| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anass1rs | Structured version Visualization version GIF version | ||
| Description: Commutative-associative law for conjunction in an antecedent. (Contributed by Jeff Madsen, 19-Jun-2011.) |
| Ref | Expression |
|---|---|
| anass1rs.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| anass1rs | ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass1rs.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 2 | 1 | anassrs 467 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 3 | 2 | an32s 652 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sossfld 6180 1stconst 8104 infunsdom 10232 creui 12240 qreccl 12990 fsumrlim 15832 fsumo1 15833 climfsum 15841 imasvscaf 17558 grppropd 18939 grpinvpropd 19003 cycsubgcl 19194 frgpup1 19761 ringrghm 20278 phlpropd 21620 mamuass 22345 iccpnfcnv 24898 mbfeqalem1 25599 mbfinf 25623 mbflimsup 25624 mbflimlem 25625 itgfsum 25785 plypf1 26174 mtest 26370 rpvmasum2 27480 ifeqeqx 32528 ordtconnlem1 33960 xrge0iifcnv 33969 fsum2dsub 34644 fvineqsneu 37434 pibt2 37440 incsequz 37777 equivtotbnd 37807 intidl 38058 keridl 38061 prnc 38096 cdleme50trn123 40578 dva1dim 41009 dia1dim2 41086 3factsumint1 42039 modelac8prim 44984 |
| Copyright terms: Public domain | W3C validator |