 0 ∈ ℕ0
74 ifcl 4571 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0 ∧ 0 ∈ ℕ0) → if(𝑘 = 𝑋, 𝑛, 0) ∈ ℕ0)
7572, 73, 74sylancl 586 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑘𝐼) → if(𝑘 = 𝑋, 𝑛, 0) ∈ ℕ0)
7663, 73ifcli 4573 . . . . . . . . . . . . . 14 if(𝑘 = 𝑋, 1, 0) ∈ ℕ0
7776a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑘𝐼) → if(𝑘 = 𝑋, 1, 0) ∈ ℕ0)
78 eqidd 2738 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)))
79 eqidd 2738 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → (𝑘𝐼 ↦ if(𝑘 = 𝑋, 1, 0)) = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 1, 0)))
8058, 75, 77, 78, 79offval2 7717 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ0) → ((𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) ∘f + (𝑘𝐼 ↦ if(𝑘 = 𝑋, 1, 0))) = (𝑘𝐼 ↦ (if(𝑘 = 𝑋, 𝑛, 0) + if(𝑘 = 𝑋, 1, 0))))
81 iftrue 4531 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑋 → if(𝑘 = 𝑋, 𝑛, 0) = 𝑛)
82 iftrue 4531 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑋 → if(𝑘 = 𝑋, 1, 0) = 1)
8381, 82oveq12d 7449 . . . . . . . . . . . . . . 15 (𝑘 = 𝑋 → (if(𝑘 = 𝑋, 𝑛, 0) + if(𝑘 = 𝑋, 1, 0)) = (𝑛 + 1))
84 iftrue 4531 . . . . . . . . . . . . . . 15 (𝑘 = 𝑋 → if(𝑘 = 𝑋, (𝑛 + 1), 0) = (𝑛 + 1))
8583, 84eqtr4d 2780 . . . . . . . . . . . . . 14 (𝑘 = 𝑋 → (if(𝑘 = 𝑋, 𝑛, 0) + if(𝑘 = 𝑋, 1, 0)) = if(𝑘 = 𝑋, (𝑛 + 1), 0))
86 00id 11436 . . . . . . . . . . . . . . 15 (0 + 0) = 0
87 iffalse 4534 . . . . . . . . . . . . . . . 16 𝑘 = 𝑋 → if(𝑘 = 𝑋, 𝑛, 0) = 0)
88 iffalse 4534 . . . . . . . . . . . . . . . 16 𝑘 = 𝑋 → if(𝑘 = 𝑋, 1, 0) = 0)
8987, 88oveq12d 7449 . . . . . . . . . . . . . . 15 𝑘 = 𝑋 → (if(𝑘 = 𝑋, 𝑛, 0) + if(𝑘 = 𝑋, 1, 0)) = (0 + 0))
90 iffalse 4534 . . . . . . . . . . . . . . 15 𝑘 = 𝑋 → if(𝑘 = 𝑋, (𝑛 + 1), 0) = 0)
9186, 89, 903eqtr4a 2803 . . . . . . . . . . . . . 14 𝑘 = 𝑋 → (if(𝑘 = 𝑋, 𝑛, 0) + if(𝑘 = 𝑋, 1, 0)) = if(𝑘 = 𝑋, (𝑛 + 1), 0))
9285, 91pm2.61i 182 . . . . . . . . . . . . 13 (if(𝑘 = 𝑋, 𝑛, 0) + if(𝑘 = 𝑋, 1, 0)) = if(𝑘 = 𝑋, (𝑛 + 1), 0)
9392mpteq2i 5247 . . . . . . . . . . . 12 (𝑘𝐼 ↦ (if(𝑘 = 𝑋, 𝑛, 0) + if(𝑘 = 𝑋, 1, 0))) = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0))
9480, 93eqtrdi 2793 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → ((𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) ∘f + (𝑘𝐼 ↦ if(𝑘 = 𝑋, 1, 0))) = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)))
9594eqeq2d 2748 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝑦 = ((𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) ∘f + (𝑘𝐼 ↦ if(𝑘 = 𝑋, 1, 0))) ↔ 𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0))))
9695ifbid 4549 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → if(𝑦 = ((𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) ∘f + (𝑘𝐼 ↦ if(𝑘 = 𝑋, 1, 0))), 1 , 0 ) = if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 ))
9796mpteq2dv 5244 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → (𝑦𝐷 ↦ if(𝑦 = ((𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)) ∘f + (𝑘𝐼 ↦ if(𝑘 = 𝑋, 1, 0))), 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )))
9867, 71, 973eqtr3rd 2786 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )) = ((𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 ))(.r𝑃)(𝑉𝑋)))
9938, 41, 42mplringd 22043 . . . . . . . . . 10 (𝜑𝑃 ∈ Ring)
10045ringmgp 20236 . . . . . . . . . 10 (𝑃 ∈ Ring → 𝐺 ∈ Mnd)
10199, 100syl 17 . . . . . . . . 9 (𝜑𝐺 ∈ Mnd)
102101adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → 𝐺 ∈ Mnd)
103 simpr 484 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
10444adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → (𝑉𝑋) ∈ (Base‘𝑃))
10545, 62mgpplusg 20141 . . . . . . . . 9 (.r𝑃) = (+g𝐺)
10646, 49, 105mulgnn0p1 19103 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝑛 ∈ ℕ0 ∧ (𝑉𝑋) ∈ (Base‘𝑃)) → ((𝑛 + 1) (𝑉𝑋)) = ((𝑛 (𝑉𝑋))(.r𝑃)(𝑉𝑋)))
107102, 103, 104, 106syl3anc 1373 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 + 1) (𝑉𝑋)) = ((𝑛 (𝑉𝑋))(.r𝑃)(𝑉𝑋)))
10898, 107eqeq12d 2753 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → ((𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )) = ((𝑛 + 1) (𝑉𝑋)) ↔ ((𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 ))(.r𝑃)(𝑉𝑋)) = ((𝑛 (𝑉𝑋))(.r𝑃)(𝑉𝑋))))
10957, 108imbitrrid 246 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → ((𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 )) = (𝑛 (𝑉𝑋)) → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )) = ((𝑛 + 1) (𝑉𝑋))))
110109expcom 413 . . . 4 (𝑛 ∈ ℕ0 → (𝜑 → ((𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 )) = (𝑛 (𝑉𝑋)) → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )) = ((𝑛 + 1) (𝑉𝑋)))))
111110a2d 29 . . 3 (𝑛 ∈ ℕ0 → ((𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑛, 0)), 1 , 0 )) = (𝑛 (𝑉𝑋))) → (𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, (𝑛 + 1), 0)), 1 , 0 )) = ((𝑛 + 1) (𝑉𝑋)))))
11213, 21, 29, 37, 56, 111nn0ind 12713 . 2 (𝑁 ∈ ℕ0 → (𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0)), 1 , 0 )) = (𝑁 (𝑉𝑋))))
1131, 112mpcom 38 1 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑘𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0)), 1 , 0 )) = (𝑁 (𝑉𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  {crab 3436  ifcif 4525  {csn 4626  cmpt 5225   × cxp 5683  ccnv 5684  cima 5688  cfv 6561  (class class class)co 7431  f cof 7695  m cmap 8866  Fincfn 8985  0cc0 11155  1c1 11156   + caddc 11158  cn 12266  0cn0 12526  Basecbs 17247  .rcmulr 17298  0gc0g 17484  Mndcmnd 18747  .gcmg 19085  mulGrpcmgp 20137  1rcur 20178  Ringcrg 20230   mVar cmvr 21925   mPoly cmpl 21926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-mulg 19086  df-subg 19141  df-ghm 19231  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-subrng 20546  df-subrg 20570  df-psr 21929  df-mvr 21930  df-mpl 21931
This theorem is referenced by:  mplcoe5  22058  coe1tm  22276
  Copyright terms: Public domain W3C validator