Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimlem1 Structured version   Visualization version   GIF version

Theorem smflimlem1 46808
Description: Lemma for the proof that the limit of a sequence of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of [Fremlin1] p. 38 . This lemma proves that (𝐷𝐼) is in the subspace sigma-algebra induced by 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smflimlem1.1 𝑍 = (ℤ𝑀)
smflimlem1.2 (𝜑𝑆 ∈ SAlg)
smflimlem1.3 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
smflimlem1.4 𝑃 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
smflimlem1.5 𝐻 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘)))
smflimlem1.6 𝐼 = 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)
smflimlem1.7 ((𝜑𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟)
Assertion
Ref Expression
smflimlem1 (𝜑 → (𝐷𝐼) ∈ (𝑆t 𝐷))
Distinct variable groups:   𝐶,𝑟   𝑥,𝐹   𝑃,𝑟   𝑆,𝑘,𝑚,𝑛   𝑆,𝑠   𝑛,𝑍,𝑘,𝑚   𝑥,𝑍,𝑚,𝑛   𝜑,𝑘,𝑚,𝑛   𝑘,𝑟,𝑚,𝜑
Allowed substitution hints:   𝜑(𝑥,𝑠)   𝐴(𝑥,𝑘,𝑚,𝑛,𝑠,𝑟)   𝐶(𝑥,𝑘,𝑚,𝑛,𝑠)   𝐷(𝑥,𝑘,𝑚,𝑛,𝑠,𝑟)   𝑃(𝑥,𝑘,𝑚,𝑛,𝑠)   𝑆(𝑥,𝑟)   𝐹(𝑘,𝑚,𝑛,𝑠,𝑟)   𝐻(𝑥,𝑘,𝑚,𝑛,𝑠,𝑟)   𝐼(𝑥,𝑘,𝑚,𝑛,𝑠,𝑟)   𝑀(𝑥,𝑘,𝑚,𝑛,𝑠,𝑟)   𝑍(𝑠,𝑟)

Proof of Theorem smflimlem1
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 smflimlem1.2 . 2 (𝜑𝑆 ∈ SAlg)
2 smflimlem1.3 . . . 4 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
3 smflimlem1.1 . . . . . . 7 𝑍 = (ℤ𝑀)
4 fvex 6835 . . . . . . 7 (ℤ𝑀) ∈ V
53, 4eqeltri 2827 . . . . . 6 𝑍 ∈ V
6 uzssz 12750 . . . . . . . . . . 11 (ℤ𝑀) ⊆ ℤ
73eleq2i 2823 . . . . . . . . . . . 12 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
87biimpi 216 . . . . . . . . . . 11 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
96, 8sselid 3932 . . . . . . . . . 10 (𝑛𝑍𝑛 ∈ ℤ)
10 uzid 12744 . . . . . . . . . 10 (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ𝑛))
119, 10syl 17 . . . . . . . . 9 (𝑛𝑍𝑛 ∈ (ℤ𝑛))
1211ne0d 4292 . . . . . . . 8 (𝑛𝑍 → (ℤ𝑛) ≠ ∅)
13 fvex 6835 . . . . . . . . . . 11 (𝐹𝑚) ∈ V
1413dmex 7839 . . . . . . . . . 10 dom (𝐹𝑚) ∈ V
1514rgenw 3051 . . . . . . . . 9 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
1615a1i 11 . . . . . . . 8 (𝑛𝑍 → ∀𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
17 iinexg 5286 . . . . . . . 8 (((ℤ𝑛) ≠ ∅ ∧ ∀𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
1812, 16, 17syl2anc 584 . . . . . . 7 (𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
1918rgen 3049 . . . . . 6 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
20 iunexg 7895 . . . . . 6 ((𝑍 ∈ V ∧ ∀𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V) → 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
215, 19, 20mp2an 692 . . . . 5 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
2221rabex 5277 . . . 4 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } ∈ V
232, 22eqeltri 2827 . . 3 𝐷 ∈ V
2423a1i 11 . 2 (𝜑𝐷 ∈ V)
25 smflimlem1.6 . . 3 𝐼 = 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)
26 nnct 13885 . . . . 5 ℕ ≼ ω
2726a1i 11 . . . 4 (𝜑 → ℕ ≼ ω)
28 nnn0 45415 . . . . 5 ℕ ≠ ∅
2928a1i 11 . . . 4 (𝜑 → ℕ ≠ ∅)
301adantr 480 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝑆 ∈ SAlg)
313uzct 45099 . . . . . 6 𝑍 ≼ ω
3231a1i 11 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝑍 ≼ ω)
3330adantr 480 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛𝑍) → 𝑆 ∈ SAlg)
34 eqid 2731 . . . . . . . 8 (ℤ𝑛) = (ℤ𝑛)
3534uzct 45099 . . . . . . 7 (ℤ𝑛) ≼ ω
3635a1i 11 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛𝑍) → (ℤ𝑛) ≼ ω)
3712adantl 481 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛𝑍) → (ℤ𝑛) ≠ ∅)
38 simpll 766 . . . . . . . 8 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
3938adantllr 719 . . . . . . 7 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
40 simpll 766 . . . . . . . 8 (((𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
4140adantlll 718 . . . . . . 7 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
423uztrn2 12748 . . . . . . . . . 10 ((𝑛𝑍𝑗 ∈ (ℤ𝑛)) → 𝑗𝑍)
4342ssd 45116 . . . . . . . . 9 (𝑛𝑍 → (ℤ𝑛) ⊆ 𝑍)
4443sselda 3934 . . . . . . . 8 ((𝑛𝑍𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
4544adantll 714 . . . . . . 7 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
46 simp3 1138 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → 𝑚𝑍)
47 simp2 1137 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → 𝑘 ∈ ℕ)
48 fvex 6835 . . . . . . . . . 10 (𝐶‘(𝑚𝑃𝑘)) ∈ V
4948a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝐶‘(𝑚𝑃𝑘)) ∈ V)
50 smflimlem1.5 . . . . . . . . . 10 𝐻 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘)))
5150ovmpt4g 7493 . . . . . . . . 9 ((𝑚𝑍𝑘 ∈ ℕ ∧ (𝐶‘(𝑚𝑃𝑘)) ∈ V) → (𝑚𝐻𝑘) = (𝐶‘(𝑚𝑃𝑘)))
5246, 47, 49, 51syl3anc 1373 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝐻𝑘) = (𝐶‘(𝑚𝑃𝑘)))
53 simp1 1136 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → 𝜑)
54 eqid 2731 . . . . . . . . . . . . 13 {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}
5554, 1rabexd 5278 . . . . . . . . . . . 12 (𝜑 → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
5653, 55syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
57 smflimlem1.4 . . . . . . . . . . . 12 𝑃 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
5857ovmpt4g 7493 . . . . . . . . . . 11 ((𝑚𝑍𝑘 ∈ ℕ ∧ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V) → (𝑚𝑃𝑘) = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
5946, 47, 56, 58syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝑃𝑘) = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
60 ssrab2 4030 . . . . . . . . . 10 {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ⊆ 𝑆
6159, 60eqsstrdi 3979 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝑃𝑘) ⊆ 𝑆)
6255ralrimivw 3128 . . . . . . . . . . . . 13 (𝜑 → ∀𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
6362ralrimivw 3128 . . . . . . . . . . . 12 (𝜑 → ∀𝑚𝑍𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
64633ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → ∀𝑚𝑍𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
6557elrnmpoid 45264 . . . . . . . . . . 11 ((𝑚𝑍𝑘 ∈ ℕ ∧ ∀𝑚𝑍𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V) → (𝑚𝑃𝑘) ∈ ran 𝑃)
6646, 47, 64, 65syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝑃𝑘) ∈ ran 𝑃)
67 ovex 7379 . . . . . . . . . . 11 (𝑚𝑃𝑘) ∈ V
68 eleq1 2819 . . . . . . . . . . . . 13 (𝑟 = (𝑚𝑃𝑘) → (𝑟 ∈ ran 𝑃 ↔ (𝑚𝑃𝑘) ∈ ran 𝑃))
6968anbi2d 630 . . . . . . . . . . . 12 (𝑟 = (𝑚𝑃𝑘) → ((𝜑𝑟 ∈ ran 𝑃) ↔ (𝜑 ∧ (𝑚𝑃𝑘) ∈ ran 𝑃)))
70 fveq2 6822 . . . . . . . . . . . . 13 (𝑟 = (𝑚𝑃𝑘) → (𝐶𝑟) = (𝐶‘(𝑚𝑃𝑘)))
71 id 22 . . . . . . . . . . . . 13 (𝑟 = (𝑚𝑃𝑘) → 𝑟 = (𝑚𝑃𝑘))
7270, 71eleq12d 2825 . . . . . . . . . . . 12 (𝑟 = (𝑚𝑃𝑘) → ((𝐶𝑟) ∈ 𝑟 ↔ (𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘)))
7369, 72imbi12d 344 . . . . . . . . . . 11 (𝑟 = (𝑚𝑃𝑘) → (((𝜑𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟) ↔ ((𝜑 ∧ (𝑚𝑃𝑘) ∈ ran 𝑃) → (𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘))))
74 smflimlem1.7 . . . . . . . . . . 11 ((𝜑𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟)
7567, 73, 74vtocl 3513 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑃𝑘) ∈ ran 𝑃) → (𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘))
7653, 66, 75syl2anc 584 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘))
7761, 76sseldd 3935 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝐶‘(𝑚𝑃𝑘)) ∈ 𝑆)
7852, 77eqeltrd 2831 . . . . . . 7 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝐻𝑘) ∈ 𝑆)
7939, 41, 45, 78syl3anc 1373 . . . . . 6 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝑚𝐻𝑘) ∈ 𝑆)
8033, 36, 37, 79saliincl 46364 . . . . 5 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛𝑍) → 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) ∈ 𝑆)
8130, 32, 80saliuncl 46360 . . . 4 ((𝜑𝑘 ∈ ℕ) → 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) ∈ 𝑆)
821, 27, 29, 81saliincl 46364 . . 3 (𝜑 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) ∈ 𝑆)
8325, 82eqeltrid 2835 . 2 (𝜑𝐼𝑆)
84 incom 4159 . 2 (𝐷𝐼) = (𝐼𝐷)
851, 24, 83, 84elrestd 45144 1 (𝜑 → (𝐷𝐼) ∈ (𝑆t 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  {crab 3395  Vcvv 3436  cin 3901  c0 4283   ciun 4941   ciin 4942   class class class wbr 5091  cmpt 5172  dom cdm 5616  ran crn 5617  cfv 6481  (class class class)co 7346  cmpo 7348  ωcom 7796  cdom 8867  1c1 11004   + caddc 11006   < clt 11143   / cdiv 11771  cn 12122  cz 12465  cuz 12729  cli 15388  t crest 17321  SAlgcsalg 46345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-omul 8390  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-oi 9396  df-card 9829  df-acn 9832  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-n0 12379  df-z 12466  df-uz 12730  df-rest 17323  df-salg 46346
This theorem is referenced by:  smflimlem5  46812
  Copyright terms: Public domain W3C validator