Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemsf1o Structured version   Visualization version   GIF version

Theorem ballotlemsf1o 34517
Description: The defined 𝑆 is a bijection, and an involution. (Contributed by Thierry Arnoux, 14-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
ballotth.s 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
Assertion
Ref Expression
ballotlemsf1o (𝐶 ∈ (𝑂𝐸) → ((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) ∧ (𝑆𝐶) = (𝑆𝐶)))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼,𝑐   𝐸,𝑐   𝑖,𝐼,𝑐
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝑆(𝑥,𝑖,𝑘,𝑐)   𝐸(𝑥)   𝐹(𝑥)   𝐼(𝑥)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemsf1o
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 ballotth.m . . . . 5 𝑀 ∈ ℕ
2 ballotth.n . . . . 5 𝑁 ∈ ℕ
3 ballotth.o . . . . 5 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
4 ballotth.p . . . . 5 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
5 ballotth.f . . . . 5 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
6 ballotth.e . . . . 5 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
7 ballotth.mgtn . . . . 5 𝑁 < 𝑀
8 ballotth.i . . . . 5 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
9 ballotth.s . . . . 5 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
101, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsval 34512 . . . 4 (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖)))
111, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsv 34513 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → ((𝑆𝐶)‘𝑖) = if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖))
121, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsdom 34515 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → ((𝑆𝐶)‘𝑖) ∈ (1...(𝑀 + 𝑁)))
1311, 12eqeltrrd 2841 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖) ∈ (1...(𝑀 + 𝑁)))
141, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsv 34513 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁))) → ((𝑆𝐶)‘𝑗) = if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗))
151, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsdom 34515 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁))) → ((𝑆𝐶)‘𝑗) ∈ (1...(𝑀 + 𝑁)))
1614, 15eqeltrrd 2841 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁))) → if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗) ∈ (1...(𝑀 + 𝑁)))
17 oveq2 7440 . . . . . 6 (𝑖 = (((𝐼𝐶) + 1) − 𝑗) → (((𝐼𝐶) + 1) − 𝑖) = (((𝐼𝐶) + 1) − (((𝐼𝐶) + 1) − 𝑗)))
18 id 22 . . . . . 6 (𝑖 = 𝑗𝑖 = 𝑗)
19 breq1 5145 . . . . . 6 (𝑖 = (((𝐼𝐶) + 1) − 𝑗) → (𝑖 ≤ (𝐼𝐶) ↔ (((𝐼𝐶) + 1) − 𝑗) ≤ (𝐼𝐶)))
20 breq1 5145 . . . . . 6 (𝑖 = 𝑗 → (𝑖 ≤ (𝐼𝐶) ↔ 𝑗 ≤ (𝐼𝐶)))
211, 2, 3, 4, 5, 6, 7, 8ballotlemiex 34505 . . . . . . . . . . . 12 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(𝐼𝐶)) = 0))
2221simpld 494 . . . . . . . . . . 11 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ (1...(𝑀 + 𝑁)))
23 elfzelz 13565 . . . . . . . . . . . 12 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼𝐶) ∈ ℤ)
2423peano2zd 12727 . . . . . . . . . . 11 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → ((𝐼𝐶) + 1) ∈ ℤ)
2522, 24syl 17 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) + 1) ∈ ℤ)
2625zcnd 12725 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) + 1) ∈ ℂ)
2726adantr 480 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → ((𝐼𝐶) + 1) ∈ ℂ)
28 elfzelz 13565 . . . . . . . . . 10 (𝑗 ∈ (1...(𝑀 + 𝑁)) → 𝑗 ∈ ℤ)
2928zcnd 12725 . . . . . . . . 9 (𝑗 ∈ (1...(𝑀 + 𝑁)) → 𝑗 ∈ ℂ)
3029ad2antll 729 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → 𝑗 ∈ ℂ)
3127, 30nncand 11626 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → (((𝐼𝐶) + 1) − (((𝐼𝐶) + 1) − 𝑗)) = 𝑗)
3231eqcomd 2742 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → 𝑗 = (((𝐼𝐶) + 1) − (((𝐼𝐶) + 1) − 𝑗)))
3322, 23syl 17 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ ℤ)
3433adantr 480 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → (𝐼𝐶) ∈ ℤ)
35 elfznn 13594 . . . . . . . . 9 (𝑗 ∈ (1...(𝑀 + 𝑁)) → 𝑗 ∈ ℕ)
3635ad2antll 729 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → 𝑗 ∈ ℕ)
3734, 36ltesubnnd 32825 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → (((𝐼𝐶) + 1) − 𝑗) ≤ (𝐼𝐶))
3837adantr 480 . . . . . 6 (((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) ∧ 𝑗 ≤ (𝐼𝐶)) → (((𝐼𝐶) + 1) − 𝑗) ≤ (𝐼𝐶))
39 vex 3483 . . . . . . 7 𝑗 ∈ V
4039a1i 11 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → 𝑗 ∈ V)
41 ovexd 7467 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → (((𝐼𝐶) + 1) − 𝑗) ∈ V)
4217, 18, 19, 20, 32, 38, 40, 41ifeqeqx 32556 . . . . 5 (((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) ∧ 𝑖 = if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗)) → 𝑗 = if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖))
43 oveq2 7440 . . . . . 6 (𝑗 = (((𝐼𝐶) + 1) − 𝑖) → (((𝐼𝐶) + 1) − 𝑗) = (((𝐼𝐶) + 1) − (((𝐼𝐶) + 1) − 𝑖)))
44 id 22 . . . . . 6 (𝑗 = 𝑖𝑗 = 𝑖)
45 breq1 5145 . . . . . 6 (𝑗 = (((𝐼𝐶) + 1) − 𝑖) → (𝑗 ≤ (𝐼𝐶) ↔ (((𝐼𝐶) + 1) − 𝑖) ≤ (𝐼𝐶)))
46 breq1 5145 . . . . . 6 (𝑗 = 𝑖 → (𝑗 ≤ (𝐼𝐶) ↔ 𝑖 ≤ (𝐼𝐶)))
47 elfzelz 13565 . . . . . . . . . 10 (𝑖 ∈ (1...(𝑀 + 𝑁)) → 𝑖 ∈ ℤ)
4847zcnd 12725 . . . . . . . . 9 (𝑖 ∈ (1...(𝑀 + 𝑁)) → 𝑖 ∈ ℂ)
4948ad2antrl 728 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → 𝑖 ∈ ℂ)
5027, 49nncand 11626 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → (((𝐼𝐶) + 1) − (((𝐼𝐶) + 1) − 𝑖)) = 𝑖)
5150eqcomd 2742 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → 𝑖 = (((𝐼𝐶) + 1) − (((𝐼𝐶) + 1) − 𝑖)))
5234adantr 480 . . . . . . 7 (((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) ∧ 𝑖 ≤ (𝐼𝐶)) → (𝐼𝐶) ∈ ℤ)
53 simplrl 776 . . . . . . . 8 (((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) ∧ 𝑖 ≤ (𝐼𝐶)) → 𝑖 ∈ (1...(𝑀 + 𝑁)))
54 elfznn 13594 . . . . . . . 8 (𝑖 ∈ (1...(𝑀 + 𝑁)) → 𝑖 ∈ ℕ)
5553, 54syl 17 . . . . . . 7 (((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) ∧ 𝑖 ≤ (𝐼𝐶)) → 𝑖 ∈ ℕ)
5652, 55ltesubnnd 32825 . . . . . 6 (((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) ∧ 𝑖 ≤ (𝐼𝐶)) → (((𝐼𝐶) + 1) − 𝑖) ≤ (𝐼𝐶))
57 vex 3483 . . . . . . 7 𝑖 ∈ V
5857a1i 11 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → 𝑖 ∈ V)
59 ovexd 7467 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → (((𝐼𝐶) + 1) − 𝑖) ∈ V)
6043, 44, 45, 46, 51, 56, 58, 59ifeqeqx 32556 . . . . 5 (((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) ∧ 𝑗 = if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖)) → 𝑖 = if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗))
6142, 60impbida 800 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → (𝑖 = if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗) ↔ 𝑗 = if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖)))
6210, 13, 16, 61f1o3d 32638 . . 3 (𝐶 ∈ (𝑂𝐸) → ((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) ∧ (𝑆𝐶) = (𝑗 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗))))
6362simpld 494 . 2 (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)))
64 oveq2 7440 . . . . . 6 (𝑖 = 𝑗 → (((𝐼𝐶) + 1) − 𝑖) = (((𝐼𝐶) + 1) − 𝑗))
6520, 64, 18ifbieq12d 4553 . . . . 5 (𝑖 = 𝑗 → if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖) = if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗))
6665cbvmptv 5254 . . . 4 (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖)) = (𝑗 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗))
6766a1i 11 . . 3 (𝐶 ∈ (𝑂𝐸) → (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖)) = (𝑗 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗)))
6862simprd 495 . . 3 (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶) = (𝑗 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗)))
6967, 10, 683eqtr4rd 2787 . 2 (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶) = (𝑆𝐶))
7063, 69jca 511 1 (𝐶 ∈ (𝑂𝐸) → ((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) ∧ (𝑆𝐶) = (𝑆𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3060  {crab 3435  Vcvv 3479  cdif 3947  cin 3949  ifcif 4524  𝒫 cpw 4599   class class class wbr 5142  cmpt 5224  ccnv 5683  1-1-ontowf1o 6559  cfv 6560  (class class class)co 7432  infcinf 9482  cc 11154  cr 11155  0cc0 11156  1c1 11157   + caddc 11159   < clt 11296  cle 11297  cmin 11493   / cdiv 11921  cn 12267  cz 12615  ...cfz 13548  chash 14370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-oadd 8511  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-dju 9942  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-n0 12529  df-z 12616  df-uz 12880  df-rp 13036  df-fz 13549  df-hash 14371
This theorem is referenced by:  ballotlemsima  34519  ballotlemscr  34522  ballotlemrv  34523  ballotlemro  34526  ballotlemfrc  34530  ballotlemrinv0  34536
  Copyright terms: Public domain W3C validator