MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgm2nsgrplem3 Structured version   Visualization version   GIF version

Theorem mgm2nsgrplem3 18801
Description: Lemma 3 for mgm2nsgrp 18803. (Contributed by AV, 28-Jan-2020.)
Hypotheses
Ref Expression
mgm2nsgrp.s 𝑆 = {𝐴, 𝐵}
mgm2nsgrp.b (Base‘𝑀) = 𝑆
mgm2nsgrp.o (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴))
mgm2nsgrp.p = (+g𝑀)
Assertion
Ref Expression
mgm2nsgrplem3 ((𝐴𝑉𝐵𝑊) → (𝐴 (𝐴 𝐵)) = 𝐵)
Distinct variable groups:   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑀   𝑥, ,𝑦
Allowed substitution hints:   𝑀(𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem mgm2nsgrplem3
StepHypRef Expression
1 prid1g 4765 . . 3 (𝐴𝑉𝐴 ∈ {𝐴, 𝐵})
2 mgm2nsgrp.s . . 3 𝑆 = {𝐴, 𝐵}
31, 2eleqtrrdi 2845 . 2 (𝐴𝑉𝐴𝑆)
4 prid2g 4766 . . 3 (𝐵𝑊𝐵 ∈ {𝐴, 𝐵})
54, 2eleqtrrdi 2845 . 2 (𝐵𝑊𝐵𝑆)
6 mgm2nsgrp.p . . . . 5 = (+g𝑀)
7 mgm2nsgrp.o . . . . 5 (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴))
86, 7eqtri 2761 . . . 4 = (𝑥𝑆, 𝑦𝑆 ↦ if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴))
98a1i 11 . . 3 ((𝐴𝑆𝐵𝑆) → = (𝑥𝑆, 𝑦𝑆 ↦ if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴)))
10 simprl 770 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝑥 = 𝐴𝑦 = (𝐴 𝐵))) → 𝑥 = 𝐴)
11 simpr 486 . . . . . 6 ((𝑥 = 𝐴𝑦 = (𝐴 𝐵)) → 𝑦 = (𝐴 𝐵))
12 ifeq1 4533 . . . . . . . . . . 11 (𝐵 = 𝐴 → if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴) = if((𝑥 = 𝐴𝑦 = 𝐴), 𝐴, 𝐴))
13 ifid 4569 . . . . . . . . . . 11 if((𝑥 = 𝐴𝑦 = 𝐴), 𝐴, 𝐴) = 𝐴
1412, 13eqtrdi 2789 . . . . . . . . . 10 (𝐵 = 𝐴 → if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴) = 𝐴)
1514a1d 25 . . . . . . . . 9 (𝐵 = 𝐴 → ((𝑥 = 𝐴𝑦 = 𝐵) → if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴) = 𝐴))
16 eqeq1 2737 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝐵 → (𝑦 = 𝐴𝐵 = 𝐴))
1716biimpcd 248 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐴 → (𝑦 = 𝐵𝐵 = 𝐴))
1817adantl 483 . . . . . . . . . . . . . . 15 ((𝑥 = 𝐴𝑦 = 𝐴) → (𝑦 = 𝐵𝐵 = 𝐴))
1918com12 32 . . . . . . . . . . . . . 14 (𝑦 = 𝐵 → ((𝑥 = 𝐴𝑦 = 𝐴) → 𝐵 = 𝐴))
2019adantl 483 . . . . . . . . . . . . 13 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥 = 𝐴𝑦 = 𝐴) → 𝐵 = 𝐴))
2120con3d 152 . . . . . . . . . . . 12 ((𝑥 = 𝐴𝑦 = 𝐵) → (¬ 𝐵 = 𝐴 → ¬ (𝑥 = 𝐴𝑦 = 𝐴)))
2221impcom 409 . . . . . . . . . . 11 ((¬ 𝐵 = 𝐴 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ¬ (𝑥 = 𝐴𝑦 = 𝐴))
2322iffalsed 4540 . . . . . . . . . 10 ((¬ 𝐵 = 𝐴 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴) = 𝐴)
2423ex 414 . . . . . . . . 9 𝐵 = 𝐴 → ((𝑥 = 𝐴𝑦 = 𝐵) → if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴) = 𝐴))
2515, 24pm2.61i 182 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴) = 𝐴)
2625adantl 483 . . . . . . 7 (((𝐴𝑆𝐵𝑆) ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴) = 𝐴)
27 simpl 484 . . . . . . 7 ((𝐴𝑆𝐵𝑆) → 𝐴𝑆)
28 simpr 486 . . . . . . 7 ((𝐴𝑆𝐵𝑆) → 𝐵𝑆)
299, 26, 27, 28, 27ovmpod 7560 . . . . . 6 ((𝐴𝑆𝐵𝑆) → (𝐴 𝐵) = 𝐴)
3011, 29sylan9eqr 2795 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝑥 = 𝐴𝑦 = (𝐴 𝐵))) → 𝑦 = 𝐴)
3110, 30jca 513 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝑥 = 𝐴𝑦 = (𝐴 𝐵))) → (𝑥 = 𝐴𝑦 = 𝐴))
3231iftrued 4537 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝑥 = 𝐴𝑦 = (𝐴 𝐵))) → if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴) = 𝐵)
3329, 27eqeltrd 2834 . . 3 ((𝐴𝑆𝐵𝑆) → (𝐴 𝐵) ∈ 𝑆)
349, 32, 27, 33, 28ovmpod 7560 . 2 ((𝐴𝑆𝐵𝑆) → (𝐴 (𝐴 𝐵)) = 𝐵)
353, 5, 34syl2an 597 1 ((𝐴𝑉𝐵𝑊) → (𝐴 (𝐴 𝐵)) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1542  wcel 2107  ifcif 4529  {cpr 4631  cfv 6544  (class class class)co 7409  cmpo 7411  Basecbs 17144  +gcplusg 17197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414
This theorem is referenced by:  mgm2nsgrplem4  18802
  Copyright terms: Public domain W3C validator