![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > signspval | Structured version Visualization version GIF version |
Description: The value of the skipping 0 sign operation. (Contributed by Thierry Arnoux, 9-Sep-2018.) |
Ref | Expression |
---|---|
signsw.p | âĒ âĻĢ = (ð â {-1, 0, 1}, ð â {-1, 0, 1} âĶ if(ð = 0, ð, ð)) |
Ref | Expression |
---|---|
signspval | âĒ ((ð â {-1, 0, 1} ⧠ð â {-1, 0, 1}) â (ð âĻĢ ð) = if(ð = 0, ð, ð)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifcl 4574 | . 2 âĒ ((ð â {-1, 0, 1} ⧠ð â {-1, 0, 1}) â if(ð = 0, ð, ð) â {-1, 0, 1}) | |
2 | ifeq1 4533 | . . 3 âĒ (ð = ð â if(ð = 0, ð, ð) = if(ð = 0, ð, ð)) | |
3 | eqeq1 2737 | . . . 4 âĒ (ð = ð â (ð = 0 â ð = 0)) | |
4 | id 22 | . . . 4 âĒ (ð = ð â ð = ð) | |
5 | 3, 4 | ifbieq2d 4555 | . . 3 âĒ (ð = ð â if(ð = 0, ð, ð) = if(ð = 0, ð, ð)) |
6 | signsw.p | . . 3 âĒ âĻĢ = (ð â {-1, 0, 1}, ð â {-1, 0, 1} âĶ if(ð = 0, ð, ð)) | |
7 | 2, 5, 6 | ovmpog 7567 | . 2 âĒ ((ð â {-1, 0, 1} ⧠ð â {-1, 0, 1} ⧠if(ð = 0, ð, ð) â {-1, 0, 1}) â (ð âĻĢ ð) = if(ð = 0, ð, ð)) |
8 | 1, 7 | mpd3an3 1463 | 1 âĒ ((ð â {-1, 0, 1} ⧠ð â {-1, 0, 1}) â (ð âĻĢ ð) = if(ð = 0, ð, ð)) |
Colors of variables: wff setvar class |
Syntax hints: â wi 4 ⧠wa 397 = wceq 1542 â wcel 2107 ifcif 4529 {ctp 4633 (class class class)co 7409 â cmpo 7411 0cc0 11110 1c1 11111 -cneg 11445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 |
This theorem is referenced by: signsw0glem 33564 signswmnd 33568 signswrid 33569 signswlid 33570 signswn0 33571 signswch 33572 |
Copyright terms: Public domain | W3C validator |