| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr4rd | Structured version Visualization version GIF version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr4d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| 3bitr4d.3 | ⊢ (𝜑 → (𝜏 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 3bitr4rd | ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4d.3 | . . 3 ⊢ (𝜑 → (𝜏 ↔ 𝜒)) | |
| 2 | 3bitr4d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr4d 282 | . 2 ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
| 4 | 3bitr4d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) | |
| 5 | 3, 4 | bitr4d 282 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: snssgOLD 4744 inimasn 6117 isof1oidb 7281 oacan 8489 ecdmn0 8700 wemapwe 9626 ttrclselem2 9655 r1pw 9774 adderpqlem 10883 mulerpqlem 10884 lterpq 10899 ltanq 10900 genpass 10938 readdcan 11324 lemuldiv 12039 msq11 12060 avglt2 12397 qbtwnre 13135 iooshf 13363 clim2c 15447 lo1o1 15474 climabs0 15527 reef11 16063 absefib 16142 efieq1re 16143 nndivides 16208 oddnn02np1 16294 oddge22np1 16295 evennn02n 16296 evennn2n 16297 halfleoddlt 16308 pc2dvds 16826 pcmpt 16839 subsubc 17791 ghmqusker 19195 odmulgid 19460 gexdvds 19490 submcmn2 19745 obslbs 21615 cnntr 23138 cndis 23154 cnindis 23155 cnpdis 23156 lmres 23163 cmpfi 23271 ist0-4 23592 txhmeo 23666 tsmssubm 24006 blin 24285 cncfmet 24778 icopnfcnv 24816 lmmbrf 25138 iscauf 25156 causs 25174 mbfposr 25529 itg2gt0 25637 limcflf 25758 limcres 25763 lhop1 25895 dvdsr1p 26045 fsumvma2 27101 vmasum 27103 chpchtsum 27106 bposlem1 27171 addscan2 27876 slesubaddd 27973 mulscan2dlem 28057 iscgrgd 28416 tgcgr4 28434 lnrot1 28526 eqeelen 28807 nbusgreledg 29256 nb3grprlem2 29284 wspthsnwspthsnon 29819 rusgrnumwwlks 29877 clwwlkwwlksb 29956 clwwlknwwlksnb 29957 dmdmd 32202 nfpconfp 32529 funcnvmpt 32564 1stpreimas 32602 xrdifh 32676 swrdrn3 32850 lsmsnorb 33335 fldextrspunlsp 33642 rhmpreimacnlem 33847 ismntop 33989 eulerpartlemgh 34342 signslema 34526 fmlafvel 35345 topdifinfindis 37307 leceifl 37576 lindsadd 37580 lindsenlbs 37582 iblabsnclem 37650 ftc1anclem6 37665 areacirclem5 37679 areacirc 37680 brcoss3 38397 lsatfixedN 38975 cdlemg10c 40606 diaglbN 41022 dih1 41253 dihglbcpreN 41267 mapdcv 41627 dvdsexpnn0 42295 ef11d 42300 ellz1 42728 islssfg 43032 proot1ex 43158 tfsconcat00 43309 eliooshift 45477 clim2cf 45621 dfatdmfcoafv2 47228 sfprmdvdsmersenne 47577 odd2np1ALTV 47648 vopnbgrelself 47828 rrx2plordisom 48685 i0oii 48881 io1ii 48882 oppccic 49006 uptrlem3 49174 uptr2 49183 |
| Copyright terms: Public domain | W3C validator |