MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgm2nsgrplem2 Structured version   Visualization version   GIF version

Theorem mgm2nsgrplem2 18853
Description: Lemma 2 for mgm2nsgrp 18856. (Contributed by AV, 27-Jan-2020.)
Hypotheses
Ref Expression
mgm2nsgrp.s 𝑆 = {𝐴, 𝐵}
mgm2nsgrp.b (Base‘𝑀) = 𝑆
mgm2nsgrp.o (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴))
mgm2nsgrp.p = (+g𝑀)
Assertion
Ref Expression
mgm2nsgrplem2 ((𝐴𝑉𝐵𝑊) → ((𝐴 𝐴) 𝐵) = 𝐴)
Distinct variable groups:   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑀   𝑥, ,𝑦
Allowed substitution hints:   𝑀(𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem mgm2nsgrplem2
StepHypRef Expression
1 prid1g 4727 . . 3 (𝐴𝑉𝐴 ∈ {𝐴, 𝐵})
2 mgm2nsgrp.s . . 3 𝑆 = {𝐴, 𝐵}
31, 2eleqtrrdi 2840 . 2 (𝐴𝑉𝐴𝑆)
4 prid2g 4728 . . 3 (𝐵𝑊𝐵 ∈ {𝐴, 𝐵})
54, 2eleqtrrdi 2840 . 2 (𝐵𝑊𝐵𝑆)
6 mgm2nsgrp.p . . . . 5 = (+g𝑀)
7 mgm2nsgrp.o . . . . 5 (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴))
86, 7eqtri 2753 . . . 4 = (𝑥𝑆, 𝑦𝑆 ↦ if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴))
98a1i 11 . . 3 ((𝐴𝑆𝐵𝑆) → = (𝑥𝑆, 𝑦𝑆 ↦ if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴)))
10 ifeq1 4495 . . . . . . 7 (𝐵 = 𝐴 → if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴) = if((𝑥 = 𝐴𝑦 = 𝐴), 𝐴, 𝐴))
11 ifid 4532 . . . . . . 7 if((𝑥 = 𝐴𝑦 = 𝐴), 𝐴, 𝐴) = 𝐴
1210, 11eqtrdi 2781 . . . . . 6 (𝐵 = 𝐴 → if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴) = 𝐴)
1312a1d 25 . . . . 5 (𝐵 = 𝐴 → (𝑦 = 𝐵 → if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴) = 𝐴))
14 eqeq1 2734 . . . . . . . . . . 11 (𝑦 = 𝐵 → (𝑦 = 𝐴𝐵 = 𝐴))
1514bicomd 223 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝐵 = 𝐴𝑦 = 𝐴))
1615notbid 318 . . . . . . . . 9 (𝑦 = 𝐵 → (¬ 𝐵 = 𝐴 ↔ ¬ 𝑦 = 𝐴))
1716biimpac 478 . . . . . . . 8 ((¬ 𝐵 = 𝐴𝑦 = 𝐵) → ¬ 𝑦 = 𝐴)
1817intnand 488 . . . . . . 7 ((¬ 𝐵 = 𝐴𝑦 = 𝐵) → ¬ (𝑥 = 𝐴𝑦 = 𝐴))
1918iffalsed 4502 . . . . . 6 ((¬ 𝐵 = 𝐴𝑦 = 𝐵) → if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴) = 𝐴)
2019ex 412 . . . . 5 𝐵 = 𝐴 → (𝑦 = 𝐵 → if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴) = 𝐴))
2113, 20pm2.61i 182 . . . 4 (𝑦 = 𝐵 → if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴) = 𝐴)
2221ad2antll 729 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝑥 = (𝐴 𝐴) ∧ 𝑦 = 𝐵)) → if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴) = 𝐴)
23 iftrue 4497 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐴) → if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴) = 𝐵)
2423adantl 481 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝑥 = 𝐴𝑦 = 𝐴)) → if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴) = 𝐵)
25 simpl 482 . . . . 5 ((𝐴𝑆𝐵𝑆) → 𝐴𝑆)
26 simpr 484 . . . . 5 ((𝐴𝑆𝐵𝑆) → 𝐵𝑆)
279, 24, 25, 25, 26ovmpod 7544 . . . 4 ((𝐴𝑆𝐵𝑆) → (𝐴 𝐴) = 𝐵)
2827, 26eqeltrd 2829 . . 3 ((𝐴𝑆𝐵𝑆) → (𝐴 𝐴) ∈ 𝑆)
299, 22, 28, 26, 25ovmpod 7544 . 2 ((𝐴𝑆𝐵𝑆) → ((𝐴 𝐴) 𝐵) = 𝐴)
303, 5, 29syl2an 596 1 ((𝐴𝑉𝐵𝑊) → ((𝐴 𝐴) 𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  ifcif 4491  {cpr 4594  cfv 6514  (class class class)co 7390  cmpo 7392  Basecbs 17186  +gcplusg 17227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395
This theorem is referenced by:  mgm2nsgrplem4  18855
  Copyright terms: Public domain W3C validator