| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anass1rs | Structured version Visualization version GIF version | ||
| Description: Commutative-associative law for conjunction in an antecedent. (Contributed by Jeff Madsen, 19-Jun-2011.) |
| Ref | Expression |
|---|---|
| anass1rs.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| anass1rs | ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass1rs.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 2 | 1 | anassrs 467 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 3 | 2 | an32s 652 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sossfld 6162 1stconst 8082 infunsdom 10173 creui 12188 qreccl 12935 fsumrlim 15784 fsumo1 15785 climfsum 15793 imasvscaf 17509 grppropd 18890 grpinvpropd 18954 cycsubgcl 19145 frgpup1 19712 ringrghm 20229 phlpropd 21571 mamuass 22296 iccpnfcnv 24849 mbfeqalem1 25549 mbfinf 25573 mbflimsup 25574 mbflimlem 25575 itgfsum 25735 plypf1 26124 mtest 26320 rpvmasum2 27430 ifeqeqx 32478 ordtconnlem1 33921 xrge0iifcnv 33930 fsum2dsub 34605 fvineqsneu 37406 pibt2 37412 incsequz 37749 equivtotbnd 37779 intidl 38030 keridl 38033 prnc 38068 cdleme50trn123 40555 dva1dim 40986 dia1dim2 41063 3factsumint1 42016 modelac8prim 44989 |
| Copyright terms: Public domain | W3C validator |