Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3bitr4rd | Structured version Visualization version GIF version |
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr4d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
3bitr4d.3 | ⊢ (𝜑 → (𝜏 ↔ 𝜒)) |
Ref | Expression |
---|---|
3bitr4rd | ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4d.3 | . . 3 ⊢ (𝜑 → (𝜏 ↔ 𝜒)) | |
2 | 3bitr4d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | bitr4d 281 | . 2 ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
4 | 3bitr4d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) | |
5 | 3, 4 | bitr4d 281 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: snssgOLD 4728 inimasn 6079 isof1oidb 7232 oacan 8425 ecdmn0 8591 wemapwe 9523 ttrclselem2 9552 r1pw 9671 adderpqlem 10780 mulerpqlem 10781 lterpq 10796 ltanq 10797 genpass 10835 readdcan 11219 lemuldiv 11925 msq11 11946 avglt2 12282 qbtwnre 13003 iooshf 13228 clim2c 15283 lo1o1 15310 climabs0 15363 reef11 15897 absefib 15976 efieq1re 15977 nndivides 16042 oddnn02np1 16126 oddge22np1 16127 evennn02n 16128 evennn2n 16129 halfleoddlt 16140 pc2dvds 16647 pcmpt 16660 subsubc 17635 odmulgid 19228 gexdvds 19256 submcmn2 19507 obslbs 21008 cnntr 22497 cndis 22513 cnindis 22514 cnpdis 22515 lmres 22522 cmpfi 22630 ist0-4 22951 txhmeo 23025 tsmssubm 23365 blin 23645 cncfmet 24143 icopnfcnv 24176 lmmbrf 24497 iscauf 24515 causs 24533 mbfposr 24887 itg2gt0 24996 limcflf 25116 limcres 25121 lhop1 25249 dvdsr1p 25397 fsumvma2 26433 vmasum 26435 chpchtsum 26438 bposlem1 26503 iscgrgd 26982 tgcgr4 27000 lnrot1 27092 eqeelen 27380 nbusgreledg 27828 nb3grprlem2 27856 wspthsnwspthsnon 28389 rusgrnumwwlks 28447 clwwlkwwlksb 28526 clwwlknwwlksnb 28527 dmdmd 30770 nfpconfp 31075 funcnvmpt 31112 1stpreimas 31146 xrdifh 31209 swrdrn3 31335 lsmsnorb 31684 rhmpreimacnlem 31940 ismntop 32082 eulerpartlemgh 32451 signslema 32647 fmlafvel 33453 topdifinfindis 35577 leceifl 35826 lindsadd 35830 lindsenlbs 35832 iblabsnclem 35900 ftc1anclem6 35915 areacirclem5 35929 areacirc 35930 brcoss3 36659 lsatfixedN 37235 cdlemg10c 38865 diaglbN 39281 dih1 39512 dihglbcpreN 39526 mapdcv 39886 dvdsexpnn0 40551 ellz1 40799 islssfg 41106 proot1ex 41237 eliooshift 43288 clim2cf 43435 dfatdmfcoafv2 45005 sfprmdvdsmersenne 45314 odd2np1ALTV 45385 rrx2plordisom 46328 i0oii 46472 io1ii 46473 |
Copyright terms: Public domain | W3C validator |