![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anass1rs | Structured version Visualization version GIF version |
Description: Commutative-associative law for conjunction in an antecedent. (Contributed by Jeff Madsen, 19-Jun-2011.) |
Ref | Expression |
---|---|
anass1rs.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
anass1rs | ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anass1rs.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
2 | 1 | anassrs 467 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
3 | 2 | an32s 651 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: sossfld 6217 1stconst 8141 infunsdom 10282 creui 12288 qreccl 13034 fsumrlim 15859 fsumo1 15860 climfsum 15868 imasvscaf 17599 grppropd 18991 grpinvpropd 19055 cycsubgcl 19246 frgpup1 19817 ringrghm 20336 phlpropd 21696 mamuass 22427 iccpnfcnv 24994 mbfeqalem1 25695 mbfinf 25719 mbflimsup 25720 mbflimlem 25721 itgfsum 25882 plypf1 26271 mtest 26465 rpvmasum2 27574 ifeqeqx 32565 ordtconnlem1 33870 xrge0iifcnv 33879 fsum2dsub 34584 fvineqsneu 37377 pibt2 37383 incsequz 37708 equivtotbnd 37738 intidl 37989 keridl 37992 prnc 38027 cdleme50trn123 40511 dva1dim 40942 dia1dim2 41019 3factsumint1 41978 |
Copyright terms: Public domain | W3C validator |