Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimlem1 Structured version   Visualization version   GIF version

Theorem smflimlem1 44306
Description: Lemma for the proof that the limit of a sequence of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of [Fremlin1] p. 38 . This lemma proves that (𝐷𝐼) is in the subspace sigma-algebra induced by 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smflimlem1.1 𝑍 = (ℤ𝑀)
smflimlem1.2 (𝜑𝑆 ∈ SAlg)
smflimlem1.3 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
smflimlem1.4 𝑃 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
smflimlem1.5 𝐻 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘)))
smflimlem1.6 𝐼 = 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)
smflimlem1.7 ((𝜑𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟)
Assertion
Ref Expression
smflimlem1 (𝜑 → (𝐷𝐼) ∈ (𝑆t 𝐷))
Distinct variable groups:   𝐶,𝑟   𝑥,𝐹   𝑃,𝑟   𝑆,𝑘,𝑚,𝑛   𝑆,𝑠   𝑛,𝑍,𝑘,𝑚   𝑥,𝑍,𝑚,𝑛   𝜑,𝑘,𝑚,𝑛   𝑘,𝑟,𝑚,𝜑
Allowed substitution hints:   𝜑(𝑥,𝑠)   𝐴(𝑥,𝑘,𝑚,𝑛,𝑠,𝑟)   𝐶(𝑥,𝑘,𝑚,𝑛,𝑠)   𝐷(𝑥,𝑘,𝑚,𝑛,𝑠,𝑟)   𝑃(𝑥,𝑘,𝑚,𝑛,𝑠)   𝑆(𝑥,𝑟)   𝐹(𝑘,𝑚,𝑛,𝑠,𝑟)   𝐻(𝑥,𝑘,𝑚,𝑛,𝑠,𝑟)   𝐼(𝑥,𝑘,𝑚,𝑛,𝑠,𝑟)   𝑀(𝑥,𝑘,𝑚,𝑛,𝑠,𝑟)   𝑍(𝑠,𝑟)

Proof of Theorem smflimlem1
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 smflimlem1.2 . 2 (𝜑𝑆 ∈ SAlg)
2 smflimlem1.3 . . . 4 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
3 smflimlem1.1 . . . . . . 7 𝑍 = (ℤ𝑀)
4 fvex 6787 . . . . . . 7 (ℤ𝑀) ∈ V
53, 4eqeltri 2835 . . . . . 6 𝑍 ∈ V
6 uzssz 12603 . . . . . . . . . . 11 (ℤ𝑀) ⊆ ℤ
73eleq2i 2830 . . . . . . . . . . . 12 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
87biimpi 215 . . . . . . . . . . 11 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
96, 8sselid 3919 . . . . . . . . . 10 (𝑛𝑍𝑛 ∈ ℤ)
10 uzid 12597 . . . . . . . . . 10 (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ𝑛))
119, 10syl 17 . . . . . . . . 9 (𝑛𝑍𝑛 ∈ (ℤ𝑛))
1211ne0d 4269 . . . . . . . 8 (𝑛𝑍 → (ℤ𝑛) ≠ ∅)
13 fvex 6787 . . . . . . . . . . 11 (𝐹𝑚) ∈ V
1413dmex 7758 . . . . . . . . . 10 dom (𝐹𝑚) ∈ V
1514rgenw 3076 . . . . . . . . 9 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
1615a1i 11 . . . . . . . 8 (𝑛𝑍 → ∀𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
17 iinexg 5265 . . . . . . . 8 (((ℤ𝑛) ≠ ∅ ∧ ∀𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
1812, 16, 17syl2anc 584 . . . . . . 7 (𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
1918rgen 3074 . . . . . 6 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
20 iunexg 7806 . . . . . 6 ((𝑍 ∈ V ∧ ∀𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V) → 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
215, 19, 20mp2an 689 . . . . 5 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
2221rabex 5256 . . . 4 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } ∈ V
232, 22eqeltri 2835 . . 3 𝐷 ∈ V
2423a1i 11 . 2 (𝜑𝐷 ∈ V)
25 smflimlem1.6 . . 3 𝐼 = 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)
26 nnct 13701 . . . . 5 ℕ ≼ ω
2726a1i 11 . . . 4 (𝜑 → ℕ ≼ ω)
28 nnn0 42917 . . . . 5 ℕ ≠ ∅
2928a1i 11 . . . 4 (𝜑 → ℕ ≠ ∅)
301adantr 481 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝑆 ∈ SAlg)
313uzct 42611 . . . . . 6 𝑍 ≼ ω
3231a1i 11 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝑍 ≼ ω)
3330adantr 481 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛𝑍) → 𝑆 ∈ SAlg)
34 eqid 2738 . . . . . . . 8 (ℤ𝑛) = (ℤ𝑛)
3534uzct 42611 . . . . . . 7 (ℤ𝑛) ≼ ω
3635a1i 11 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛𝑍) → (ℤ𝑛) ≼ ω)
3712adantl 482 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛𝑍) → (ℤ𝑛) ≠ ∅)
38 simpll 764 . . . . . . . 8 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
3938adantllr 716 . . . . . . 7 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
40 simpll 764 . . . . . . . 8 (((𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
4140adantlll 715 . . . . . . 7 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
423uztrn2 12601 . . . . . . . . . 10 ((𝑛𝑍𝑗 ∈ (ℤ𝑛)) → 𝑗𝑍)
4342ssd 42630 . . . . . . . . 9 (𝑛𝑍 → (ℤ𝑛) ⊆ 𝑍)
4443sselda 3921 . . . . . . . 8 ((𝑛𝑍𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
4544adantll 711 . . . . . . 7 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
46 simp3 1137 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → 𝑚𝑍)
47 simp2 1136 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → 𝑘 ∈ ℕ)
48 fvex 6787 . . . . . . . . . 10 (𝐶‘(𝑚𝑃𝑘)) ∈ V
4948a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝐶‘(𝑚𝑃𝑘)) ∈ V)
50 smflimlem1.5 . . . . . . . . . 10 𝐻 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘)))
5150ovmpt4g 7420 . . . . . . . . 9 ((𝑚𝑍𝑘 ∈ ℕ ∧ (𝐶‘(𝑚𝑃𝑘)) ∈ V) → (𝑚𝐻𝑘) = (𝐶‘(𝑚𝑃𝑘)))
5246, 47, 49, 51syl3anc 1370 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝐻𝑘) = (𝐶‘(𝑚𝑃𝑘)))
53 simp1 1135 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → 𝜑)
54 eqid 2738 . . . . . . . . . . . . 13 {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}
5554, 1rabexd 5257 . . . . . . . . . . . 12 (𝜑 → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
5653, 55syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
57 smflimlem1.4 . . . . . . . . . . . 12 𝑃 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
5857ovmpt4g 7420 . . . . . . . . . . 11 ((𝑚𝑍𝑘 ∈ ℕ ∧ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V) → (𝑚𝑃𝑘) = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
5946, 47, 56, 58syl3anc 1370 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝑃𝑘) = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
60 ssrab2 4013 . . . . . . . . . 10 {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ⊆ 𝑆
6159, 60eqsstrdi 3975 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝑃𝑘) ⊆ 𝑆)
6255ralrimivw 3104 . . . . . . . . . . . . 13 (𝜑 → ∀𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
6362ralrimivw 3104 . . . . . . . . . . . 12 (𝜑 → ∀𝑚𝑍𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
64633ad2ant1 1132 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → ∀𝑚𝑍𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
6557elrnmpoid 42767 . . . . . . . . . . 11 ((𝑚𝑍𝑘 ∈ ℕ ∧ ∀𝑚𝑍𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V) → (𝑚𝑃𝑘) ∈ ran 𝑃)
6646, 47, 64, 65syl3anc 1370 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝑃𝑘) ∈ ran 𝑃)
67 ovex 7308 . . . . . . . . . . 11 (𝑚𝑃𝑘) ∈ V
68 eleq1 2826 . . . . . . . . . . . . 13 (𝑟 = (𝑚𝑃𝑘) → (𝑟 ∈ ran 𝑃 ↔ (𝑚𝑃𝑘) ∈ ran 𝑃))
6968anbi2d 629 . . . . . . . . . . . 12 (𝑟 = (𝑚𝑃𝑘) → ((𝜑𝑟 ∈ ran 𝑃) ↔ (𝜑 ∧ (𝑚𝑃𝑘) ∈ ran 𝑃)))
70 fveq2 6774 . . . . . . . . . . . . 13 (𝑟 = (𝑚𝑃𝑘) → (𝐶𝑟) = (𝐶‘(𝑚𝑃𝑘)))
71 id 22 . . . . . . . . . . . . 13 (𝑟 = (𝑚𝑃𝑘) → 𝑟 = (𝑚𝑃𝑘))
7270, 71eleq12d 2833 . . . . . . . . . . . 12 (𝑟 = (𝑚𝑃𝑘) → ((𝐶𝑟) ∈ 𝑟 ↔ (𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘)))
7369, 72imbi12d 345 . . . . . . . . . . 11 (𝑟 = (𝑚𝑃𝑘) → (((𝜑𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟) ↔ ((𝜑 ∧ (𝑚𝑃𝑘) ∈ ran 𝑃) → (𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘))))
74 smflimlem1.7 . . . . . . . . . . 11 ((𝜑𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟)
7567, 73, 74vtocl 3498 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑃𝑘) ∈ ran 𝑃) → (𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘))
7653, 66, 75syl2anc 584 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘))
7761, 76sseldd 3922 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝐶‘(𝑚𝑃𝑘)) ∈ 𝑆)
7852, 77eqeltrd 2839 . . . . . . 7 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝐻𝑘) ∈ 𝑆)
7939, 41, 45, 78syl3anc 1370 . . . . . 6 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝑚𝐻𝑘) ∈ 𝑆)
8033, 36, 37, 79saliincl 43866 . . . . 5 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛𝑍) → 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) ∈ 𝑆)
8130, 32, 80saliuncl 43863 . . . 4 ((𝜑𝑘 ∈ ℕ) → 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) ∈ 𝑆)
821, 27, 29, 81saliincl 43866 . . 3 (𝜑 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) ∈ 𝑆)
8325, 82eqeltrid 2843 . 2 (𝜑𝐼𝑆)
84 incom 4135 . 2 (𝐷𝐼) = (𝐼𝐷)
851, 24, 83, 84elrestd 42658 1 (𝜑 → (𝐷𝐼) ∈ (𝑆t 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  {crab 3068  Vcvv 3432  cin 3886  c0 4256   ciun 4924   ciin 4925   class class class wbr 5074  cmpt 5157  dom cdm 5589  ran crn 5590  cfv 6433  (class class class)co 7275  cmpo 7277  ωcom 7712  cdom 8731  1c1 10872   + caddc 10874   < clt 11009   / cdiv 11632  cn 11973  cz 12319  cuz 12582  cli 15193  t crest 17131  SAlgcsalg 43849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-oi 9269  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-rest 17133  df-salg 43850
This theorem is referenced by:  smflimlem5  44310
  Copyright terms: Public domain W3C validator