![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitr4rd | Structured version Visualization version GIF version |
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr4d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
3bitr4d.3 | ⊢ (𝜑 → (𝜏 ↔ 𝜒)) |
Ref | Expression |
---|---|
3bitr4rd | ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4d.3 | . . 3 ⊢ (𝜑 → (𝜏 ↔ 𝜒)) | |
2 | 3bitr4d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | bitr4d 281 | . 2 ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
4 | 3bitr4d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) | |
5 | 3, 4 | bitr4d 281 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: snssgOLD 4787 inimasn 6154 isof1oidb 7323 oacan 8550 ecdmn0 8752 wemapwe 9694 ttrclselem2 9723 r1pw 9842 adderpqlem 10951 mulerpqlem 10952 lterpq 10967 ltanq 10968 genpass 11006 readdcan 11392 lemuldiv 12098 msq11 12119 avglt2 12455 qbtwnre 13182 iooshf 13407 clim2c 15453 lo1o1 15480 climabs0 15533 reef11 16066 absefib 16145 efieq1re 16146 nndivides 16211 oddnn02np1 16295 oddge22np1 16296 evennn02n 16297 evennn2n 16298 halfleoddlt 16309 pc2dvds 16816 pcmpt 16829 subsubc 17807 odmulgid 19463 gexdvds 19493 submcmn2 19748 obslbs 21504 cnntr 22999 cndis 23015 cnindis 23016 cnpdis 23017 lmres 23024 cmpfi 23132 ist0-4 23453 txhmeo 23527 tsmssubm 23867 blin 24147 cncfmet 24649 icopnfcnv 24687 lmmbrf 25010 iscauf 25028 causs 25046 mbfposr 25401 itg2gt0 25510 limcflf 25630 limcres 25635 lhop1 25766 dvdsr1p 25914 fsumvma2 26953 vmasum 26955 chpchtsum 26958 bposlem1 27023 addscan2 27715 mulscan2dlem 27869 iscgrgd 28031 tgcgr4 28049 lnrot1 28141 eqeelen 28429 nbusgreledg 28877 nb3grprlem2 28905 wspthsnwspthsnon 29437 rusgrnumwwlks 29495 clwwlkwwlksb 29574 clwwlknwwlksnb 29575 dmdmd 31820 nfpconfp 32123 funcnvmpt 32159 1stpreimas 32194 xrdifh 32258 swrdrn3 32386 lsmsnorb 32775 ghmqusker 32806 rhmpreimacnlem 33162 ismntop 33304 eulerpartlemgh 33675 signslema 33871 fmlafvel 34674 topdifinfindis 36530 leceifl 36780 lindsadd 36784 lindsenlbs 36786 iblabsnclem 36854 ftc1anclem6 36869 areacirclem5 36883 areacirc 36884 brcoss3 37606 lsatfixedN 38182 cdlemg10c 39813 diaglbN 40229 dih1 40460 dihglbcpreN 40474 mapdcv 40834 dvdsexpnn0 41534 ellz1 41807 islssfg 42114 proot1ex 42245 tfsconcat00 42399 eliooshift 44517 clim2cf 44664 dfatdmfcoafv2 46260 sfprmdvdsmersenne 46569 odd2np1ALTV 46640 rrx2plordisom 47496 i0oii 47639 io1ii 47640 |
Copyright terms: Public domain | W3C validator |