| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr4rd | Structured version Visualization version GIF version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr4d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| 3bitr4d.3 | ⊢ (𝜑 → (𝜏 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 3bitr4rd | ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4d.3 | . . 3 ⊢ (𝜑 → (𝜏 ↔ 𝜒)) | |
| 2 | 3bitr4d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr4d 282 | . 2 ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
| 4 | 3bitr4d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) | |
| 5 | 3, 4 | bitr4d 282 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: inimasn 6111 isof1oidb 7267 oacan 8472 ecdmn0 8683 wemapwe 9598 ttrclselem2 9627 r1pw 9749 adderpqlem 10856 mulerpqlem 10857 lterpq 10872 ltanq 10873 genpass 10911 readdcan 11298 lemuldiv 12013 msq11 12034 avglt2 12371 qbtwnre 13105 iooshf 13333 clim2c 15419 lo1o1 15446 climabs0 15499 reef11 16035 absefib 16114 efieq1re 16115 nndivides 16180 oddnn02np1 16266 oddge22np1 16267 evennn02n 16268 evennn2n 16269 halfleoddlt 16280 pc2dvds 16798 pcmpt 16811 subsubc 17768 ghmqusker 19207 odmulgid 19474 gexdvds 19504 submcmn2 19759 obslbs 21676 cnntr 23210 cndis 23226 cnindis 23227 cnpdis 23228 lmres 23235 cmpfi 23343 ist0-4 23664 txhmeo 23738 tsmssubm 24078 blin 24356 cncfmet 24849 icopnfcnv 24887 lmmbrf 25209 iscauf 25227 causs 25245 mbfposr 25600 itg2gt0 25708 limcflf 25829 limcres 25834 lhop1 25966 dvdsr1p 26116 fsumvma2 27172 vmasum 27174 chpchtsum 27177 bposlem1 27242 addscan2 27956 slesubaddd 28053 mulscan2dlem 28137 iscgrgd 28511 tgcgr4 28529 lnrot1 28621 eqeelen 28903 nbusgreledg 29352 nb3grprlem2 29380 wspthsnwspthsnon 29915 rusgrnumwwlks 29976 clwwlkwwlksb 30055 clwwlknwwlksnb 30056 dmdmd 32301 nfpconfp 32636 funcnvmpt 32671 1stpreimas 32711 xrdifh 32788 swrdrn3 32965 lsmsnorb 33400 fldextrspunlsp 33759 rhmpreimacnlem 33969 ismntop 34111 eulerpartlemgh 34463 signslema 34647 fmlafvel 35501 topdifinfindis 37463 leceifl 37722 lindsadd 37726 lindsenlbs 37728 iblabsnclem 37796 ftc1anclem6 37811 areacirclem5 37825 areacirc 37826 brcoss3 38608 lsatfixedN 39181 cdlemg10c 40811 diaglbN 41227 dih1 41458 dihglbcpreN 41472 mapdcv 41832 dvdsexpnn0 42504 ef11d 42509 ellz1 42924 islssfg 43227 proot1ex 43353 tfsconcat00 43504 eliooshift 45668 clim2cf 45810 dfatdmfcoafv2 47416 sfprmdvdsmersenne 47765 odd2np1ALTV 47836 vopnbgrelself 48017 rrx2plordisom 48885 i0oii 49081 io1ii 49082 oppccic 49205 uptrlem3 49373 uptr2 49382 |
| Copyright terms: Public domain | W3C validator |