Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signspval Structured version   Visualization version   GIF version

Theorem signspval 34560
Description: The value of the skipping 0 sign operation. (Contributed by Thierry Arnoux, 9-Sep-2018.)
Hypothesis
Ref Expression
signsw.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
Assertion
Ref Expression
signspval ((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → (𝑋 𝑌) = if(𝑌 = 0, 𝑋, 𝑌))
Distinct variable groups:   𝑎,𝑏,𝑋   𝑌,𝑎,𝑏
Allowed substitution hints:   (𝑎,𝑏)

Proof of Theorem signspval
StepHypRef Expression
1 ifcl 4579 . 2 ((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → if(𝑌 = 0, 𝑋, 𝑌) ∈ {-1, 0, 1})
2 ifeq1 4538 . . 3 (𝑎 = 𝑋 → if(𝑏 = 0, 𝑎, 𝑏) = if(𝑏 = 0, 𝑋, 𝑏))
3 eqeq1 2741 . . . 4 (𝑏 = 𝑌 → (𝑏 = 0 ↔ 𝑌 = 0))
4 id 22 . . . 4 (𝑏 = 𝑌𝑏 = 𝑌)
53, 4ifbieq2d 4560 . . 3 (𝑏 = 𝑌 → if(𝑏 = 0, 𝑋, 𝑏) = if(𝑌 = 0, 𝑋, 𝑌))
6 signsw.p . . 3 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
72, 5, 6ovmpog 7599 . 2 ((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1} ∧ if(𝑌 = 0, 𝑋, 𝑌) ∈ {-1, 0, 1}) → (𝑋 𝑌) = if(𝑌 = 0, 𝑋, 𝑌))
81, 7mpd3an3 1463 1 ((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → (𝑋 𝑌) = if(𝑌 = 0, 𝑋, 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  ifcif 4534  {ctp 4638  (class class class)co 7438  cmpo 7440  0cc0 11162  1c1 11163  -cneg 11500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-sbc 3795  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-iota 6522  df-fun 6571  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443
This theorem is referenced by:  signsw0glem  34561  signswmnd  34565  signswrid  34566  signswlid  34567  signswn0  34568  signswch  34569
  Copyright terms: Public domain W3C validator