MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marrepval0 Structured version   Visualization version   GIF version

Theorem marrepval0 22504
Description: Second substitution for the definition of the matrix row replacement function. (Contributed by AV, 12-Feb-2019.)
Hypotheses
Ref Expression
marrepfval.a 𝐴 = (𝑁 Mat 𝑅)
marrepfval.b 𝐵 = (Base‘𝐴)
marrepfval.q 𝑄 = (𝑁 matRRep 𝑅)
marrepfval.z 0 = (0g𝑅)
Assertion
Ref Expression
marrepval0 ((𝑀𝐵𝑆 ∈ (Base‘𝑅)) → (𝑀𝑄𝑆) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗)))))
Distinct variable groups:   𝑖,𝑁,𝑗,𝑘,𝑙   𝑅,𝑖,𝑗,𝑘,𝑙   𝑖,𝑀,𝑗,𝑘,𝑙   𝑆,𝑖,𝑗,𝑘,𝑙
Allowed substitution hints:   𝐴(𝑖,𝑗,𝑘,𝑙)   𝐵(𝑖,𝑗,𝑘,𝑙)   𝑄(𝑖,𝑗,𝑘,𝑙)   0 (𝑖,𝑗,𝑘,𝑙)

Proof of Theorem marrepval0
Dummy variables 𝑚 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 marrepfval.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
2 marrepfval.b . . . . . . 7 𝐵 = (Base‘𝐴)
31, 2matrcl 22355 . . . . . 6 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
43simpld 494 . . . . 5 (𝑀𝐵𝑁 ∈ Fin)
54, 4jca 511 . . . 4 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
65adantr 480 . . 3 ((𝑀𝐵𝑆 ∈ (Base‘𝑅)) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
7 mpoexga 8081 . . 3 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗)))) ∈ V)
86, 7syl 17 . 2 ((𝑀𝐵𝑆 ∈ (Base‘𝑅)) → (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗)))) ∈ V)
9 ifeq1 4509 . . . . . . 7 (𝑠 = 𝑆 → if(𝑗 = 𝑙, 𝑠, 0 ) = if(𝑗 = 𝑙, 𝑆, 0 ))
109adantl 481 . . . . . 6 ((𝑚 = 𝑀𝑠 = 𝑆) → if(𝑗 = 𝑙, 𝑠, 0 ) = if(𝑗 = 𝑙, 𝑆, 0 ))
11 oveq 7416 . . . . . . 7 (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗))
1211adantr 480 . . . . . 6 ((𝑚 = 𝑀𝑠 = 𝑆) → (𝑖𝑚𝑗) = (𝑖𝑀𝑗))
1310, 12ifeq12d 4527 . . . . 5 ((𝑚 = 𝑀𝑠 = 𝑆) → if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗)) = if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗)))
1413mpoeq3dv 7491 . . . 4 ((𝑚 = 𝑀𝑠 = 𝑆) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗))))
1514mpoeq3dv 7491 . . 3 ((𝑚 = 𝑀𝑠 = 𝑆) → (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗)))) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗)))))
16 marrepfval.q . . . 4 𝑄 = (𝑁 matRRep 𝑅)
17 marrepfval.z . . . 4 0 = (0g𝑅)
181, 2, 16, 17marrepfval 22503 . . 3 𝑄 = (𝑚𝐵, 𝑠 ∈ (Base‘𝑅) ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗)))))
1915, 18ovmpoga 7566 . 2 ((𝑀𝐵𝑆 ∈ (Base‘𝑅) ∧ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗)))) ∈ V) → (𝑀𝑄𝑆) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗)))))
208, 19mpd3an3 1464 1 ((𝑀𝐵𝑆 ∈ (Base‘𝑅)) → (𝑀𝑄𝑆) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3464  ifcif 4505  cfv 6536  (class class class)co 7410  cmpo 7412  Fincfn 8964  Basecbs 17233  0gc0g 17458   Mat cmat 22350   matRRep cmarrep 22499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-1cn 11192  ax-addcl 11194
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-nn 12246  df-slot 17206  df-ndx 17218  df-base 17234  df-mat 22351  df-marrep 22501
This theorem is referenced by:  marrepval  22505  minmar1marrep  22593
  Copyright terms: Public domain W3C validator