| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anass1rs | Structured version Visualization version GIF version | ||
| Description: Commutative-associative law for conjunction in an antecedent. (Contributed by Jeff Madsen, 19-Jun-2011.) |
| Ref | Expression |
|---|---|
| anass1rs.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| anass1rs | ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass1rs.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 2 | 1 | anassrs 467 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 3 | 2 | an32s 652 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sossfld 6159 1stconst 8079 infunsdom 10166 creui 12181 qreccl 12928 fsumrlim 15777 fsumo1 15778 climfsum 15786 imasvscaf 17502 grppropd 18883 grpinvpropd 18947 cycsubgcl 19138 frgpup1 19705 ringrghm 20222 phlpropd 21564 mamuass 22289 iccpnfcnv 24842 mbfeqalem1 25542 mbfinf 25566 mbflimsup 25567 mbflimlem 25568 itgfsum 25728 plypf1 26117 mtest 26313 rpvmasum2 27423 ifeqeqx 32471 ordtconnlem1 33914 xrge0iifcnv 33923 fsum2dsub 34598 fvineqsneu 37399 pibt2 37405 incsequz 37742 equivtotbnd 37772 intidl 38023 keridl 38026 prnc 38061 cdleme50trn123 40548 dva1dim 40979 dia1dim2 41056 3factsumint1 42009 modelac8prim 44982 |
| Copyright terms: Public domain | W3C validator |