Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimlem1 Structured version   Visualization version   GIF version

Theorem smflimlem1 44193
Description: Lemma for the proof that the limit of a sequence of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of [Fremlin1] p. 38 . This lemma proves that (𝐷𝐼) is in the subspace sigma-algebra induced by 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smflimlem1.1 𝑍 = (ℤ𝑀)
smflimlem1.2 (𝜑𝑆 ∈ SAlg)
smflimlem1.3 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
smflimlem1.4 𝑃 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
smflimlem1.5 𝐻 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘)))
smflimlem1.6 𝐼 = 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)
smflimlem1.7 ((𝜑𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟)
Assertion
Ref Expression
smflimlem1 (𝜑 → (𝐷𝐼) ∈ (𝑆t 𝐷))
Distinct variable groups:   𝐶,𝑟   𝑥,𝐹   𝑃,𝑟   𝑆,𝑘,𝑚,𝑛   𝑆,𝑠   𝑛,𝑍,𝑘,𝑚   𝑥,𝑍,𝑚,𝑛   𝜑,𝑘,𝑚,𝑛   𝑘,𝑟,𝑚,𝜑
Allowed substitution hints:   𝜑(𝑥,𝑠)   𝐴(𝑥,𝑘,𝑚,𝑛,𝑠,𝑟)   𝐶(𝑥,𝑘,𝑚,𝑛,𝑠)   𝐷(𝑥,𝑘,𝑚,𝑛,𝑠,𝑟)   𝑃(𝑥,𝑘,𝑚,𝑛,𝑠)   𝑆(𝑥,𝑟)   𝐹(𝑘,𝑚,𝑛,𝑠,𝑟)   𝐻(𝑥,𝑘,𝑚,𝑛,𝑠,𝑟)   𝐼(𝑥,𝑘,𝑚,𝑛,𝑠,𝑟)   𝑀(𝑥,𝑘,𝑚,𝑛,𝑠,𝑟)   𝑍(𝑠,𝑟)

Proof of Theorem smflimlem1
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 smflimlem1.2 . 2 (𝜑𝑆 ∈ SAlg)
2 smflimlem1.3 . . . 4 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
3 smflimlem1.1 . . . . . . 7 𝑍 = (ℤ𝑀)
4 fvex 6769 . . . . . . 7 (ℤ𝑀) ∈ V
53, 4eqeltri 2835 . . . . . 6 𝑍 ∈ V
6 uzssz 12532 . . . . . . . . . . 11 (ℤ𝑀) ⊆ ℤ
73eleq2i 2830 . . . . . . . . . . . 12 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
87biimpi 215 . . . . . . . . . . 11 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
96, 8sselid 3915 . . . . . . . . . 10 (𝑛𝑍𝑛 ∈ ℤ)
10 uzid 12526 . . . . . . . . . 10 (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ𝑛))
119, 10syl 17 . . . . . . . . 9 (𝑛𝑍𝑛 ∈ (ℤ𝑛))
1211ne0d 4266 . . . . . . . 8 (𝑛𝑍 → (ℤ𝑛) ≠ ∅)
13 fvex 6769 . . . . . . . . . . 11 (𝐹𝑚) ∈ V
1413dmex 7732 . . . . . . . . . 10 dom (𝐹𝑚) ∈ V
1514rgenw 3075 . . . . . . . . 9 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
1615a1i 11 . . . . . . . 8 (𝑛𝑍 → ∀𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
17 iinexg 5260 . . . . . . . 8 (((ℤ𝑛) ≠ ∅ ∧ ∀𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
1812, 16, 17syl2anc 583 . . . . . . 7 (𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
1918rgen 3073 . . . . . 6 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
20 iunexg 7779 . . . . . 6 ((𝑍 ∈ V ∧ ∀𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V) → 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
215, 19, 20mp2an 688 . . . . 5 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
2221rabex 5251 . . . 4 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } ∈ V
232, 22eqeltri 2835 . . 3 𝐷 ∈ V
2423a1i 11 . 2 (𝜑𝐷 ∈ V)
25 smflimlem1.6 . . 3 𝐼 = 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)
26 nnct 13629 . . . . 5 ℕ ≼ ω
2726a1i 11 . . . 4 (𝜑 → ℕ ≼ ω)
28 nnn0 42807 . . . . 5 ℕ ≠ ∅
2928a1i 11 . . . 4 (𝜑 → ℕ ≠ ∅)
301adantr 480 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝑆 ∈ SAlg)
313uzct 42500 . . . . . 6 𝑍 ≼ ω
3231a1i 11 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝑍 ≼ ω)
3330adantr 480 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛𝑍) → 𝑆 ∈ SAlg)
34 eqid 2738 . . . . . . . 8 (ℤ𝑛) = (ℤ𝑛)
3534uzct 42500 . . . . . . 7 (ℤ𝑛) ≼ ω
3635a1i 11 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛𝑍) → (ℤ𝑛) ≼ ω)
3712adantl 481 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛𝑍) → (ℤ𝑛) ≠ ∅)
38 simpll 763 . . . . . . . 8 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
3938adantllr 715 . . . . . . 7 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
40 simpll 763 . . . . . . . 8 (((𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
4140adantlll 714 . . . . . . 7 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
423uztrn2 12530 . . . . . . . . . 10 ((𝑛𝑍𝑗 ∈ (ℤ𝑛)) → 𝑗𝑍)
4342ssd 42519 . . . . . . . . 9 (𝑛𝑍 → (ℤ𝑛) ⊆ 𝑍)
4443sselda 3917 . . . . . . . 8 ((𝑛𝑍𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
4544adantll 710 . . . . . . 7 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
46 simp3 1136 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → 𝑚𝑍)
47 simp2 1135 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → 𝑘 ∈ ℕ)
48 fvex 6769 . . . . . . . . . 10 (𝐶‘(𝑚𝑃𝑘)) ∈ V
4948a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝐶‘(𝑚𝑃𝑘)) ∈ V)
50 smflimlem1.5 . . . . . . . . . 10 𝐻 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘)))
5150ovmpt4g 7398 . . . . . . . . 9 ((𝑚𝑍𝑘 ∈ ℕ ∧ (𝐶‘(𝑚𝑃𝑘)) ∈ V) → (𝑚𝐻𝑘) = (𝐶‘(𝑚𝑃𝑘)))
5246, 47, 49, 51syl3anc 1369 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝐻𝑘) = (𝐶‘(𝑚𝑃𝑘)))
53 simp1 1134 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → 𝜑)
54 eqid 2738 . . . . . . . . . . . . 13 {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}
5554, 1rabexd 5252 . . . . . . . . . . . 12 (𝜑 → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
5653, 55syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
57 smflimlem1.4 . . . . . . . . . . . 12 𝑃 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
5857ovmpt4g 7398 . . . . . . . . . . 11 ((𝑚𝑍𝑘 ∈ ℕ ∧ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V) → (𝑚𝑃𝑘) = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
5946, 47, 56, 58syl3anc 1369 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝑃𝑘) = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
60 ssrab2 4009 . . . . . . . . . 10 {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ⊆ 𝑆
6159, 60eqsstrdi 3971 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝑃𝑘) ⊆ 𝑆)
6255ralrimivw 3108 . . . . . . . . . . . . 13 (𝜑 → ∀𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
6362ralrimivw 3108 . . . . . . . . . . . 12 (𝜑 → ∀𝑚𝑍𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
64633ad2ant1 1131 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → ∀𝑚𝑍𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
6557elrnmpoid 42656 . . . . . . . . . . 11 ((𝑚𝑍𝑘 ∈ ℕ ∧ ∀𝑚𝑍𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V) → (𝑚𝑃𝑘) ∈ ran 𝑃)
6646, 47, 64, 65syl3anc 1369 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝑃𝑘) ∈ ran 𝑃)
67 ovex 7288 . . . . . . . . . . 11 (𝑚𝑃𝑘) ∈ V
68 eleq1 2826 . . . . . . . . . . . . 13 (𝑟 = (𝑚𝑃𝑘) → (𝑟 ∈ ran 𝑃 ↔ (𝑚𝑃𝑘) ∈ ran 𝑃))
6968anbi2d 628 . . . . . . . . . . . 12 (𝑟 = (𝑚𝑃𝑘) → ((𝜑𝑟 ∈ ran 𝑃) ↔ (𝜑 ∧ (𝑚𝑃𝑘) ∈ ran 𝑃)))
70 fveq2 6756 . . . . . . . . . . . . 13 (𝑟 = (𝑚𝑃𝑘) → (𝐶𝑟) = (𝐶‘(𝑚𝑃𝑘)))
71 id 22 . . . . . . . . . . . . 13 (𝑟 = (𝑚𝑃𝑘) → 𝑟 = (𝑚𝑃𝑘))
7270, 71eleq12d 2833 . . . . . . . . . . . 12 (𝑟 = (𝑚𝑃𝑘) → ((𝐶𝑟) ∈ 𝑟 ↔ (𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘)))
7369, 72imbi12d 344 . . . . . . . . . . 11 (𝑟 = (𝑚𝑃𝑘) → (((𝜑𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟) ↔ ((𝜑 ∧ (𝑚𝑃𝑘) ∈ ran 𝑃) → (𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘))))
74 smflimlem1.7 . . . . . . . . . . 11 ((𝜑𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟)
7567, 73, 74vtocl 3488 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑃𝑘) ∈ ran 𝑃) → (𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘))
7653, 66, 75syl2anc 583 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘))
7761, 76sseldd 3918 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝐶‘(𝑚𝑃𝑘)) ∈ 𝑆)
7852, 77eqeltrd 2839 . . . . . . 7 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝐻𝑘) ∈ 𝑆)
7939, 41, 45, 78syl3anc 1369 . . . . . 6 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝑚𝐻𝑘) ∈ 𝑆)
8033, 36, 37, 79saliincl 43756 . . . . 5 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛𝑍) → 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) ∈ 𝑆)
8130, 32, 80saliuncl 43753 . . . 4 ((𝜑𝑘 ∈ ℕ) → 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) ∈ 𝑆)
821, 27, 29, 81saliincl 43756 . . 3 (𝜑 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) ∈ 𝑆)
8325, 82eqeltrid 2843 . 2 (𝜑𝐼𝑆)
84 incom 4131 . 2 (𝐷𝐼) = (𝐼𝐷)
851, 24, 83, 84elrestd 42547 1 (𝜑 → (𝐷𝐼) ∈ (𝑆t 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  {crab 3067  Vcvv 3422  cin 3882  c0 4253   ciun 4921   ciin 4922   class class class wbr 5070  cmpt 5153  dom cdm 5580  ran crn 5581  cfv 6418  (class class class)co 7255  cmpo 7257  ωcom 7687  cdom 8689  1c1 10803   + caddc 10805   < clt 10940   / cdiv 11562  cn 11903  cz 12249  cuz 12511  cli 15121  t crest 17048  SAlgcsalg 43739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-oi 9199  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-rest 17050  df-salg 43740
This theorem is referenced by:  smflimlem5  44197
  Copyright terms: Public domain W3C validator