| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr4rd | Structured version Visualization version GIF version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr4d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| 3bitr4d.3 | ⊢ (𝜑 → (𝜏 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 3bitr4rd | ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4d.3 | . . 3 ⊢ (𝜑 → (𝜏 ↔ 𝜒)) | |
| 2 | 3bitr4d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr4d 282 | . 2 ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
| 4 | 3bitr4d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) | |
| 5 | 3, 4 | bitr4d 282 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: inimasn 6098 isof1oidb 7253 oacan 8458 ecdmn0 8669 wemapwe 9582 ttrclselem2 9611 r1pw 9733 adderpqlem 10840 mulerpqlem 10841 lterpq 10856 ltanq 10857 genpass 10895 readdcan 11282 lemuldiv 11997 msq11 12018 avglt2 12355 qbtwnre 13093 iooshf 13321 clim2c 15407 lo1o1 15434 climabs0 15487 reef11 16023 absefib 16102 efieq1re 16103 nndivides 16168 oddnn02np1 16254 oddge22np1 16255 evennn02n 16256 evennn2n 16257 halfleoddlt 16268 pc2dvds 16786 pcmpt 16799 subsubc 17755 ghmqusker 19194 odmulgid 19461 gexdvds 19491 submcmn2 19746 obslbs 21662 cnntr 23185 cndis 23201 cnindis 23202 cnpdis 23203 lmres 23210 cmpfi 23318 ist0-4 23639 txhmeo 23713 tsmssubm 24053 blin 24331 cncfmet 24824 icopnfcnv 24862 lmmbrf 25184 iscauf 25202 causs 25220 mbfposr 25575 itg2gt0 25683 limcflf 25804 limcres 25809 lhop1 25941 dvdsr1p 26091 fsumvma2 27147 vmasum 27149 chpchtsum 27152 bposlem1 27217 addscan2 27931 slesubaddd 28028 mulscan2dlem 28112 iscgrgd 28486 tgcgr4 28504 lnrot1 28596 eqeelen 28877 nbusgreledg 29326 nb3grprlem2 29354 wspthsnwspthsnon 29889 rusgrnumwwlks 29947 clwwlkwwlksb 30026 clwwlknwwlksnb 30027 dmdmd 32272 nfpconfp 32606 funcnvmpt 32641 1stpreimas 32679 xrdifh 32755 swrdrn3 32928 lsmsnorb 33348 fldextrspunlsp 33679 rhmpreimacnlem 33889 ismntop 34031 eulerpartlemgh 34383 signslema 34567 fmlafvel 35421 topdifinfindis 37380 leceifl 37649 lindsadd 37653 lindsenlbs 37655 iblabsnclem 37723 ftc1anclem6 37738 areacirclem5 37752 areacirc 37753 brcoss3 38470 lsatfixedN 39048 cdlemg10c 40678 diaglbN 41094 dih1 41325 dihglbcpreN 41339 mapdcv 41699 dvdsexpnn0 42367 ef11d 42372 ellz1 42800 islssfg 43103 proot1ex 43229 tfsconcat00 43380 eliooshift 45546 clim2cf 45688 dfatdmfcoafv2 47285 sfprmdvdsmersenne 47634 odd2np1ALTV 47705 vopnbgrelself 47886 rrx2plordisom 48755 i0oii 48951 io1ii 48952 oppccic 49076 uptrlem3 49244 uptr2 49253 |
| Copyright terms: Public domain | W3C validator |