| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anass1rs | Structured version Visualization version GIF version | ||
| Description: Commutative-associative law for conjunction in an antecedent. (Contributed by Jeff Madsen, 19-Jun-2011.) |
| Ref | Expression |
|---|---|
| anass1rs.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| anass1rs | ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass1rs.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 2 | 1 | anassrs 467 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 3 | 2 | an32s 652 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sossfld 6141 1stconst 8039 infunsdom 10115 creui 12131 qreccl 12873 fsumrlim 15725 fsumo1 15726 climfsum 15734 imasvscaf 17451 grppropd 18872 grpinvpropd 18936 cycsubgcl 19126 frgpup1 19695 ringrghm 20239 phlpropd 21601 mamuass 22337 iccpnfcnv 24889 mbfeqalem1 25589 mbfinf 25613 mbflimsup 25614 mbflimlem 25615 itgfsum 25775 plypf1 26164 mtest 26360 rpvmasum2 27470 ifeqeqx 32543 ordtconnlem1 34009 xrge0iifcnv 34018 fsum2dsub 34692 fvineqsneu 37528 pibt2 37534 incsequz 37861 equivtotbnd 37891 intidl 38142 keridl 38145 prnc 38180 cdleme50trn123 40726 dva1dim 41157 dia1dim2 41234 3factsumint1 42187 modelac8prim 45149 |
| Copyright terms: Public domain | W3C validator |