Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemsf1o Structured version   Visualization version   GIF version

Theorem ballotlemsf1o 33810
Description: The defined 𝑆 is a bijection, and an involution. (Contributed by Thierry Arnoux, 14-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
ballotth.s 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
Assertion
Ref Expression
ballotlemsf1o (𝐶 ∈ (𝑂𝐸) → ((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) ∧ (𝑆𝐶) = (𝑆𝐶)))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼,𝑐   𝐸,𝑐   𝑖,𝐼,𝑐
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝑆(𝑥,𝑖,𝑘,𝑐)   𝐸(𝑥)   𝐹(𝑥)   𝐼(𝑥)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemsf1o
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 ballotth.m . . . . 5 𝑀 ∈ ℕ
2 ballotth.n . . . . 5 𝑁 ∈ ℕ
3 ballotth.o . . . . 5 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
4 ballotth.p . . . . 5 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
5 ballotth.f . . . . 5 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
6 ballotth.e . . . . 5 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
7 ballotth.mgtn . . . . 5 𝑁 < 𝑀
8 ballotth.i . . . . 5 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
9 ballotth.s . . . . 5 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
101, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsval 33805 . . . 4 (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖)))
111, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsv 33806 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → ((𝑆𝐶)‘𝑖) = if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖))
121, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsdom 33808 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → ((𝑆𝐶)‘𝑖) ∈ (1...(𝑀 + 𝑁)))
1311, 12eqeltrrd 2832 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖) ∈ (1...(𝑀 + 𝑁)))
141, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsv 33806 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁))) → ((𝑆𝐶)‘𝑗) = if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗))
151, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsdom 33808 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁))) → ((𝑆𝐶)‘𝑗) ∈ (1...(𝑀 + 𝑁)))
1614, 15eqeltrrd 2832 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁))) → if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗) ∈ (1...(𝑀 + 𝑁)))
17 oveq2 7419 . . . . . 6 (𝑖 = (((𝐼𝐶) + 1) − 𝑗) → (((𝐼𝐶) + 1) − 𝑖) = (((𝐼𝐶) + 1) − (((𝐼𝐶) + 1) − 𝑗)))
18 id 22 . . . . . 6 (𝑖 = 𝑗𝑖 = 𝑗)
19 breq1 5150 . . . . . 6 (𝑖 = (((𝐼𝐶) + 1) − 𝑗) → (𝑖 ≤ (𝐼𝐶) ↔ (((𝐼𝐶) + 1) − 𝑗) ≤ (𝐼𝐶)))
20 breq1 5150 . . . . . 6 (𝑖 = 𝑗 → (𝑖 ≤ (𝐼𝐶) ↔ 𝑗 ≤ (𝐼𝐶)))
211, 2, 3, 4, 5, 6, 7, 8ballotlemiex 33798 . . . . . . . . . . . 12 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(𝐼𝐶)) = 0))
2221simpld 493 . . . . . . . . . . 11 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ (1...(𝑀 + 𝑁)))
23 elfzelz 13505 . . . . . . . . . . . 12 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼𝐶) ∈ ℤ)
2423peano2zd 12673 . . . . . . . . . . 11 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → ((𝐼𝐶) + 1) ∈ ℤ)
2522, 24syl 17 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) + 1) ∈ ℤ)
2625zcnd 12671 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) + 1) ∈ ℂ)
2726adantr 479 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → ((𝐼𝐶) + 1) ∈ ℂ)
28 elfzelz 13505 . . . . . . . . . 10 (𝑗 ∈ (1...(𝑀 + 𝑁)) → 𝑗 ∈ ℤ)
2928zcnd 12671 . . . . . . . . 9 (𝑗 ∈ (1...(𝑀 + 𝑁)) → 𝑗 ∈ ℂ)
3029ad2antll 725 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → 𝑗 ∈ ℂ)
3127, 30nncand 11580 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → (((𝐼𝐶) + 1) − (((𝐼𝐶) + 1) − 𝑗)) = 𝑗)
3231eqcomd 2736 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → 𝑗 = (((𝐼𝐶) + 1) − (((𝐼𝐶) + 1) − 𝑗)))
3322, 23syl 17 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ ℤ)
3433adantr 479 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → (𝐼𝐶) ∈ ℤ)
35 elfznn 13534 . . . . . . . . 9 (𝑗 ∈ (1...(𝑀 + 𝑁)) → 𝑗 ∈ ℕ)
3635ad2antll 725 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → 𝑗 ∈ ℕ)
3734, 36ltesubnnd 32295 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → (((𝐼𝐶) + 1) − 𝑗) ≤ (𝐼𝐶))
3837adantr 479 . . . . . 6 (((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) ∧ 𝑗 ≤ (𝐼𝐶)) → (((𝐼𝐶) + 1) − 𝑗) ≤ (𝐼𝐶))
39 vex 3476 . . . . . . 7 𝑗 ∈ V
4039a1i 11 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → 𝑗 ∈ V)
41 ovexd 7446 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → (((𝐼𝐶) + 1) − 𝑗) ∈ V)
4217, 18, 19, 20, 32, 38, 40, 41ifeqeqx 32041 . . . . 5 (((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) ∧ 𝑖 = if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗)) → 𝑗 = if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖))
43 oveq2 7419 . . . . . 6 (𝑗 = (((𝐼𝐶) + 1) − 𝑖) → (((𝐼𝐶) + 1) − 𝑗) = (((𝐼𝐶) + 1) − (((𝐼𝐶) + 1) − 𝑖)))
44 id 22 . . . . . 6 (𝑗 = 𝑖𝑗 = 𝑖)
45 breq1 5150 . . . . . 6 (𝑗 = (((𝐼𝐶) + 1) − 𝑖) → (𝑗 ≤ (𝐼𝐶) ↔ (((𝐼𝐶) + 1) − 𝑖) ≤ (𝐼𝐶)))
46 breq1 5150 . . . . . 6 (𝑗 = 𝑖 → (𝑗 ≤ (𝐼𝐶) ↔ 𝑖 ≤ (𝐼𝐶)))
47 elfzelz 13505 . . . . . . . . . 10 (𝑖 ∈ (1...(𝑀 + 𝑁)) → 𝑖 ∈ ℤ)
4847zcnd 12671 . . . . . . . . 9 (𝑖 ∈ (1...(𝑀 + 𝑁)) → 𝑖 ∈ ℂ)
4948ad2antrl 724 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → 𝑖 ∈ ℂ)
5027, 49nncand 11580 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → (((𝐼𝐶) + 1) − (((𝐼𝐶) + 1) − 𝑖)) = 𝑖)
5150eqcomd 2736 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → 𝑖 = (((𝐼𝐶) + 1) − (((𝐼𝐶) + 1) − 𝑖)))
5234adantr 479 . . . . . . 7 (((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) ∧ 𝑖 ≤ (𝐼𝐶)) → (𝐼𝐶) ∈ ℤ)
53 simplrl 773 . . . . . . . 8 (((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) ∧ 𝑖 ≤ (𝐼𝐶)) → 𝑖 ∈ (1...(𝑀 + 𝑁)))
54 elfznn 13534 . . . . . . . 8 (𝑖 ∈ (1...(𝑀 + 𝑁)) → 𝑖 ∈ ℕ)
5553, 54syl 17 . . . . . . 7 (((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) ∧ 𝑖 ≤ (𝐼𝐶)) → 𝑖 ∈ ℕ)
5652, 55ltesubnnd 32295 . . . . . 6 (((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) ∧ 𝑖 ≤ (𝐼𝐶)) → (((𝐼𝐶) + 1) − 𝑖) ≤ (𝐼𝐶))
57 vex 3476 . . . . . . 7 𝑖 ∈ V
5857a1i 11 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → 𝑖 ∈ V)
59 ovexd 7446 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → (((𝐼𝐶) + 1) − 𝑖) ∈ V)
6043, 44, 45, 46, 51, 56, 58, 59ifeqeqx 32041 . . . . 5 (((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) ∧ 𝑗 = if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖)) → 𝑖 = if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗))
6142, 60impbida 797 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → (𝑖 = if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗) ↔ 𝑗 = if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖)))
6210, 13, 16, 61f1o3d 32118 . . 3 (𝐶 ∈ (𝑂𝐸) → ((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) ∧ (𝑆𝐶) = (𝑗 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗))))
6362simpld 493 . 2 (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)))
64 oveq2 7419 . . . . . 6 (𝑖 = 𝑗 → (((𝐼𝐶) + 1) − 𝑖) = (((𝐼𝐶) + 1) − 𝑗))
6520, 64, 18ifbieq12d 4555 . . . . 5 (𝑖 = 𝑗 → if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖) = if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗))
6665cbvmptv 5260 . . . 4 (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖)) = (𝑗 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗))
6766a1i 11 . . 3 (𝐶 ∈ (𝑂𝐸) → (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖)) = (𝑗 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗)))
6862simprd 494 . . 3 (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶) = (𝑗 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗)))
6967, 10, 683eqtr4rd 2781 . 2 (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶) = (𝑆𝐶))
7063, 69jca 510 1 (𝐶 ∈ (𝑂𝐸) → ((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) ∧ (𝑆𝐶) = (𝑆𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1539  wcel 2104  wral 3059  {crab 3430  Vcvv 3472  cdif 3944  cin 3946  ifcif 4527  𝒫 cpw 4601   class class class wbr 5147  cmpt 5230  ccnv 5674  1-1-ontowf1o 6541  cfv 6542  (class class class)co 7411  infcinf 9438  cc 11110  cr 11111  0cc0 11112  1c1 11113   + caddc 11115   < clt 11252  cle 11253  cmin 11448   / cdiv 11875  cn 12216  cz 12562  ...cfz 13488  chash 14294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-oadd 8472  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-inf 9440  df-dju 9898  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-n0 12477  df-z 12563  df-uz 12827  df-rp 12979  df-fz 13489  df-hash 14295
This theorem is referenced by:  ballotlemsima  33812  ballotlemscr  33815  ballotlemrv  33816  ballotlemro  33819  ballotlemfrc  33823  ballotlemrinv0  33829
  Copyright terms: Public domain W3C validator