MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgm2nsgrplem3 Structured version   Visualization version   GIF version

Theorem mgm2nsgrplem3 18731
Description: Lemma 3 for mgm2nsgrp 18733. (Contributed by AV, 28-Jan-2020.)
Hypotheses
Ref Expression
mgm2nsgrp.s 𝑆 = {𝐴, 𝐵}
mgm2nsgrp.b (Base‘𝑀) = 𝑆
mgm2nsgrp.o (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴))
mgm2nsgrp.p = (+g𝑀)
Assertion
Ref Expression
mgm2nsgrplem3 ((𝐴𝑉𝐵𝑊) → (𝐴 (𝐴 𝐵)) = 𝐵)
Distinct variable groups:   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑀   𝑥, ,𝑦
Allowed substitution hints:   𝑀(𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem mgm2nsgrplem3
StepHypRef Expression
1 prid1g 4722 . . 3 (𝐴𝑉𝐴 ∈ {𝐴, 𝐵})
2 mgm2nsgrp.s . . 3 𝑆 = {𝐴, 𝐵}
31, 2eleqtrrdi 2849 . 2 (𝐴𝑉𝐴𝑆)
4 prid2g 4723 . . 3 (𝐵𝑊𝐵 ∈ {𝐴, 𝐵})
54, 2eleqtrrdi 2849 . 2 (𝐵𝑊𝐵𝑆)
6 mgm2nsgrp.p . . . . 5 = (+g𝑀)
7 mgm2nsgrp.o . . . . 5 (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴))
86, 7eqtri 2765 . . . 4 = (𝑥𝑆, 𝑦𝑆 ↦ if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴))
98a1i 11 . . 3 ((𝐴𝑆𝐵𝑆) → = (𝑥𝑆, 𝑦𝑆 ↦ if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴)))
10 simprl 770 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝑥 = 𝐴𝑦 = (𝐴 𝐵))) → 𝑥 = 𝐴)
11 simpr 486 . . . . . 6 ((𝑥 = 𝐴𝑦 = (𝐴 𝐵)) → 𝑦 = (𝐴 𝐵))
12 ifeq1 4491 . . . . . . . . . . 11 (𝐵 = 𝐴 → if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴) = if((𝑥 = 𝐴𝑦 = 𝐴), 𝐴, 𝐴))
13 ifid 4527 . . . . . . . . . . 11 if((𝑥 = 𝐴𝑦 = 𝐴), 𝐴, 𝐴) = 𝐴
1412, 13eqtrdi 2793 . . . . . . . . . 10 (𝐵 = 𝐴 → if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴) = 𝐴)
1514a1d 25 . . . . . . . . 9 (𝐵 = 𝐴 → ((𝑥 = 𝐴𝑦 = 𝐵) → if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴) = 𝐴))
16 eqeq1 2741 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝐵 → (𝑦 = 𝐴𝐵 = 𝐴))
1716biimpcd 249 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐴 → (𝑦 = 𝐵𝐵 = 𝐴))
1817adantl 483 . . . . . . . . . . . . . . 15 ((𝑥 = 𝐴𝑦 = 𝐴) → (𝑦 = 𝐵𝐵 = 𝐴))
1918com12 32 . . . . . . . . . . . . . 14 (𝑦 = 𝐵 → ((𝑥 = 𝐴𝑦 = 𝐴) → 𝐵 = 𝐴))
2019adantl 483 . . . . . . . . . . . . 13 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥 = 𝐴𝑦 = 𝐴) → 𝐵 = 𝐴))
2120con3d 152 . . . . . . . . . . . 12 ((𝑥 = 𝐴𝑦 = 𝐵) → (¬ 𝐵 = 𝐴 → ¬ (𝑥 = 𝐴𝑦 = 𝐴)))
2221impcom 409 . . . . . . . . . . 11 ((¬ 𝐵 = 𝐴 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ¬ (𝑥 = 𝐴𝑦 = 𝐴))
2322iffalsed 4498 . . . . . . . . . 10 ((¬ 𝐵 = 𝐴 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴) = 𝐴)
2423ex 414 . . . . . . . . 9 𝐵 = 𝐴 → ((𝑥 = 𝐴𝑦 = 𝐵) → if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴) = 𝐴))
2515, 24pm2.61i 182 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴) = 𝐴)
2625adantl 483 . . . . . . 7 (((𝐴𝑆𝐵𝑆) ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴) = 𝐴)
27 simpl 484 . . . . . . 7 ((𝐴𝑆𝐵𝑆) → 𝐴𝑆)
28 simpr 486 . . . . . . 7 ((𝐴𝑆𝐵𝑆) → 𝐵𝑆)
299, 26, 27, 28, 27ovmpod 7508 . . . . . 6 ((𝐴𝑆𝐵𝑆) → (𝐴 𝐵) = 𝐴)
3011, 29sylan9eqr 2799 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝑥 = 𝐴𝑦 = (𝐴 𝐵))) → 𝑦 = 𝐴)
3110, 30jca 513 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝑥 = 𝐴𝑦 = (𝐴 𝐵))) → (𝑥 = 𝐴𝑦 = 𝐴))
3231iftrued 4495 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝑥 = 𝐴𝑦 = (𝐴 𝐵))) → if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴) = 𝐵)
3329, 27eqeltrd 2838 . . 3 ((𝐴𝑆𝐵𝑆) → (𝐴 𝐵) ∈ 𝑆)
349, 32, 27, 33, 28ovmpod 7508 . 2 ((𝐴𝑆𝐵𝑆) → (𝐴 (𝐴 𝐵)) = 𝐵)
353, 5, 34syl2an 597 1 ((𝐴𝑉𝐵𝑊) → (𝐴 (𝐴 𝐵)) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1542  wcel 2107  ifcif 4487  {cpr 4589  cfv 6497  (class class class)co 7358  cmpo 7360  Basecbs 17084  +gcplusg 17134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pr 5385
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ral 3066  df-rex 3075  df-rab 3409  df-v 3448  df-sbc 3741  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-iota 6449  df-fun 6499  df-fv 6505  df-ov 7361  df-oprab 7362  df-mpo 7363
This theorem is referenced by:  mgm2nsgrplem4  18732
  Copyright terms: Public domain W3C validator