| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anass1rs | Structured version Visualization version GIF version | ||
| Description: Commutative-associative law for conjunction in an antecedent. (Contributed by Jeff Madsen, 19-Jun-2011.) |
| Ref | Expression |
|---|---|
| anass1rs.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| anass1rs | ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass1rs.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 2 | 1 | anassrs 467 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 3 | 2 | an32s 652 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sossfld 6139 1stconst 8040 infunsdom 10126 creui 12141 qreccl 12888 fsumrlim 15736 fsumo1 15737 climfsum 15745 imasvscaf 17461 grppropd 18848 grpinvpropd 18912 cycsubgcl 19103 frgpup1 19672 ringrghm 20216 phlpropd 21580 mamuass 22305 iccpnfcnv 24858 mbfeqalem1 25558 mbfinf 25582 mbflimsup 25583 mbflimlem 25584 itgfsum 25744 plypf1 26133 mtest 26329 rpvmasum2 27439 ifeqeqx 32504 ordtconnlem1 33893 xrge0iifcnv 33902 fsum2dsub 34577 fvineqsneu 37387 pibt2 37393 incsequz 37730 equivtotbnd 37760 intidl 38011 keridl 38014 prnc 38049 cdleme50trn123 40536 dva1dim 40967 dia1dim2 41044 3factsumint1 41997 modelac8prim 44969 |
| Copyright terms: Public domain | W3C validator |