Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > marrepval0 | Structured version Visualization version GIF version |
Description: Second substitution for the definition of the matrix row replacement function. (Contributed by AV, 12-Feb-2019.) |
Ref | Expression |
---|---|
marrepfval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
marrepfval.b | ⊢ 𝐵 = (Base‘𝐴) |
marrepfval.q | ⊢ 𝑄 = (𝑁 matRRep 𝑅) |
marrepfval.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
marrepval0 | ⊢ ((𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) → (𝑀𝑄𝑆) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | marrepfval.a | . . . . . . 7 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | marrepfval.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐴) | |
3 | 1, 2 | matrcl 21469 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
4 | 3 | simpld 494 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
5 | 4, 4 | jca 511 | . . . 4 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin)) |
6 | 5 | adantr 480 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin)) |
7 | mpoexga 7891 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗)))) ∈ V) | |
8 | 6, 7 | syl 17 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) → (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗)))) ∈ V) |
9 | ifeq1 4460 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → if(𝑗 = 𝑙, 𝑠, 0 ) = if(𝑗 = 𝑙, 𝑆, 0 )) | |
10 | 9 | adantl 481 | . . . . . 6 ⊢ ((𝑚 = 𝑀 ∧ 𝑠 = 𝑆) → if(𝑗 = 𝑙, 𝑠, 0 ) = if(𝑗 = 𝑙, 𝑆, 0 )) |
11 | oveq 7261 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗)) | |
12 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝑚 = 𝑀 ∧ 𝑠 = 𝑆) → (𝑖𝑚𝑗) = (𝑖𝑀𝑗)) |
13 | 10, 12 | ifeq12d 4477 | . . . . 5 ⊢ ((𝑚 = 𝑀 ∧ 𝑠 = 𝑆) → if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗)) = if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗))) |
14 | 13 | mpoeq3dv 7332 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑠 = 𝑆) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗)))) |
15 | 14 | mpoeq3dv 7332 | . . 3 ⊢ ((𝑚 = 𝑀 ∧ 𝑠 = 𝑆) → (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗)))) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗))))) |
16 | marrepfval.q | . . . 4 ⊢ 𝑄 = (𝑁 matRRep 𝑅) | |
17 | marrepfval.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
18 | 1, 2, 16, 17 | marrepfval 21617 | . . 3 ⊢ 𝑄 = (𝑚 ∈ 𝐵, 𝑠 ∈ (Base‘𝑅) ↦ (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗))))) |
19 | 15, 18 | ovmpoga 7405 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅) ∧ (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗)))) ∈ V) → (𝑀𝑄𝑆) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗))))) |
20 | 8, 19 | mpd3an3 1460 | 1 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) → (𝑀𝑄𝑆) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ifcif 4456 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 Fincfn 8691 Basecbs 16840 0gc0g 17067 Mat cmat 21464 matRRep cmarrep 21613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-1cn 10860 ax-addcl 10862 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-nn 11904 df-slot 16811 df-ndx 16823 df-base 16841 df-mat 21465 df-marrep 21615 |
This theorem is referenced by: marrepval 21619 minmar1marrep 21707 |
Copyright terms: Public domain | W3C validator |