Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemsf1o Structured version   Visualization version   GIF version

Theorem ballotlemsf1o 34498
Description: The defined 𝑆 is a bijection, and an involution. (Contributed by Thierry Arnoux, 14-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
ballotth.s 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
Assertion
Ref Expression
ballotlemsf1o (𝐶 ∈ (𝑂𝐸) → ((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) ∧ (𝑆𝐶) = (𝑆𝐶)))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼,𝑐   𝐸,𝑐   𝑖,𝐼,𝑐
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝑆(𝑥,𝑖,𝑘,𝑐)   𝐸(𝑥)   𝐹(𝑥)   𝐼(𝑥)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemsf1o
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 ballotth.m . . . . 5 𝑀 ∈ ℕ
2 ballotth.n . . . . 5 𝑁 ∈ ℕ
3 ballotth.o . . . . 5 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
4 ballotth.p . . . . 5 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
5 ballotth.f . . . . 5 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
6 ballotth.e . . . . 5 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
7 ballotth.mgtn . . . . 5 𝑁 < 𝑀
8 ballotth.i . . . . 5 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
9 ballotth.s . . . . 5 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
101, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsval 34493 . . . 4 (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖)))
111, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsv 34494 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → ((𝑆𝐶)‘𝑖) = if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖))
121, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsdom 34496 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → ((𝑆𝐶)‘𝑖) ∈ (1...(𝑀 + 𝑁)))
1311, 12eqeltrrd 2829 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖) ∈ (1...(𝑀 + 𝑁)))
141, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsv 34494 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁))) → ((𝑆𝐶)‘𝑗) = if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗))
151, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsdom 34496 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁))) → ((𝑆𝐶)‘𝑗) ∈ (1...(𝑀 + 𝑁)))
1614, 15eqeltrrd 2829 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁))) → if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗) ∈ (1...(𝑀 + 𝑁)))
17 oveq2 7377 . . . . . 6 (𝑖 = (((𝐼𝐶) + 1) − 𝑗) → (((𝐼𝐶) + 1) − 𝑖) = (((𝐼𝐶) + 1) − (((𝐼𝐶) + 1) − 𝑗)))
18 id 22 . . . . . 6 (𝑖 = 𝑗𝑖 = 𝑗)
19 breq1 5105 . . . . . 6 (𝑖 = (((𝐼𝐶) + 1) − 𝑗) → (𝑖 ≤ (𝐼𝐶) ↔ (((𝐼𝐶) + 1) − 𝑗) ≤ (𝐼𝐶)))
20 breq1 5105 . . . . . 6 (𝑖 = 𝑗 → (𝑖 ≤ (𝐼𝐶) ↔ 𝑗 ≤ (𝐼𝐶)))
211, 2, 3, 4, 5, 6, 7, 8ballotlemiex 34486 . . . . . . . . . . . 12 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(𝐼𝐶)) = 0))
2221simpld 494 . . . . . . . . . . 11 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ (1...(𝑀 + 𝑁)))
23 elfzelz 13461 . . . . . . . . . . . 12 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼𝐶) ∈ ℤ)
2423peano2zd 12617 . . . . . . . . . . 11 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → ((𝐼𝐶) + 1) ∈ ℤ)
2522, 24syl 17 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) + 1) ∈ ℤ)
2625zcnd 12615 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) + 1) ∈ ℂ)
2726adantr 480 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → ((𝐼𝐶) + 1) ∈ ℂ)
28 elfzelz 13461 . . . . . . . . . 10 (𝑗 ∈ (1...(𝑀 + 𝑁)) → 𝑗 ∈ ℤ)
2928zcnd 12615 . . . . . . . . 9 (𝑗 ∈ (1...(𝑀 + 𝑁)) → 𝑗 ∈ ℂ)
3029ad2antll 729 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → 𝑗 ∈ ℂ)
3127, 30nncand 11514 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → (((𝐼𝐶) + 1) − (((𝐼𝐶) + 1) − 𝑗)) = 𝑗)
3231eqcomd 2735 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → 𝑗 = (((𝐼𝐶) + 1) − (((𝐼𝐶) + 1) − 𝑗)))
3322, 23syl 17 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ ℤ)
3433adantr 480 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → (𝐼𝐶) ∈ ℤ)
35 elfznn 13490 . . . . . . . . 9 (𝑗 ∈ (1...(𝑀 + 𝑁)) → 𝑗 ∈ ℕ)
3635ad2antll 729 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → 𝑗 ∈ ℕ)
3734, 36ltesubnnd 32797 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → (((𝐼𝐶) + 1) − 𝑗) ≤ (𝐼𝐶))
3837adantr 480 . . . . . 6 (((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) ∧ 𝑗 ≤ (𝐼𝐶)) → (((𝐼𝐶) + 1) − 𝑗) ≤ (𝐼𝐶))
39 vex 3448 . . . . . . 7 𝑗 ∈ V
4039a1i 11 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → 𝑗 ∈ V)
41 ovexd 7404 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → (((𝐼𝐶) + 1) − 𝑗) ∈ V)
4217, 18, 19, 20, 32, 38, 40, 41ifeqeqx 32521 . . . . 5 (((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) ∧ 𝑖 = if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗)) → 𝑗 = if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖))
43 oveq2 7377 . . . . . 6 (𝑗 = (((𝐼𝐶) + 1) − 𝑖) → (((𝐼𝐶) + 1) − 𝑗) = (((𝐼𝐶) + 1) − (((𝐼𝐶) + 1) − 𝑖)))
44 id 22 . . . . . 6 (𝑗 = 𝑖𝑗 = 𝑖)
45 breq1 5105 . . . . . 6 (𝑗 = (((𝐼𝐶) + 1) − 𝑖) → (𝑗 ≤ (𝐼𝐶) ↔ (((𝐼𝐶) + 1) − 𝑖) ≤ (𝐼𝐶)))
46 breq1 5105 . . . . . 6 (𝑗 = 𝑖 → (𝑗 ≤ (𝐼𝐶) ↔ 𝑖 ≤ (𝐼𝐶)))
47 elfzelz 13461 . . . . . . . . . 10 (𝑖 ∈ (1...(𝑀 + 𝑁)) → 𝑖 ∈ ℤ)
4847zcnd 12615 . . . . . . . . 9 (𝑖 ∈ (1...(𝑀 + 𝑁)) → 𝑖 ∈ ℂ)
4948ad2antrl 728 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → 𝑖 ∈ ℂ)
5027, 49nncand 11514 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → (((𝐼𝐶) + 1) − (((𝐼𝐶) + 1) − 𝑖)) = 𝑖)
5150eqcomd 2735 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → 𝑖 = (((𝐼𝐶) + 1) − (((𝐼𝐶) + 1) − 𝑖)))
5234adantr 480 . . . . . . 7 (((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) ∧ 𝑖 ≤ (𝐼𝐶)) → (𝐼𝐶) ∈ ℤ)
53 simplrl 776 . . . . . . . 8 (((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) ∧ 𝑖 ≤ (𝐼𝐶)) → 𝑖 ∈ (1...(𝑀 + 𝑁)))
54 elfznn 13490 . . . . . . . 8 (𝑖 ∈ (1...(𝑀 + 𝑁)) → 𝑖 ∈ ℕ)
5553, 54syl 17 . . . . . . 7 (((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) ∧ 𝑖 ≤ (𝐼𝐶)) → 𝑖 ∈ ℕ)
5652, 55ltesubnnd 32797 . . . . . 6 (((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) ∧ 𝑖 ≤ (𝐼𝐶)) → (((𝐼𝐶) + 1) − 𝑖) ≤ (𝐼𝐶))
57 vex 3448 . . . . . . 7 𝑖 ∈ V
5857a1i 11 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → 𝑖 ∈ V)
59 ovexd 7404 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → (((𝐼𝐶) + 1) − 𝑖) ∈ V)
6043, 44, 45, 46, 51, 56, 58, 59ifeqeqx 32521 . . . . 5 (((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) ∧ 𝑗 = if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖)) → 𝑖 = if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗))
6142, 60impbida 800 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → (𝑖 = if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗) ↔ 𝑗 = if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖)))
6210, 13, 16, 61f1o3d 32601 . . 3 (𝐶 ∈ (𝑂𝐸) → ((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) ∧ (𝑆𝐶) = (𝑗 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗))))
6362simpld 494 . 2 (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)))
64 oveq2 7377 . . . . . 6 (𝑖 = 𝑗 → (((𝐼𝐶) + 1) − 𝑖) = (((𝐼𝐶) + 1) − 𝑗))
6520, 64, 18ifbieq12d 4513 . . . . 5 (𝑖 = 𝑗 → if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖) = if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗))
6665cbvmptv 5206 . . . 4 (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖)) = (𝑗 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗))
6766a1i 11 . . 3 (𝐶 ∈ (𝑂𝐸) → (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖)) = (𝑗 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗)))
6862simprd 495 . . 3 (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶) = (𝑗 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗)))
6967, 10, 683eqtr4rd 2775 . 2 (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶) = (𝑆𝐶))
7063, 69jca 511 1 (𝐶 ∈ (𝑂𝐸) → ((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) ∧ (𝑆𝐶) = (𝑆𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3402  Vcvv 3444  cdif 3908  cin 3910  ifcif 4484  𝒫 cpw 4559   class class class wbr 5102  cmpt 5183  ccnv 5630  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  infcinf 9368  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  cn 12162  cz 12505  ...cfz 13444  chash 14271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-hash 14272
This theorem is referenced by:  ballotlemsima  34500  ballotlemscr  34503  ballotlemrv  34504  ballotlemro  34507  ballotlemfrc  34511  ballotlemrinv0  34517
  Copyright terms: Public domain W3C validator