| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr4rd | Structured version Visualization version GIF version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr4d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| 3bitr4d.3 | ⊢ (𝜑 → (𝜏 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 3bitr4rd | ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4d.3 | . . 3 ⊢ (𝜑 → (𝜏 ↔ 𝜒)) | |
| 2 | 3bitr4d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr4d 282 | . 2 ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
| 4 | 3bitr4d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) | |
| 5 | 3, 4 | bitr4d 282 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: snssgOLD 4751 inimasn 6132 isof1oidb 7302 oacan 8515 ecdmn0 8726 wemapwe 9657 ttrclselem2 9686 r1pw 9805 adderpqlem 10914 mulerpqlem 10915 lterpq 10930 ltanq 10931 genpass 10969 readdcan 11355 lemuldiv 12070 msq11 12091 avglt2 12428 qbtwnre 13166 iooshf 13394 clim2c 15478 lo1o1 15505 climabs0 15558 reef11 16094 absefib 16173 efieq1re 16174 nndivides 16239 oddnn02np1 16325 oddge22np1 16326 evennn02n 16327 evennn2n 16328 halfleoddlt 16339 pc2dvds 16857 pcmpt 16870 subsubc 17822 ghmqusker 19226 odmulgid 19491 gexdvds 19521 submcmn2 19776 obslbs 21646 cnntr 23169 cndis 23185 cnindis 23186 cnpdis 23187 lmres 23194 cmpfi 23302 ist0-4 23623 txhmeo 23697 tsmssubm 24037 blin 24316 cncfmet 24809 icopnfcnv 24847 lmmbrf 25169 iscauf 25187 causs 25205 mbfposr 25560 itg2gt0 25668 limcflf 25789 limcres 25794 lhop1 25926 dvdsr1p 26076 fsumvma2 27132 vmasum 27134 chpchtsum 27137 bposlem1 27202 addscan2 27907 slesubaddd 28004 mulscan2dlem 28088 iscgrgd 28447 tgcgr4 28465 lnrot1 28557 eqeelen 28838 nbusgreledg 29287 nb3grprlem2 29315 wspthsnwspthsnon 29853 rusgrnumwwlks 29911 clwwlkwwlksb 29990 clwwlknwwlksnb 29991 dmdmd 32236 nfpconfp 32563 funcnvmpt 32598 1stpreimas 32636 xrdifh 32710 swrdrn3 32884 lsmsnorb 33369 fldextrspunlsp 33676 rhmpreimacnlem 33881 ismntop 34023 eulerpartlemgh 34376 signslema 34560 fmlafvel 35379 topdifinfindis 37341 leceifl 37610 lindsadd 37614 lindsenlbs 37616 iblabsnclem 37684 ftc1anclem6 37699 areacirclem5 37713 areacirc 37714 brcoss3 38431 lsatfixedN 39009 cdlemg10c 40640 diaglbN 41056 dih1 41287 dihglbcpreN 41301 mapdcv 41661 dvdsexpnn0 42329 ef11d 42334 ellz1 42762 islssfg 43066 proot1ex 43192 tfsconcat00 43343 eliooshift 45511 clim2cf 45655 dfatdmfcoafv2 47259 sfprmdvdsmersenne 47608 odd2np1ALTV 47679 vopnbgrelself 47859 rrx2plordisom 48716 i0oii 48912 io1ii 48913 oppccic 49037 uptrlem3 49205 uptr2 49214 |
| Copyright terms: Public domain | W3C validator |