Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimlem1 Structured version   Visualization version   GIF version

Theorem smflimlem1 46800
Description: Lemma for the proof that the limit of a sequence of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of [Fremlin1] p. 38 . This lemma proves that (𝐷𝐼) is in the subspace sigma-algebra induced by 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smflimlem1.1 𝑍 = (ℤ𝑀)
smflimlem1.2 (𝜑𝑆 ∈ SAlg)
smflimlem1.3 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
smflimlem1.4 𝑃 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
smflimlem1.5 𝐻 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘)))
smflimlem1.6 𝐼 = 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)
smflimlem1.7 ((𝜑𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟)
Assertion
Ref Expression
smflimlem1 (𝜑 → (𝐷𝐼) ∈ (𝑆t 𝐷))
Distinct variable groups:   𝐶,𝑟   𝑥,𝐹   𝑃,𝑟   𝑆,𝑘,𝑚,𝑛   𝑆,𝑠   𝑛,𝑍,𝑘,𝑚   𝑥,𝑍,𝑚,𝑛   𝜑,𝑘,𝑚,𝑛   𝑘,𝑟,𝑚,𝜑
Allowed substitution hints:   𝜑(𝑥,𝑠)   𝐴(𝑥,𝑘,𝑚,𝑛,𝑠,𝑟)   𝐶(𝑥,𝑘,𝑚,𝑛,𝑠)   𝐷(𝑥,𝑘,𝑚,𝑛,𝑠,𝑟)   𝑃(𝑥,𝑘,𝑚,𝑛,𝑠)   𝑆(𝑥,𝑟)   𝐹(𝑘,𝑚,𝑛,𝑠,𝑟)   𝐻(𝑥,𝑘,𝑚,𝑛,𝑠,𝑟)   𝐼(𝑥,𝑘,𝑚,𝑛,𝑠,𝑟)   𝑀(𝑥,𝑘,𝑚,𝑛,𝑠,𝑟)   𝑍(𝑠,𝑟)

Proof of Theorem smflimlem1
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 smflimlem1.2 . 2 (𝜑𝑆 ∈ SAlg)
2 smflimlem1.3 . . . 4 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
3 smflimlem1.1 . . . . . . 7 𝑍 = (ℤ𝑀)
4 fvex 6889 . . . . . . 7 (ℤ𝑀) ∈ V
53, 4eqeltri 2830 . . . . . 6 𝑍 ∈ V
6 uzssz 12873 . . . . . . . . . . 11 (ℤ𝑀) ⊆ ℤ
73eleq2i 2826 . . . . . . . . . . . 12 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
87biimpi 216 . . . . . . . . . . 11 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
96, 8sselid 3956 . . . . . . . . . 10 (𝑛𝑍𝑛 ∈ ℤ)
10 uzid 12867 . . . . . . . . . 10 (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ𝑛))
119, 10syl 17 . . . . . . . . 9 (𝑛𝑍𝑛 ∈ (ℤ𝑛))
1211ne0d 4317 . . . . . . . 8 (𝑛𝑍 → (ℤ𝑛) ≠ ∅)
13 fvex 6889 . . . . . . . . . . 11 (𝐹𝑚) ∈ V
1413dmex 7905 . . . . . . . . . 10 dom (𝐹𝑚) ∈ V
1514rgenw 3055 . . . . . . . . 9 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
1615a1i 11 . . . . . . . 8 (𝑛𝑍 → ∀𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
17 iinexg 5318 . . . . . . . 8 (((ℤ𝑛) ≠ ∅ ∧ ∀𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
1812, 16, 17syl2anc 584 . . . . . . 7 (𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
1918rgen 3053 . . . . . 6 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
20 iunexg 7962 . . . . . 6 ((𝑍 ∈ V ∧ ∀𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V) → 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
215, 19, 20mp2an 692 . . . . 5 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
2221rabex 5309 . . . 4 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } ∈ V
232, 22eqeltri 2830 . . 3 𝐷 ∈ V
2423a1i 11 . 2 (𝜑𝐷 ∈ V)
25 smflimlem1.6 . . 3 𝐼 = 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)
26 nnct 13999 . . . . 5 ℕ ≼ ω
2726a1i 11 . . . 4 (𝜑 → ℕ ≼ ω)
28 nnn0 45405 . . . . 5 ℕ ≠ ∅
2928a1i 11 . . . 4 (𝜑 → ℕ ≠ ∅)
301adantr 480 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝑆 ∈ SAlg)
313uzct 45087 . . . . . 6 𝑍 ≼ ω
3231a1i 11 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝑍 ≼ ω)
3330adantr 480 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛𝑍) → 𝑆 ∈ SAlg)
34 eqid 2735 . . . . . . . 8 (ℤ𝑛) = (ℤ𝑛)
3534uzct 45087 . . . . . . 7 (ℤ𝑛) ≼ ω
3635a1i 11 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛𝑍) → (ℤ𝑛) ≼ ω)
3712adantl 481 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛𝑍) → (ℤ𝑛) ≠ ∅)
38 simpll 766 . . . . . . . 8 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
3938adantllr 719 . . . . . . 7 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
40 simpll 766 . . . . . . . 8 (((𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
4140adantlll 718 . . . . . . 7 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
423uztrn2 12871 . . . . . . . . . 10 ((𝑛𝑍𝑗 ∈ (ℤ𝑛)) → 𝑗𝑍)
4342ssd 45104 . . . . . . . . 9 (𝑛𝑍 → (ℤ𝑛) ⊆ 𝑍)
4443sselda 3958 . . . . . . . 8 ((𝑛𝑍𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
4544adantll 714 . . . . . . 7 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
46 simp3 1138 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → 𝑚𝑍)
47 simp2 1137 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → 𝑘 ∈ ℕ)
48 fvex 6889 . . . . . . . . . 10 (𝐶‘(𝑚𝑃𝑘)) ∈ V
4948a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝐶‘(𝑚𝑃𝑘)) ∈ V)
50 smflimlem1.5 . . . . . . . . . 10 𝐻 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘)))
5150ovmpt4g 7554 . . . . . . . . 9 ((𝑚𝑍𝑘 ∈ ℕ ∧ (𝐶‘(𝑚𝑃𝑘)) ∈ V) → (𝑚𝐻𝑘) = (𝐶‘(𝑚𝑃𝑘)))
5246, 47, 49, 51syl3anc 1373 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝐻𝑘) = (𝐶‘(𝑚𝑃𝑘)))
53 simp1 1136 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → 𝜑)
54 eqid 2735 . . . . . . . . . . . . 13 {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}
5554, 1rabexd 5310 . . . . . . . . . . . 12 (𝜑 → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
5653, 55syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
57 smflimlem1.4 . . . . . . . . . . . 12 𝑃 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
5857ovmpt4g 7554 . . . . . . . . . . 11 ((𝑚𝑍𝑘 ∈ ℕ ∧ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V) → (𝑚𝑃𝑘) = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
5946, 47, 56, 58syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝑃𝑘) = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
60 ssrab2 4055 . . . . . . . . . 10 {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ⊆ 𝑆
6159, 60eqsstrdi 4003 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝑃𝑘) ⊆ 𝑆)
6255ralrimivw 3136 . . . . . . . . . . . . 13 (𝜑 → ∀𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
6362ralrimivw 3136 . . . . . . . . . . . 12 (𝜑 → ∀𝑚𝑍𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
64633ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → ∀𝑚𝑍𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
6557elrnmpoid 45252 . . . . . . . . . . 11 ((𝑚𝑍𝑘 ∈ ℕ ∧ ∀𝑚𝑍𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V) → (𝑚𝑃𝑘) ∈ ran 𝑃)
6646, 47, 64, 65syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝑃𝑘) ∈ ran 𝑃)
67 ovex 7438 . . . . . . . . . . 11 (𝑚𝑃𝑘) ∈ V
68 eleq1 2822 . . . . . . . . . . . . 13 (𝑟 = (𝑚𝑃𝑘) → (𝑟 ∈ ran 𝑃 ↔ (𝑚𝑃𝑘) ∈ ran 𝑃))
6968anbi2d 630 . . . . . . . . . . . 12 (𝑟 = (𝑚𝑃𝑘) → ((𝜑𝑟 ∈ ran 𝑃) ↔ (𝜑 ∧ (𝑚𝑃𝑘) ∈ ran 𝑃)))
70 fveq2 6876 . . . . . . . . . . . . 13 (𝑟 = (𝑚𝑃𝑘) → (𝐶𝑟) = (𝐶‘(𝑚𝑃𝑘)))
71 id 22 . . . . . . . . . . . . 13 (𝑟 = (𝑚𝑃𝑘) → 𝑟 = (𝑚𝑃𝑘))
7270, 71eleq12d 2828 . . . . . . . . . . . 12 (𝑟 = (𝑚𝑃𝑘) → ((𝐶𝑟) ∈ 𝑟 ↔ (𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘)))
7369, 72imbi12d 344 . . . . . . . . . . 11 (𝑟 = (𝑚𝑃𝑘) → (((𝜑𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟) ↔ ((𝜑 ∧ (𝑚𝑃𝑘) ∈ ran 𝑃) → (𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘))))
74 smflimlem1.7 . . . . . . . . . . 11 ((𝜑𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟)
7567, 73, 74vtocl 3537 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑃𝑘) ∈ ran 𝑃) → (𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘))
7653, 66, 75syl2anc 584 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘))
7761, 76sseldd 3959 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝐶‘(𝑚𝑃𝑘)) ∈ 𝑆)
7852, 77eqeltrd 2834 . . . . . . 7 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝐻𝑘) ∈ 𝑆)
7939, 41, 45, 78syl3anc 1373 . . . . . 6 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝑚𝐻𝑘) ∈ 𝑆)
8033, 36, 37, 79saliincl 46356 . . . . 5 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛𝑍) → 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) ∈ 𝑆)
8130, 32, 80saliuncl 46352 . . . 4 ((𝜑𝑘 ∈ ℕ) → 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) ∈ 𝑆)
821, 27, 29, 81saliincl 46356 . . 3 (𝜑 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) ∈ 𝑆)
8325, 82eqeltrid 2838 . 2 (𝜑𝐼𝑆)
84 incom 4184 . 2 (𝐷𝐼) = (𝐼𝐷)
851, 24, 83, 84elrestd 45132 1 (𝜑 → (𝐷𝐼) ∈ (𝑆t 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  {crab 3415  Vcvv 3459  cin 3925  c0 4308   ciun 4967   ciin 4968   class class class wbr 5119  cmpt 5201  dom cdm 5654  ran crn 5655  cfv 6531  (class class class)co 7405  cmpo 7407  ωcom 7861  cdom 8957  1c1 11130   + caddc 11132   < clt 11269   / cdiv 11894  cn 12240  cz 12588  cuz 12852  cli 15500  t crest 17434  SAlgcsalg 46337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-omul 8485  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-oi 9524  df-card 9953  df-acn 9956  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-rest 17436  df-salg 46338
This theorem is referenced by:  smflimlem5  46804
  Copyright terms: Public domain W3C validator