| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anass1rs | Structured version Visualization version GIF version | ||
| Description: Commutative-associative law for conjunction in an antecedent. (Contributed by Jeff Madsen, 19-Jun-2011.) |
| Ref | Expression |
|---|---|
| anass1rs.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| anass1rs | ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass1rs.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 2 | 1 | anassrs 467 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 3 | 2 | an32s 652 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sossfld 6133 1stconst 8030 infunsdom 10104 creui 12120 qreccl 12867 fsumrlim 15718 fsumo1 15719 climfsum 15727 imasvscaf 17443 grppropd 18864 grpinvpropd 18928 cycsubgcl 19119 frgpup1 19688 ringrghm 20232 phlpropd 21593 mamuass 22318 iccpnfcnv 24870 mbfeqalem1 25570 mbfinf 25594 mbflimsup 25595 mbflimlem 25596 itgfsum 25756 plypf1 26145 mtest 26341 rpvmasum2 27451 ifeqeqx 32520 ordtconnlem1 33935 xrge0iifcnv 33944 fsum2dsub 34618 fvineqsneu 37451 pibt2 37457 incsequz 37794 equivtotbnd 37824 intidl 38075 keridl 38078 prnc 38113 cdleme50trn123 40599 dva1dim 41030 dia1dim2 41107 3factsumint1 42060 modelac8prim 45031 |
| Copyright terms: Public domain | W3C validator |