| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > signspval | Structured version Visualization version GIF version | ||
| Description: The value of the skipping 0 sign operation. (Contributed by Thierry Arnoux, 9-Sep-2018.) |
| Ref | Expression |
|---|---|
| signsw.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
| Ref | Expression |
|---|---|
| signspval | ⊢ ((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → (𝑋 ⨣ 𝑌) = if(𝑌 = 0, 𝑋, 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifcl 4537 | . 2 ⊢ ((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → if(𝑌 = 0, 𝑋, 𝑌) ∈ {-1, 0, 1}) | |
| 2 | ifeq1 4495 | . . 3 ⊢ (𝑎 = 𝑋 → if(𝑏 = 0, 𝑎, 𝑏) = if(𝑏 = 0, 𝑋, 𝑏)) | |
| 3 | eqeq1 2734 | . . . 4 ⊢ (𝑏 = 𝑌 → (𝑏 = 0 ↔ 𝑌 = 0)) | |
| 4 | id 22 | . . . 4 ⊢ (𝑏 = 𝑌 → 𝑏 = 𝑌) | |
| 5 | 3, 4 | ifbieq2d 4518 | . . 3 ⊢ (𝑏 = 𝑌 → if(𝑏 = 0, 𝑋, 𝑏) = if(𝑌 = 0, 𝑋, 𝑌)) |
| 6 | signsw.p | . . 3 ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) | |
| 7 | 2, 5, 6 | ovmpog 7551 | . 2 ⊢ ((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1} ∧ if(𝑌 = 0, 𝑋, 𝑌) ∈ {-1, 0, 1}) → (𝑋 ⨣ 𝑌) = if(𝑌 = 0, 𝑋, 𝑌)) |
| 8 | 1, 7 | mpd3an3 1464 | 1 ⊢ ((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → (𝑋 ⨣ 𝑌) = if(𝑌 = 0, 𝑋, 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ifcif 4491 {ctp 4596 (class class class)co 7390 ∈ cmpo 7392 0cc0 11075 1c1 11076 -cneg 11413 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 |
| This theorem is referenced by: signsw0glem 34551 signswmnd 34555 signswrid 34556 signswlid 34557 signswn0 34558 signswch 34559 |
| Copyright terms: Public domain | W3C validator |