| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > signspval | Structured version Visualization version GIF version | ||
| Description: The value of the skipping 0 sign operation. (Contributed by Thierry Arnoux, 9-Sep-2018.) |
| Ref | Expression |
|---|---|
| signsw.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
| Ref | Expression |
|---|---|
| signspval | ⊢ ((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → (𝑋 ⨣ 𝑌) = if(𝑌 = 0, 𝑋, 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifcl 4522 | . 2 ⊢ ((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → if(𝑌 = 0, 𝑋, 𝑌) ∈ {-1, 0, 1}) | |
| 2 | ifeq1 4480 | . . 3 ⊢ (𝑎 = 𝑋 → if(𝑏 = 0, 𝑎, 𝑏) = if(𝑏 = 0, 𝑋, 𝑏)) | |
| 3 | eqeq1 2737 | . . . 4 ⊢ (𝑏 = 𝑌 → (𝑏 = 0 ↔ 𝑌 = 0)) | |
| 4 | id 22 | . . . 4 ⊢ (𝑏 = 𝑌 → 𝑏 = 𝑌) | |
| 5 | 3, 4 | ifbieq2d 4503 | . . 3 ⊢ (𝑏 = 𝑌 → if(𝑏 = 0, 𝑋, 𝑏) = if(𝑌 = 0, 𝑋, 𝑌)) |
| 6 | signsw.p | . . 3 ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) | |
| 7 | 2, 5, 6 | ovmpog 7513 | . 2 ⊢ ((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1} ∧ if(𝑌 = 0, 𝑋, 𝑌) ∈ {-1, 0, 1}) → (𝑋 ⨣ 𝑌) = if(𝑌 = 0, 𝑋, 𝑌)) |
| 8 | 1, 7 | mpd3an3 1464 | 1 ⊢ ((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → (𝑋 ⨣ 𝑌) = if(𝑌 = 0, 𝑋, 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ifcif 4476 {ctp 4581 (class class class)co 7354 ∈ cmpo 7356 0cc0 11015 1c1 11016 -cneg 11354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6444 df-fun 6490 df-fv 6496 df-ov 7357 df-oprab 7358 df-mpo 7359 |
| This theorem is referenced by: signsw0glem 34589 signswmnd 34593 signswrid 34594 signswlid 34595 signswn0 34596 signswch 34597 |
| Copyright terms: Public domain | W3C validator |