Proof of Theorem mgm2nsgrplem3
| Step | Hyp | Ref
| Expression |
| 1 | | prid1g 4760 |
. . 3
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) |
| 2 | | mgm2nsgrp.s |
. . 3
⊢ 𝑆 = {𝐴, 𝐵} |
| 3 | 1, 2 | eleqtrrdi 2852 |
. 2
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑆) |
| 4 | | prid2g 4761 |
. . 3
⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ {𝐴, 𝐵}) |
| 5 | 4, 2 | eleqtrrdi 2852 |
. 2
⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ 𝑆) |
| 6 | | mgm2nsgrp.p |
. . . . 5
⊢ ⚬ =
(+g‘𝑀) |
| 7 | | mgm2nsgrp.o |
. . . . 5
⊢
(+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐵, 𝐴)) |
| 8 | 6, 7 | eqtri 2765 |
. . . 4
⊢ ⚬ =
(𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐵, 𝐴)) |
| 9 | 8 | a1i 11 |
. . 3
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ⚬ = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐵, 𝐴))) |
| 10 | | simprl 771 |
. . . . 5
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝑥 = 𝐴 ∧ 𝑦 = (𝐴 ⚬ 𝐵))) → 𝑥 = 𝐴) |
| 11 | | simpr 484 |
. . . . . 6
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = (𝐴 ⚬ 𝐵)) → 𝑦 = (𝐴 ⚬ 𝐵)) |
| 12 | | ifeq1 4529 |
. . . . . . . . . . 11
⊢ (𝐵 = 𝐴 → if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐵, 𝐴) = if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐴, 𝐴)) |
| 13 | | ifid 4566 |
. . . . . . . . . . 11
⊢ if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐴, 𝐴) = 𝐴 |
| 14 | 12, 13 | eqtrdi 2793 |
. . . . . . . . . 10
⊢ (𝐵 = 𝐴 → if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐵, 𝐴) = 𝐴) |
| 15 | 14 | a1d 25 |
. . . . . . . . 9
⊢ (𝐵 = 𝐴 → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐵, 𝐴) = 𝐴)) |
| 16 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝐵 → (𝑦 = 𝐴 ↔ 𝐵 = 𝐴)) |
| 17 | 16 | biimpcd 249 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝐴 → (𝑦 = 𝐵 → 𝐵 = 𝐴)) |
| 18 | 17 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → (𝑦 = 𝐵 → 𝐵 = 𝐴)) |
| 19 | 18 | com12 32 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐵 → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝐵 = 𝐴)) |
| 20 | 19 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝐵 = 𝐴)) |
| 21 | 20 | con3d 152 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (¬ 𝐵 = 𝐴 → ¬ (𝑥 = 𝐴 ∧ 𝑦 = 𝐴))) |
| 22 | 21 | impcom 407 |
. . . . . . . . . . 11
⊢ ((¬
𝐵 = 𝐴 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → ¬ (𝑥 = 𝐴 ∧ 𝑦 = 𝐴)) |
| 23 | 22 | iffalsed 4536 |
. . . . . . . . . 10
⊢ ((¬
𝐵 = 𝐴 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐵, 𝐴) = 𝐴) |
| 24 | 23 | ex 412 |
. . . . . . . . 9
⊢ (¬
𝐵 = 𝐴 → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐵, 𝐴) = 𝐴)) |
| 25 | 15, 24 | pm2.61i 182 |
. . . . . . . 8
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐵, 𝐴) = 𝐴) |
| 26 | 25 | adantl 481 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐵, 𝐴) = 𝐴) |
| 27 | | simpl 482 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 𝐴 ∈ 𝑆) |
| 28 | | simpr 484 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 𝐵 ∈ 𝑆) |
| 29 | 9, 26, 27, 28, 27 | ovmpod 7585 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ⚬ 𝐵) = 𝐴) |
| 30 | 11, 29 | sylan9eqr 2799 |
. . . . 5
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝑥 = 𝐴 ∧ 𝑦 = (𝐴 ⚬ 𝐵))) → 𝑦 = 𝐴) |
| 31 | 10, 30 | jca 511 |
. . . 4
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝑥 = 𝐴 ∧ 𝑦 = (𝐴 ⚬ 𝐵))) → (𝑥 = 𝐴 ∧ 𝑦 = 𝐴)) |
| 32 | 31 | iftrued 4533 |
. . 3
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝑥 = 𝐴 ∧ 𝑦 = (𝐴 ⚬ 𝐵))) → if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐵, 𝐴) = 𝐵) |
| 33 | 29, 27 | eqeltrd 2841 |
. . 3
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ⚬ 𝐵) ∈ 𝑆) |
| 34 | 9, 32, 27, 33, 28 | ovmpod 7585 |
. 2
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ⚬ (𝐴 ⚬ 𝐵)) = 𝐵) |
| 35 | 3, 5, 34 | syl2an 596 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⚬ (𝐴 ⚬ 𝐵)) = 𝐵) |