Step | Hyp | Ref
| Expression |
1 | | ballotth.m |
. . . . 5
⊢ 𝑀 ∈ ℕ |
2 | | ballotth.n |
. . . . 5
⊢ 𝑁 ∈ ℕ |
3 | | ballotth.o |
. . . . 5
⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
4 | | ballotth.p |
. . . . 5
⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
5 | | ballotth.f |
. . . . 5
⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦
((♯‘((1...𝑖)
∩ 𝑐)) −
(♯‘((1...𝑖)
∖ 𝑐))))) |
6 | | ballotth.e |
. . . . 5
⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
7 | | ballotth.mgtn |
. . . . 5
⊢ 𝑁 < 𝑀 |
8 | | ballotth.i |
. . . . 5
⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
9 | | ballotth.s |
. . . . 5
⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | ballotlemsval 31994 |
. . . 4
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑆‘𝐶) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖))) |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | ballotlemsv 31995 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → ((𝑆‘𝐶)‘𝑖) = if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖)) |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | ballotlemsdom 31997 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → ((𝑆‘𝐶)‘𝑖) ∈ (1...(𝑀 + 𝑁))) |
13 | 11, 12 | eqeltrrd 2853 |
. . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖) ∈ (1...(𝑀 + 𝑁))) |
14 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | ballotlemsv 31995 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁))) → ((𝑆‘𝐶)‘𝑗) = if(𝑗 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑗), 𝑗)) |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | ballotlemsdom 31997 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁))) → ((𝑆‘𝐶)‘𝑗) ∈ (1...(𝑀 + 𝑁))) |
16 | 14, 15 | eqeltrrd 2853 |
. . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁))) → if(𝑗 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑗), 𝑗) ∈ (1...(𝑀 + 𝑁))) |
17 | | oveq2 7158 |
. . . . . 6
⊢ (𝑖 = (((𝐼‘𝐶) + 1) − 𝑗) → (((𝐼‘𝐶) + 1) − 𝑖) = (((𝐼‘𝐶) + 1) − (((𝐼‘𝐶) + 1) − 𝑗))) |
18 | | id 22 |
. . . . . 6
⊢ (𝑖 = 𝑗 → 𝑖 = 𝑗) |
19 | | breq1 5035 |
. . . . . 6
⊢ (𝑖 = (((𝐼‘𝐶) + 1) − 𝑗) → (𝑖 ≤ (𝐼‘𝐶) ↔ (((𝐼‘𝐶) + 1) − 𝑗) ≤ (𝐼‘𝐶))) |
20 | | breq1 5035 |
. . . . . 6
⊢ (𝑖 = 𝑗 → (𝑖 ≤ (𝐼‘𝐶) ↔ 𝑗 ≤ (𝐼‘𝐶))) |
21 | 1, 2, 3, 4, 5, 6, 7, 8 | ballotlemiex 31987 |
. . . . . . . . . . . 12
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0)) |
22 | 21 | simpld 498 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁))) |
23 | | elfzelz 12956 |
. . . . . . . . . . . 12
⊢ ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼‘𝐶) ∈ ℤ) |
24 | 23 | peano2zd 12129 |
. . . . . . . . . . 11
⊢ ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) → ((𝐼‘𝐶) + 1) ∈ ℤ) |
25 | 22, 24 | syl 17 |
. . . . . . . . . 10
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐼‘𝐶) + 1) ∈ ℤ) |
26 | 25 | zcnd 12127 |
. . . . . . . . 9
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐼‘𝐶) + 1) ∈ ℂ) |
27 | 26 | adantr 484 |
. . . . . . . 8
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → ((𝐼‘𝐶) + 1) ∈ ℂ) |
28 | | elfzelz 12956 |
. . . . . . . . . 10
⊢ (𝑗 ∈ (1...(𝑀 + 𝑁)) → 𝑗 ∈ ℤ) |
29 | 28 | zcnd 12127 |
. . . . . . . . 9
⊢ (𝑗 ∈ (1...(𝑀 + 𝑁)) → 𝑗 ∈ ℂ) |
30 | 29 | ad2antll 728 |
. . . . . . . 8
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → 𝑗 ∈ ℂ) |
31 | 27, 30 | nncand 11040 |
. . . . . . 7
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → (((𝐼‘𝐶) + 1) − (((𝐼‘𝐶) + 1) − 𝑗)) = 𝑗) |
32 | 31 | eqcomd 2764 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → 𝑗 = (((𝐼‘𝐶) + 1) − (((𝐼‘𝐶) + 1) − 𝑗))) |
33 | 22, 23 | syl 17 |
. . . . . . . . 9
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ ℤ) |
34 | 33 | adantr 484 |
. . . . . . . 8
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → (𝐼‘𝐶) ∈ ℤ) |
35 | | elfznn 12985 |
. . . . . . . . 9
⊢ (𝑗 ∈ (1...(𝑀 + 𝑁)) → 𝑗 ∈ ℕ) |
36 | 35 | ad2antll 728 |
. . . . . . . 8
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → 𝑗 ∈ ℕ) |
37 | 34, 36 | ltesubnnd 30660 |
. . . . . . 7
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → (((𝐼‘𝐶) + 1) − 𝑗) ≤ (𝐼‘𝐶)) |
38 | 37 | adantr 484 |
. . . . . 6
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) ∧ 𝑗 ≤ (𝐼‘𝐶)) → (((𝐼‘𝐶) + 1) − 𝑗) ≤ (𝐼‘𝐶)) |
39 | | vex 3413 |
. . . . . . 7
⊢ 𝑗 ∈ V |
40 | 39 | a1i 11 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → 𝑗 ∈ V) |
41 | | ovexd 7185 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → (((𝐼‘𝐶) + 1) − 𝑗) ∈ V) |
42 | 17, 18, 19, 20, 32, 38, 40, 41 | ifeqeqx 30407 |
. . . . 5
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) ∧ 𝑖 = if(𝑗 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑗), 𝑗)) → 𝑗 = if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖)) |
43 | | oveq2 7158 |
. . . . . 6
⊢ (𝑗 = (((𝐼‘𝐶) + 1) − 𝑖) → (((𝐼‘𝐶) + 1) − 𝑗) = (((𝐼‘𝐶) + 1) − (((𝐼‘𝐶) + 1) − 𝑖))) |
44 | | id 22 |
. . . . . 6
⊢ (𝑗 = 𝑖 → 𝑗 = 𝑖) |
45 | | breq1 5035 |
. . . . . 6
⊢ (𝑗 = (((𝐼‘𝐶) + 1) − 𝑖) → (𝑗 ≤ (𝐼‘𝐶) ↔ (((𝐼‘𝐶) + 1) − 𝑖) ≤ (𝐼‘𝐶))) |
46 | | breq1 5035 |
. . . . . 6
⊢ (𝑗 = 𝑖 → (𝑗 ≤ (𝐼‘𝐶) ↔ 𝑖 ≤ (𝐼‘𝐶))) |
47 | | elfzelz 12956 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (1...(𝑀 + 𝑁)) → 𝑖 ∈ ℤ) |
48 | 47 | zcnd 12127 |
. . . . . . . . 9
⊢ (𝑖 ∈ (1...(𝑀 + 𝑁)) → 𝑖 ∈ ℂ) |
49 | 48 | ad2antrl 727 |
. . . . . . . 8
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → 𝑖 ∈ ℂ) |
50 | 27, 49 | nncand 11040 |
. . . . . . 7
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → (((𝐼‘𝐶) + 1) − (((𝐼‘𝐶) + 1) − 𝑖)) = 𝑖) |
51 | 50 | eqcomd 2764 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → 𝑖 = (((𝐼‘𝐶) + 1) − (((𝐼‘𝐶) + 1) − 𝑖))) |
52 | 34 | adantr 484 |
. . . . . . 7
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) ∧ 𝑖 ≤ (𝐼‘𝐶)) → (𝐼‘𝐶) ∈ ℤ) |
53 | | simplrl 776 |
. . . . . . . 8
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) ∧ 𝑖 ≤ (𝐼‘𝐶)) → 𝑖 ∈ (1...(𝑀 + 𝑁))) |
54 | | elfznn 12985 |
. . . . . . . 8
⊢ (𝑖 ∈ (1...(𝑀 + 𝑁)) → 𝑖 ∈ ℕ) |
55 | 53, 54 | syl 17 |
. . . . . . 7
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) ∧ 𝑖 ≤ (𝐼‘𝐶)) → 𝑖 ∈ ℕ) |
56 | 52, 55 | ltesubnnd 30660 |
. . . . . 6
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) ∧ 𝑖 ≤ (𝐼‘𝐶)) → (((𝐼‘𝐶) + 1) − 𝑖) ≤ (𝐼‘𝐶)) |
57 | | vex 3413 |
. . . . . . 7
⊢ 𝑖 ∈ V |
58 | 57 | a1i 11 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → 𝑖 ∈ V) |
59 | | ovexd 7185 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → (((𝐼‘𝐶) + 1) − 𝑖) ∈ V) |
60 | 43, 44, 45, 46, 51, 56, 58, 59 | ifeqeqx 30407 |
. . . . 5
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) ∧ 𝑗 = if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖)) → 𝑖 = if(𝑗 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑗), 𝑗)) |
61 | 42, 60 | impbida 800 |
. . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → (𝑖 = if(𝑗 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑗), 𝑗) ↔ 𝑗 = if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖))) |
62 | 10, 13, 16, 61 | f1o3d 30484 |
. . 3
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) ∧ ◡(𝑆‘𝐶) = (𝑗 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑗 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑗), 𝑗)))) |
63 | 62 | simpld 498 |
. 2
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁))) |
64 | | oveq2 7158 |
. . . . . 6
⊢ (𝑖 = 𝑗 → (((𝐼‘𝐶) + 1) − 𝑖) = (((𝐼‘𝐶) + 1) − 𝑗)) |
65 | 20, 64, 18 | ifbieq12d 4448 |
. . . . 5
⊢ (𝑖 = 𝑗 → if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖) = if(𝑗 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑗), 𝑗)) |
66 | 65 | cbvmptv 5135 |
. . . 4
⊢ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖)) = (𝑗 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑗 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑗), 𝑗)) |
67 | 66 | a1i 11 |
. . 3
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖)) = (𝑗 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑗 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑗), 𝑗))) |
68 | 62 | simprd 499 |
. . 3
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ◡(𝑆‘𝐶) = (𝑗 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑗 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑗), 𝑗))) |
69 | 67, 10, 68 | 3eqtr4rd 2804 |
. 2
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ◡(𝑆‘𝐶) = (𝑆‘𝐶)) |
70 | 63, 69 | jca 515 |
1
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) ∧ ◡(𝑆‘𝐶) = (𝑆‘𝐶))) |