MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgm2nsgrplem3 Structured version   Visualization version   GIF version

Theorem mgm2nsgrplem3 18955
Description: Lemma 3 for mgm2nsgrp 18957. (Contributed by AV, 28-Jan-2020.)
Hypotheses
Ref Expression
mgm2nsgrp.s 𝑆 = {𝐴, 𝐵}
mgm2nsgrp.b (Base‘𝑀) = 𝑆
mgm2nsgrp.o (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴))
mgm2nsgrp.p = (+g𝑀)
Assertion
Ref Expression
mgm2nsgrplem3 ((𝐴𝑉𝐵𝑊) → (𝐴 (𝐴 𝐵)) = 𝐵)
Distinct variable groups:   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑀   𝑥, ,𝑦
Allowed substitution hints:   𝑀(𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem mgm2nsgrplem3
StepHypRef Expression
1 prid1g 4785 . . 3 (𝐴𝑉𝐴 ∈ {𝐴, 𝐵})
2 mgm2nsgrp.s . . 3 𝑆 = {𝐴, 𝐵}
31, 2eleqtrrdi 2855 . 2 (𝐴𝑉𝐴𝑆)
4 prid2g 4786 . . 3 (𝐵𝑊𝐵 ∈ {𝐴, 𝐵})
54, 2eleqtrrdi 2855 . 2 (𝐵𝑊𝐵𝑆)
6 mgm2nsgrp.p . . . . 5 = (+g𝑀)
7 mgm2nsgrp.o . . . . 5 (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴))
86, 7eqtri 2768 . . . 4 = (𝑥𝑆, 𝑦𝑆 ↦ if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴))
98a1i 11 . . 3 ((𝐴𝑆𝐵𝑆) → = (𝑥𝑆, 𝑦𝑆 ↦ if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴)))
10 simprl 770 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝑥 = 𝐴𝑦 = (𝐴 𝐵))) → 𝑥 = 𝐴)
11 simpr 484 . . . . . 6 ((𝑥 = 𝐴𝑦 = (𝐴 𝐵)) → 𝑦 = (𝐴 𝐵))
12 ifeq1 4552 . . . . . . . . . . 11 (𝐵 = 𝐴 → if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴) = if((𝑥 = 𝐴𝑦 = 𝐴), 𝐴, 𝐴))
13 ifid 4588 . . . . . . . . . . 11 if((𝑥 = 𝐴𝑦 = 𝐴), 𝐴, 𝐴) = 𝐴
1412, 13eqtrdi 2796 . . . . . . . . . 10 (𝐵 = 𝐴 → if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴) = 𝐴)
1514a1d 25 . . . . . . . . 9 (𝐵 = 𝐴 → ((𝑥 = 𝐴𝑦 = 𝐵) → if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴) = 𝐴))
16 eqeq1 2744 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝐵 → (𝑦 = 𝐴𝐵 = 𝐴))
1716biimpcd 249 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐴 → (𝑦 = 𝐵𝐵 = 𝐴))
1817adantl 481 . . . . . . . . . . . . . . 15 ((𝑥 = 𝐴𝑦 = 𝐴) → (𝑦 = 𝐵𝐵 = 𝐴))
1918com12 32 . . . . . . . . . . . . . 14 (𝑦 = 𝐵 → ((𝑥 = 𝐴𝑦 = 𝐴) → 𝐵 = 𝐴))
2019adantl 481 . . . . . . . . . . . . 13 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥 = 𝐴𝑦 = 𝐴) → 𝐵 = 𝐴))
2120con3d 152 . . . . . . . . . . . 12 ((𝑥 = 𝐴𝑦 = 𝐵) → (¬ 𝐵 = 𝐴 → ¬ (𝑥 = 𝐴𝑦 = 𝐴)))
2221impcom 407 . . . . . . . . . . 11 ((¬ 𝐵 = 𝐴 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ¬ (𝑥 = 𝐴𝑦 = 𝐴))
2322iffalsed 4559 . . . . . . . . . 10 ((¬ 𝐵 = 𝐴 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴) = 𝐴)
2423ex 412 . . . . . . . . 9 𝐵 = 𝐴 → ((𝑥 = 𝐴𝑦 = 𝐵) → if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴) = 𝐴))
2515, 24pm2.61i 182 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴) = 𝐴)
2625adantl 481 . . . . . . 7 (((𝐴𝑆𝐵𝑆) ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴) = 𝐴)
27 simpl 482 . . . . . . 7 ((𝐴𝑆𝐵𝑆) → 𝐴𝑆)
28 simpr 484 . . . . . . 7 ((𝐴𝑆𝐵𝑆) → 𝐵𝑆)
299, 26, 27, 28, 27ovmpod 7602 . . . . . 6 ((𝐴𝑆𝐵𝑆) → (𝐴 𝐵) = 𝐴)
3011, 29sylan9eqr 2802 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝑥 = 𝐴𝑦 = (𝐴 𝐵))) → 𝑦 = 𝐴)
3110, 30jca 511 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝑥 = 𝐴𝑦 = (𝐴 𝐵))) → (𝑥 = 𝐴𝑦 = 𝐴))
3231iftrued 4556 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝑥 = 𝐴𝑦 = (𝐴 𝐵))) → if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴) = 𝐵)
3329, 27eqeltrd 2844 . . 3 ((𝐴𝑆𝐵𝑆) → (𝐴 𝐵) ∈ 𝑆)
349, 32, 27, 33, 28ovmpod 7602 . 2 ((𝐴𝑆𝐵𝑆) → (𝐴 (𝐴 𝐵)) = 𝐵)
353, 5, 34syl2an 595 1 ((𝐴𝑉𝐵𝑊) → (𝐴 (𝐴 𝐵)) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  ifcif 4548  {cpr 4650  cfv 6573  (class class class)co 7448  cmpo 7450  Basecbs 17258  +gcplusg 17311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453
This theorem is referenced by:  mgm2nsgrplem4  18956
  Copyright terms: Public domain W3C validator