![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitr4rd | Structured version Visualization version GIF version |
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr4d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
3bitr4d.3 | ⊢ (𝜑 → (𝜏 ↔ 𝜒)) |
Ref | Expression |
---|---|
3bitr4rd | ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4d.3 | . . 3 ⊢ (𝜑 → (𝜏 ↔ 𝜒)) | |
2 | 3bitr4d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | bitr4d 281 | . 2 ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
4 | 3bitr4d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) | |
5 | 3, 4 | bitr4d 281 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: snssgOLD 4788 inimasn 6155 isof1oidb 7320 oacan 8547 ecdmn0 8749 wemapwe 9691 ttrclselem2 9720 r1pw 9839 adderpqlem 10948 mulerpqlem 10949 lterpq 10964 ltanq 10965 genpass 11003 readdcan 11387 lemuldiv 12093 msq11 12114 avglt2 12450 qbtwnre 13177 iooshf 13402 clim2c 15448 lo1o1 15475 climabs0 15528 reef11 16061 absefib 16140 efieq1re 16141 nndivides 16206 oddnn02np1 16290 oddge22np1 16291 evennn02n 16292 evennn2n 16293 halfleoddlt 16304 pc2dvds 16811 pcmpt 16824 subsubc 17802 odmulgid 19421 gexdvds 19451 submcmn2 19706 obslbs 21284 cnntr 22778 cndis 22794 cnindis 22795 cnpdis 22796 lmres 22803 cmpfi 22911 ist0-4 23232 txhmeo 23306 tsmssubm 23646 blin 23926 cncfmet 24424 icopnfcnv 24457 lmmbrf 24778 iscauf 24796 causs 24814 mbfposr 25168 itg2gt0 25277 limcflf 25397 limcres 25402 lhop1 25530 dvdsr1p 25678 fsumvma2 26714 vmasum 26716 chpchtsum 26719 bposlem1 26784 addscan2 27473 mulscan2dlem 27627 iscgrgd 27761 tgcgr4 27779 lnrot1 27871 eqeelen 28159 nbusgreledg 28607 nb3grprlem2 28635 wspthsnwspthsnon 29167 rusgrnumwwlks 29225 clwwlkwwlksb 29304 clwwlknwwlksnb 29305 dmdmd 31548 nfpconfp 31851 funcnvmpt 31887 1stpreimas 31922 xrdifh 31986 swrdrn3 32114 lsmsnorb 32496 ghmqusker 32527 rhmpreimacnlem 32859 ismntop 33001 eulerpartlemgh 33372 signslema 33568 fmlafvel 34371 topdifinfindis 36222 leceifl 36472 lindsadd 36476 lindsenlbs 36478 iblabsnclem 36546 ftc1anclem6 36561 areacirclem5 36575 areacirc 36576 brcoss3 37298 lsatfixedN 37874 cdlemg10c 39505 diaglbN 39921 dih1 40152 dihglbcpreN 40166 mapdcv 40526 dvdsexpnn0 41232 ellz1 41495 islssfg 41802 proot1ex 41933 tfsconcat00 42087 eliooshift 44209 clim2cf 44356 dfatdmfcoafv2 45952 sfprmdvdsmersenne 46261 odd2np1ALTV 46332 rrx2plordisom 47399 i0oii 47542 io1ii 47543 |
Copyright terms: Public domain | W3C validator |