Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimlem1 Structured version   Visualization version   GIF version

Theorem smflimlem1 45566
Description: Lemma for the proof that the limit of a sequence of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of [Fremlin1] p. 38 . This lemma proves that (𝐷𝐼) is in the subspace sigma-algebra induced by 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smflimlem1.1 𝑍 = (ℤ𝑀)
smflimlem1.2 (𝜑𝑆 ∈ SAlg)
smflimlem1.3 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
smflimlem1.4 𝑃 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
smflimlem1.5 𝐻 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘)))
smflimlem1.6 𝐼 = 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)
smflimlem1.7 ((𝜑𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟)
Assertion
Ref Expression
smflimlem1 (𝜑 → (𝐷𝐼) ∈ (𝑆t 𝐷))
Distinct variable groups:   𝐶,𝑟   𝑥,𝐹   𝑃,𝑟   𝑆,𝑘,𝑚,𝑛   𝑆,𝑠   𝑛,𝑍,𝑘,𝑚   𝑥,𝑍,𝑚,𝑛   𝜑,𝑘,𝑚,𝑛   𝑘,𝑟,𝑚,𝜑
Allowed substitution hints:   𝜑(𝑥,𝑠)   𝐴(𝑥,𝑘,𝑚,𝑛,𝑠,𝑟)   𝐶(𝑥,𝑘,𝑚,𝑛,𝑠)   𝐷(𝑥,𝑘,𝑚,𝑛,𝑠,𝑟)   𝑃(𝑥,𝑘,𝑚,𝑛,𝑠)   𝑆(𝑥,𝑟)   𝐹(𝑘,𝑚,𝑛,𝑠,𝑟)   𝐻(𝑥,𝑘,𝑚,𝑛,𝑠,𝑟)   𝐼(𝑥,𝑘,𝑚,𝑛,𝑠,𝑟)   𝑀(𝑥,𝑘,𝑚,𝑛,𝑠,𝑟)   𝑍(𝑠,𝑟)

Proof of Theorem smflimlem1
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 smflimlem1.2 . 2 (𝜑𝑆 ∈ SAlg)
2 smflimlem1.3 . . . 4 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
3 smflimlem1.1 . . . . . . 7 𝑍 = (ℤ𝑀)
4 fvex 6904 . . . . . . 7 (ℤ𝑀) ∈ V
53, 4eqeltri 2829 . . . . . 6 𝑍 ∈ V
6 uzssz 12845 . . . . . . . . . . 11 (ℤ𝑀) ⊆ ℤ
73eleq2i 2825 . . . . . . . . . . . 12 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
87biimpi 215 . . . . . . . . . . 11 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
96, 8sselid 3980 . . . . . . . . . 10 (𝑛𝑍𝑛 ∈ ℤ)
10 uzid 12839 . . . . . . . . . 10 (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ𝑛))
119, 10syl 17 . . . . . . . . 9 (𝑛𝑍𝑛 ∈ (ℤ𝑛))
1211ne0d 4335 . . . . . . . 8 (𝑛𝑍 → (ℤ𝑛) ≠ ∅)
13 fvex 6904 . . . . . . . . . . 11 (𝐹𝑚) ∈ V
1413dmex 7904 . . . . . . . . . 10 dom (𝐹𝑚) ∈ V
1514rgenw 3065 . . . . . . . . 9 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
1615a1i 11 . . . . . . . 8 (𝑛𝑍 → ∀𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
17 iinexg 5341 . . . . . . . 8 (((ℤ𝑛) ≠ ∅ ∧ ∀𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
1812, 16, 17syl2anc 584 . . . . . . 7 (𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
1918rgen 3063 . . . . . 6 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
20 iunexg 7952 . . . . . 6 ((𝑍 ∈ V ∧ ∀𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V) → 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
215, 19, 20mp2an 690 . . . . 5 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
2221rabex 5332 . . . 4 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } ∈ V
232, 22eqeltri 2829 . . 3 𝐷 ∈ V
2423a1i 11 . 2 (𝜑𝐷 ∈ V)
25 smflimlem1.6 . . 3 𝐼 = 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)
26 nnct 13948 . . . . 5 ℕ ≼ ω
2726a1i 11 . . . 4 (𝜑 → ℕ ≼ ω)
28 nnn0 44167 . . . . 5 ℕ ≠ ∅
2928a1i 11 . . . 4 (𝜑 → ℕ ≠ ∅)
301adantr 481 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝑆 ∈ SAlg)
313uzct 43832 . . . . . 6 𝑍 ≼ ω
3231a1i 11 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝑍 ≼ ω)
3330adantr 481 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛𝑍) → 𝑆 ∈ SAlg)
34 eqid 2732 . . . . . . . 8 (ℤ𝑛) = (ℤ𝑛)
3534uzct 43832 . . . . . . 7 (ℤ𝑛) ≼ ω
3635a1i 11 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛𝑍) → (ℤ𝑛) ≼ ω)
3712adantl 482 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛𝑍) → (ℤ𝑛) ≠ ∅)
38 simpll 765 . . . . . . . 8 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
3938adantllr 717 . . . . . . 7 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
40 simpll 765 . . . . . . . 8 (((𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
4140adantlll 716 . . . . . . 7 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
423uztrn2 12843 . . . . . . . . . 10 ((𝑛𝑍𝑗 ∈ (ℤ𝑛)) → 𝑗𝑍)
4342ssd 43851 . . . . . . . . 9 (𝑛𝑍 → (ℤ𝑛) ⊆ 𝑍)
4443sselda 3982 . . . . . . . 8 ((𝑛𝑍𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
4544adantll 712 . . . . . . 7 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
46 simp3 1138 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → 𝑚𝑍)
47 simp2 1137 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → 𝑘 ∈ ℕ)
48 fvex 6904 . . . . . . . . . 10 (𝐶‘(𝑚𝑃𝑘)) ∈ V
4948a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝐶‘(𝑚𝑃𝑘)) ∈ V)
50 smflimlem1.5 . . . . . . . . . 10 𝐻 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘)))
5150ovmpt4g 7557 . . . . . . . . 9 ((𝑚𝑍𝑘 ∈ ℕ ∧ (𝐶‘(𝑚𝑃𝑘)) ∈ V) → (𝑚𝐻𝑘) = (𝐶‘(𝑚𝑃𝑘)))
5246, 47, 49, 51syl3anc 1371 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝐻𝑘) = (𝐶‘(𝑚𝑃𝑘)))
53 simp1 1136 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → 𝜑)
54 eqid 2732 . . . . . . . . . . . . 13 {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}
5554, 1rabexd 5333 . . . . . . . . . . . 12 (𝜑 → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
5653, 55syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
57 smflimlem1.4 . . . . . . . . . . . 12 𝑃 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
5857ovmpt4g 7557 . . . . . . . . . . 11 ((𝑚𝑍𝑘 ∈ ℕ ∧ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V) → (𝑚𝑃𝑘) = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
5946, 47, 56, 58syl3anc 1371 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝑃𝑘) = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
60 ssrab2 4077 . . . . . . . . . 10 {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ⊆ 𝑆
6159, 60eqsstrdi 4036 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝑃𝑘) ⊆ 𝑆)
6255ralrimivw 3150 . . . . . . . . . . . . 13 (𝜑 → ∀𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
6362ralrimivw 3150 . . . . . . . . . . . 12 (𝜑 → ∀𝑚𝑍𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
64633ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → ∀𝑚𝑍𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
6557elrnmpoid 44006 . . . . . . . . . . 11 ((𝑚𝑍𝑘 ∈ ℕ ∧ ∀𝑚𝑍𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V) → (𝑚𝑃𝑘) ∈ ran 𝑃)
6646, 47, 64, 65syl3anc 1371 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝑃𝑘) ∈ ran 𝑃)
67 ovex 7444 . . . . . . . . . . 11 (𝑚𝑃𝑘) ∈ V
68 eleq1 2821 . . . . . . . . . . . . 13 (𝑟 = (𝑚𝑃𝑘) → (𝑟 ∈ ran 𝑃 ↔ (𝑚𝑃𝑘) ∈ ran 𝑃))
6968anbi2d 629 . . . . . . . . . . . 12 (𝑟 = (𝑚𝑃𝑘) → ((𝜑𝑟 ∈ ran 𝑃) ↔ (𝜑 ∧ (𝑚𝑃𝑘) ∈ ran 𝑃)))
70 fveq2 6891 . . . . . . . . . . . . 13 (𝑟 = (𝑚𝑃𝑘) → (𝐶𝑟) = (𝐶‘(𝑚𝑃𝑘)))
71 id 22 . . . . . . . . . . . . 13 (𝑟 = (𝑚𝑃𝑘) → 𝑟 = (𝑚𝑃𝑘))
7270, 71eleq12d 2827 . . . . . . . . . . . 12 (𝑟 = (𝑚𝑃𝑘) → ((𝐶𝑟) ∈ 𝑟 ↔ (𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘)))
7369, 72imbi12d 344 . . . . . . . . . . 11 (𝑟 = (𝑚𝑃𝑘) → (((𝜑𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟) ↔ ((𝜑 ∧ (𝑚𝑃𝑘) ∈ ran 𝑃) → (𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘))))
74 smflimlem1.7 . . . . . . . . . . 11 ((𝜑𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟)
7567, 73, 74vtocl 3549 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑃𝑘) ∈ ran 𝑃) → (𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘))
7653, 66, 75syl2anc 584 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘))
7761, 76sseldd 3983 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝐶‘(𝑚𝑃𝑘)) ∈ 𝑆)
7852, 77eqeltrd 2833 . . . . . . 7 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝐻𝑘) ∈ 𝑆)
7939, 41, 45, 78syl3anc 1371 . . . . . 6 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝑚𝐻𝑘) ∈ 𝑆)
8033, 36, 37, 79saliincl 45122 . . . . 5 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛𝑍) → 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) ∈ 𝑆)
8130, 32, 80saliuncl 45118 . . . 4 ((𝜑𝑘 ∈ ℕ) → 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) ∈ 𝑆)
821, 27, 29, 81saliincl 45122 . . 3 (𝜑 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) ∈ 𝑆)
8325, 82eqeltrid 2837 . 2 (𝜑𝐼𝑆)
84 incom 4201 . 2 (𝐷𝐼) = (𝐼𝐷)
851, 24, 83, 84elrestd 43879 1 (𝜑 → (𝐷𝐼) ∈ (𝑆t 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2940  wral 3061  {crab 3432  Vcvv 3474  cin 3947  c0 4322   ciun 4997   ciin 4998   class class class wbr 5148  cmpt 5231  dom cdm 5676  ran crn 5677  cfv 6543  (class class class)co 7411  cmpo 7413  ωcom 7857  cdom 8939  1c1 11113   + caddc 11115   < clt 11250   / cdiv 11873  cn 12214  cz 12560  cuz 12824  cli 15430  t crest 17368  SAlgcsalg 45103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-oadd 8472  df-omul 8473  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-oi 9507  df-card 9936  df-acn 9939  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-nn 12215  df-n0 12475  df-z 12561  df-uz 12825  df-rest 17370  df-salg 45104
This theorem is referenced by:  smflimlem5  45570
  Copyright terms: Public domain W3C validator