Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anass1rs | Structured version Visualization version GIF version |
Description: Commutative-associative law for conjunction in an antecedent. (Contributed by Jeff Madsen, 19-Jun-2011.) |
Ref | Expression |
---|---|
anass1rs.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
anass1rs | ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anass1rs.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
2 | 1 | anassrs 467 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
3 | 2 | an32s 648 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: sossfld 6078 1stconst 7911 infunsdom 9901 creui 11898 qreccl 12638 fsumrlim 15451 fsumo1 15452 climfsum 15460 imasvscaf 17167 grppropd 18509 grpinvpropd 18565 cycsubgcl 18740 frgpup1 19296 ringrghm 19759 phlpropd 20772 mamuass 21459 iccpnfcnv 24013 mbfeqalem1 24710 mbfinf 24734 mbflimsup 24735 mbflimlem 24736 itgfsum 24896 plypf1 25278 mtest 25468 rpvmasum2 26565 ifeqeqx 30786 ordtconnlem1 31776 xrge0iifcnv 31785 fsum2dsub 32487 fvineqsneu 35509 pibt2 35515 incsequz 35833 equivtotbnd 35863 intidl 36114 keridl 36117 prnc 36152 cdleme50trn123 38495 dva1dim 38926 dia1dim2 39003 3factsumint1 39957 |
Copyright terms: Public domain | W3C validator |