Proof of Theorem mgm2nsgrplem3
Step | Hyp | Ref
| Expression |
1 | | prid1g 4696 |
. . 3
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) |
2 | | mgm2nsgrp.s |
. . 3
⊢ 𝑆 = {𝐴, 𝐵} |
3 | 1, 2 | eleqtrrdi 2850 |
. 2
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑆) |
4 | | prid2g 4697 |
. . 3
⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ {𝐴, 𝐵}) |
5 | 4, 2 | eleqtrrdi 2850 |
. 2
⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ 𝑆) |
6 | | mgm2nsgrp.p |
. . . . 5
⊢ ⚬ =
(+g‘𝑀) |
7 | | mgm2nsgrp.o |
. . . . 5
⊢
(+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐵, 𝐴)) |
8 | 6, 7 | eqtri 2766 |
. . . 4
⊢ ⚬ =
(𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐵, 𝐴)) |
9 | 8 | a1i 11 |
. . 3
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ⚬ = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐵, 𝐴))) |
10 | | simprl 768 |
. . . . 5
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝑥 = 𝐴 ∧ 𝑦 = (𝐴 ⚬ 𝐵))) → 𝑥 = 𝐴) |
11 | | simpr 485 |
. . . . . 6
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = (𝐴 ⚬ 𝐵)) → 𝑦 = (𝐴 ⚬ 𝐵)) |
12 | | ifeq1 4463 |
. . . . . . . . . . 11
⊢ (𝐵 = 𝐴 → if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐵, 𝐴) = if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐴, 𝐴)) |
13 | | ifid 4499 |
. . . . . . . . . . 11
⊢ if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐴, 𝐴) = 𝐴 |
14 | 12, 13 | eqtrdi 2794 |
. . . . . . . . . 10
⊢ (𝐵 = 𝐴 → if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐵, 𝐴) = 𝐴) |
15 | 14 | a1d 25 |
. . . . . . . . 9
⊢ (𝐵 = 𝐴 → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐵, 𝐴) = 𝐴)) |
16 | | eqeq1 2742 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝐵 → (𝑦 = 𝐴 ↔ 𝐵 = 𝐴)) |
17 | 16 | biimpcd 248 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝐴 → (𝑦 = 𝐵 → 𝐵 = 𝐴)) |
18 | 17 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → (𝑦 = 𝐵 → 𝐵 = 𝐴)) |
19 | 18 | com12 32 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐵 → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝐵 = 𝐴)) |
20 | 19 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝐵 = 𝐴)) |
21 | 20 | con3d 152 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (¬ 𝐵 = 𝐴 → ¬ (𝑥 = 𝐴 ∧ 𝑦 = 𝐴))) |
22 | 21 | impcom 408 |
. . . . . . . . . . 11
⊢ ((¬
𝐵 = 𝐴 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → ¬ (𝑥 = 𝐴 ∧ 𝑦 = 𝐴)) |
23 | 22 | iffalsed 4470 |
. . . . . . . . . 10
⊢ ((¬
𝐵 = 𝐴 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐵, 𝐴) = 𝐴) |
24 | 23 | ex 413 |
. . . . . . . . 9
⊢ (¬
𝐵 = 𝐴 → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐵, 𝐴) = 𝐴)) |
25 | 15, 24 | pm2.61i 182 |
. . . . . . . 8
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐵, 𝐴) = 𝐴) |
26 | 25 | adantl 482 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐵, 𝐴) = 𝐴) |
27 | | simpl 483 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 𝐴 ∈ 𝑆) |
28 | | simpr 485 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 𝐵 ∈ 𝑆) |
29 | 9, 26, 27, 28, 27 | ovmpod 7425 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ⚬ 𝐵) = 𝐴) |
30 | 11, 29 | sylan9eqr 2800 |
. . . . 5
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝑥 = 𝐴 ∧ 𝑦 = (𝐴 ⚬ 𝐵))) → 𝑦 = 𝐴) |
31 | 10, 30 | jca 512 |
. . . 4
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝑥 = 𝐴 ∧ 𝑦 = (𝐴 ⚬ 𝐵))) → (𝑥 = 𝐴 ∧ 𝑦 = 𝐴)) |
32 | 31 | iftrued 4467 |
. . 3
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝑥 = 𝐴 ∧ 𝑦 = (𝐴 ⚬ 𝐵))) → if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐵, 𝐴) = 𝐵) |
33 | 29, 27 | eqeltrd 2839 |
. . 3
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ⚬ 𝐵) ∈ 𝑆) |
34 | 9, 32, 27, 33, 28 | ovmpod 7425 |
. 2
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ⚬ (𝐴 ⚬ 𝐵)) = 𝐵) |
35 | 3, 5, 34 | syl2an 596 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⚬ (𝐴 ⚬ 𝐵)) = 𝐵) |