![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > signspval | Structured version Visualization version GIF version |
Description: The value of the skipping 0 sign operation. (Contributed by Thierry Arnoux, 9-Sep-2018.) |
Ref | Expression |
---|---|
signsw.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
Ref | Expression |
---|---|
signspval | ⊢ ((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → (𝑋 ⨣ 𝑌) = if(𝑌 = 0, 𝑋, 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifcl 4593 | . 2 ⊢ ((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → if(𝑌 = 0, 𝑋, 𝑌) ∈ {-1, 0, 1}) | |
2 | ifeq1 4552 | . . 3 ⊢ (𝑎 = 𝑋 → if(𝑏 = 0, 𝑎, 𝑏) = if(𝑏 = 0, 𝑋, 𝑏)) | |
3 | eqeq1 2744 | . . . 4 ⊢ (𝑏 = 𝑌 → (𝑏 = 0 ↔ 𝑌 = 0)) | |
4 | id 22 | . . . 4 ⊢ (𝑏 = 𝑌 → 𝑏 = 𝑌) | |
5 | 3, 4 | ifbieq2d 4574 | . . 3 ⊢ (𝑏 = 𝑌 → if(𝑏 = 0, 𝑋, 𝑏) = if(𝑌 = 0, 𝑋, 𝑌)) |
6 | signsw.p | . . 3 ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) | |
7 | 2, 5, 6 | ovmpog 7611 | . 2 ⊢ ((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1} ∧ if(𝑌 = 0, 𝑋, 𝑌) ∈ {-1, 0, 1}) → (𝑋 ⨣ 𝑌) = if(𝑌 = 0, 𝑋, 𝑌)) |
8 | 1, 7 | mpd3an3 1462 | 1 ⊢ ((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → (𝑋 ⨣ 𝑌) = if(𝑌 = 0, 𝑋, 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ifcif 4548 {ctp 4652 (class class class)co 7450 ∈ cmpo 7452 0cc0 11186 1c1 11187 -cneg 11523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6527 df-fun 6577 df-fv 6583 df-ov 7453 df-oprab 7454 df-mpo 7455 |
This theorem is referenced by: signsw0glem 34532 signswmnd 34536 signswrid 34537 signswlid 34538 signswn0 34539 signswch 34540 |
Copyright terms: Public domain | W3C validator |