| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr4rd | Structured version Visualization version GIF version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr4d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| 3bitr4d.3 | ⊢ (𝜑 → (𝜏 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 3bitr4rd | ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4d.3 | . . 3 ⊢ (𝜑 → (𝜏 ↔ 𝜒)) | |
| 2 | 3bitr4d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr4d 282 | . 2 ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
| 4 | 3bitr4d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) | |
| 5 | 3, 4 | bitr4d 282 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: snssgOLD 4738 inimasn 6109 isof1oidb 7265 oacan 8473 ecdmn0 8684 wemapwe 9612 ttrclselem2 9641 r1pw 9760 adderpqlem 10867 mulerpqlem 10868 lterpq 10883 ltanq 10884 genpass 10922 readdcan 11308 lemuldiv 12023 msq11 12044 avglt2 12381 qbtwnre 13119 iooshf 13347 clim2c 15430 lo1o1 15457 climabs0 15510 reef11 16046 absefib 16125 efieq1re 16126 nndivides 16191 oddnn02np1 16277 oddge22np1 16278 evennn02n 16279 evennn2n 16280 halfleoddlt 16291 pc2dvds 16809 pcmpt 16822 subsubc 17778 ghmqusker 19184 odmulgid 19451 gexdvds 19481 submcmn2 19736 obslbs 21655 cnntr 23178 cndis 23194 cnindis 23195 cnpdis 23196 lmres 23203 cmpfi 23311 ist0-4 23632 txhmeo 23706 tsmssubm 24046 blin 24325 cncfmet 24818 icopnfcnv 24856 lmmbrf 25178 iscauf 25196 causs 25214 mbfposr 25569 itg2gt0 25677 limcflf 25798 limcres 25803 lhop1 25935 dvdsr1p 26085 fsumvma2 27141 vmasum 27143 chpchtsum 27146 bposlem1 27211 addscan2 27923 slesubaddd 28020 mulscan2dlem 28104 iscgrgd 28476 tgcgr4 28494 lnrot1 28586 eqeelen 28867 nbusgreledg 29316 nb3grprlem2 29344 wspthsnwspthsnon 29879 rusgrnumwwlks 29937 clwwlkwwlksb 30016 clwwlknwwlksnb 30017 dmdmd 32262 nfpconfp 32589 funcnvmpt 32624 1stpreimas 32662 xrdifh 32736 swrdrn3 32910 lsmsnorb 33341 fldextrspunlsp 33648 rhmpreimacnlem 33853 ismntop 33995 eulerpartlemgh 34348 signslema 34532 fmlafvel 35360 topdifinfindis 37322 leceifl 37591 lindsadd 37595 lindsenlbs 37597 iblabsnclem 37665 ftc1anclem6 37680 areacirclem5 37694 areacirc 37695 brcoss3 38412 lsatfixedN 38990 cdlemg10c 40621 diaglbN 41037 dih1 41268 dihglbcpreN 41282 mapdcv 41642 dvdsexpnn0 42310 ef11d 42315 ellz1 42743 islssfg 43046 proot1ex 43172 tfsconcat00 43323 eliooshift 45491 clim2cf 45635 dfatdmfcoafv2 47242 sfprmdvdsmersenne 47591 odd2np1ALTV 47662 vopnbgrelself 47843 rrx2plordisom 48712 i0oii 48908 io1ii 48909 oppccic 49033 uptrlem3 49201 uptr2 49210 |
| Copyright terms: Public domain | W3C validator |