Step | Hyp | Ref
| Expression |
1 | | smflimlem1.2 |
. 2
⊢ (𝜑 → 𝑆 ∈ SAlg) |
2 | | smflimlem1.3 |
. . . 4
⊢ 𝐷 = {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } |
3 | | smflimlem1.1 |
. . . . . . 7
⊢ 𝑍 =
(ℤ≥‘𝑀) |
4 | | fvex 6769 |
. . . . . . 7
⊢
(ℤ≥‘𝑀) ∈ V |
5 | 3, 4 | eqeltri 2835 |
. . . . . 6
⊢ 𝑍 ∈ V |
6 | | uzssz 12532 |
. . . . . . . . . . 11
⊢
(ℤ≥‘𝑀) ⊆ ℤ |
7 | 3 | eleq2i 2830 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ 𝑍 ↔ 𝑛 ∈ (ℤ≥‘𝑀)) |
8 | 7 | biimpi 215 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ (ℤ≥‘𝑀)) |
9 | 6, 8 | sselid 3915 |
. . . . . . . . . 10
⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ ℤ) |
10 | | uzid 12526 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℤ → 𝑛 ∈
(ℤ≥‘𝑛)) |
11 | 9, 10 | syl 17 |
. . . . . . . . 9
⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ (ℤ≥‘𝑛)) |
12 | 11 | ne0d 4266 |
. . . . . . . 8
⊢ (𝑛 ∈ 𝑍 → (ℤ≥‘𝑛) ≠ ∅) |
13 | | fvex 6769 |
. . . . . . . . . . 11
⊢ (𝐹‘𝑚) ∈ V |
14 | 13 | dmex 7732 |
. . . . . . . . . 10
⊢ dom
(𝐹‘𝑚) ∈ V |
15 | 14 | rgenw 3075 |
. . . . . . . . 9
⊢
∀𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∈ V |
16 | 15 | a1i 11 |
. . . . . . . 8
⊢ (𝑛 ∈ 𝑍 → ∀𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∈ V) |
17 | | iinexg 5260 |
. . . . . . . 8
⊢
(((ℤ≥‘𝑛) ≠ ∅ ∧ ∀𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∈ V) → ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∈ V) |
18 | 12, 16, 17 | syl2anc 583 |
. . . . . . 7
⊢ (𝑛 ∈ 𝑍 → ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∈ V) |
19 | 18 | rgen 3073 |
. . . . . 6
⊢
∀𝑛 ∈
𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∈ V |
20 | | iunexg 7779 |
. . . . . 6
⊢ ((𝑍 ∈ V ∧ ∀𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∈ V) → ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∈ V) |
21 | 5, 19, 20 | mp2an 688 |
. . . . 5
⊢ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∈ V |
22 | 21 | rabex 5251 |
. . . 4
⊢ {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } ∈
V |
23 | 2, 22 | eqeltri 2835 |
. . 3
⊢ 𝐷 ∈ V |
24 | 23 | a1i 11 |
. 2
⊢ (𝜑 → 𝐷 ∈ V) |
25 | | smflimlem1.6 |
. . 3
⊢ 𝐼 = ∩ 𝑘 ∈ ℕ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)(𝑚𝐻𝑘) |
26 | | nnct 13629 |
. . . . 5
⊢ ℕ
≼ ω |
27 | 26 | a1i 11 |
. . . 4
⊢ (𝜑 → ℕ ≼
ω) |
28 | | nnn0 42807 |
. . . . 5
⊢ ℕ
≠ ∅ |
29 | 28 | a1i 11 |
. . . 4
⊢ (𝜑 → ℕ ≠
∅) |
30 | 1 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑆 ∈ SAlg) |
31 | 3 | uzct 42500 |
. . . . . 6
⊢ 𝑍 ≼
ω |
32 | 31 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑍 ≼ ω) |
33 | 30 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → 𝑆 ∈ SAlg) |
34 | | eqid 2738 |
. . . . . . . 8
⊢
(ℤ≥‘𝑛) = (ℤ≥‘𝑛) |
35 | 34 | uzct 42500 |
. . . . . . 7
⊢
(ℤ≥‘𝑛) ≼ ω |
36 | 35 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → (ℤ≥‘𝑛) ≼
ω) |
37 | 12 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → (ℤ≥‘𝑛) ≠ ∅) |
38 | | simpll 763 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝜑) |
39 | 38 | adantllr 715 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝜑) |
40 | | simpll 763 |
. . . . . . . 8
⊢ (((𝑘 ∈ ℕ ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑘 ∈ ℕ) |
41 | 40 | adantlll 714 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑘 ∈ ℕ) |
42 | 3 | uztrn2 12530 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑛)) → 𝑗 ∈ 𝑍) |
43 | 42 | ssd 42519 |
. . . . . . . . 9
⊢ (𝑛 ∈ 𝑍 → (ℤ≥‘𝑛) ⊆ 𝑍) |
44 | 43 | sselda 3917 |
. . . . . . . 8
⊢ ((𝑛 ∈ 𝑍 ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑚 ∈ 𝑍) |
45 | 44 | adantll 710 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑚 ∈ 𝑍) |
46 | | simp3 1136 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑚 ∈ 𝑍) → 𝑚 ∈ 𝑍) |
47 | | simp2 1135 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑚 ∈ 𝑍) → 𝑘 ∈ ℕ) |
48 | | fvex 6769 |
. . . . . . . . . 10
⊢ (𝐶‘(𝑚𝑃𝑘)) ∈ V |
49 | 48 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑚 ∈ 𝑍) → (𝐶‘(𝑚𝑃𝑘)) ∈ V) |
50 | | smflimlem1.5 |
. . . . . . . . . 10
⊢ 𝐻 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘))) |
51 | 50 | ovmpt4g 7398 |
. . . . . . . . 9
⊢ ((𝑚 ∈ 𝑍 ∧ 𝑘 ∈ ℕ ∧ (𝐶‘(𝑚𝑃𝑘)) ∈ V) → (𝑚𝐻𝑘) = (𝐶‘(𝑚𝑃𝑘))) |
52 | 46, 47, 49, 51 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑚 ∈ 𝑍) → (𝑚𝐻𝑘) = (𝐶‘(𝑚𝑃𝑘))) |
53 | | simp1 1134 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑚 ∈ 𝑍) → 𝜑) |
54 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))} = {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))} |
55 | 54, 1 | rabexd 5252 |
. . . . . . . . . . . 12
⊢ (𝜑 → {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))} ∈ V) |
56 | 53, 55 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑚 ∈ 𝑍) → {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))} ∈ V) |
57 | | smflimlem1.4 |
. . . . . . . . . . . 12
⊢ 𝑃 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))}) |
58 | 57 | ovmpt4g 7398 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ 𝑍 ∧ 𝑘 ∈ ℕ ∧ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))} ∈ V) → (𝑚𝑃𝑘) = {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))}) |
59 | 46, 47, 56, 58 | syl3anc 1369 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑚 ∈ 𝑍) → (𝑚𝑃𝑘) = {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))}) |
60 | | ssrab2 4009 |
. . . . . . . . . 10
⊢ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))} ⊆ 𝑆 |
61 | 59, 60 | eqsstrdi 3971 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑚 ∈ 𝑍) → (𝑚𝑃𝑘) ⊆ 𝑆) |
62 | 55 | ralrimivw 3108 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑘 ∈ ℕ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))} ∈ V) |
63 | 62 | ralrimivw 3108 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑚 ∈ 𝑍 ∀𝑘 ∈ ℕ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))} ∈ V) |
64 | 63 | 3ad2ant1 1131 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑚 ∈ 𝑍) → ∀𝑚 ∈ 𝑍 ∀𝑘 ∈ ℕ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))} ∈ V) |
65 | 57 | elrnmpoid 42656 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ 𝑍 ∧ 𝑘 ∈ ℕ ∧ ∀𝑚 ∈ 𝑍 ∀𝑘 ∈ ℕ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))} ∈ V) → (𝑚𝑃𝑘) ∈ ran 𝑃) |
66 | 46, 47, 64, 65 | syl3anc 1369 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑚 ∈ 𝑍) → (𝑚𝑃𝑘) ∈ ran 𝑃) |
67 | | ovex 7288 |
. . . . . . . . . . 11
⊢ (𝑚𝑃𝑘) ∈ V |
68 | | eleq1 2826 |
. . . . . . . . . . . . 13
⊢ (𝑟 = (𝑚𝑃𝑘) → (𝑟 ∈ ran 𝑃 ↔ (𝑚𝑃𝑘) ∈ ran 𝑃)) |
69 | 68 | anbi2d 628 |
. . . . . . . . . . . 12
⊢ (𝑟 = (𝑚𝑃𝑘) → ((𝜑 ∧ 𝑟 ∈ ran 𝑃) ↔ (𝜑 ∧ (𝑚𝑃𝑘) ∈ ran 𝑃))) |
70 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑟 = (𝑚𝑃𝑘) → (𝐶‘𝑟) = (𝐶‘(𝑚𝑃𝑘))) |
71 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑟 = (𝑚𝑃𝑘) → 𝑟 = (𝑚𝑃𝑘)) |
72 | 70, 71 | eleq12d 2833 |
. . . . . . . . . . . 12
⊢ (𝑟 = (𝑚𝑃𝑘) → ((𝐶‘𝑟) ∈ 𝑟 ↔ (𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘))) |
73 | 69, 72 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑟 = (𝑚𝑃𝑘) → (((𝜑 ∧ 𝑟 ∈ ran 𝑃) → (𝐶‘𝑟) ∈ 𝑟) ↔ ((𝜑 ∧ (𝑚𝑃𝑘) ∈ ran 𝑃) → (𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘)))) |
74 | | smflimlem1.7 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑟 ∈ ran 𝑃) → (𝐶‘𝑟) ∈ 𝑟) |
75 | 67, 73, 74 | vtocl 3488 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚𝑃𝑘) ∈ ran 𝑃) → (𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘)) |
76 | 53, 66, 75 | syl2anc 583 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑚 ∈ 𝑍) → (𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘)) |
77 | 61, 76 | sseldd 3918 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑚 ∈ 𝑍) → (𝐶‘(𝑚𝑃𝑘)) ∈ 𝑆) |
78 | 52, 77 | eqeltrd 2839 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑚 ∈ 𝑍) → (𝑚𝐻𝑘) ∈ 𝑆) |
79 | 39, 41, 45, 78 | syl3anc 1369 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → (𝑚𝐻𝑘) ∈ 𝑆) |
80 | 33, 36, 37, 79 | saliincl 43756 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → ∩
𝑚 ∈
(ℤ≥‘𝑛)(𝑚𝐻𝑘) ∈ 𝑆) |
81 | 30, 32, 80 | saliuncl 43753 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)(𝑚𝐻𝑘) ∈ 𝑆) |
82 | 1, 27, 29, 81 | saliincl 43756 |
. . 3
⊢ (𝜑 → ∩ 𝑘 ∈ ℕ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)(𝑚𝐻𝑘) ∈ 𝑆) |
83 | 25, 82 | eqeltrid 2843 |
. 2
⊢ (𝜑 → 𝐼 ∈ 𝑆) |
84 | | incom 4131 |
. 2
⊢ (𝐷 ∩ 𝐼) = (𝐼 ∩ 𝐷) |
85 | 1, 24, 83, 84 | elrestd 42547 |
1
⊢ (𝜑 → (𝐷 ∩ 𝐼) ∈ (𝑆 ↾t 𝐷)) |