| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr4rd | Structured version Visualization version GIF version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr4d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| 3bitr4d.3 | ⊢ (𝜑 → (𝜏 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 3bitr4rd | ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4d.3 | . . 3 ⊢ (𝜑 → (𝜏 ↔ 𝜒)) | |
| 2 | 3bitr4d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr4d 282 | . 2 ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
| 4 | 3bitr4d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) | |
| 5 | 3, 4 | bitr4d 282 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: snssgOLD 4760 inimasn 6145 isof1oidb 7316 oacan 8558 ecdmn0 8766 wemapwe 9709 ttrclselem2 9738 r1pw 9857 adderpqlem 10966 mulerpqlem 10967 lterpq 10982 ltanq 10983 genpass 11021 readdcan 11407 lemuldiv 12120 msq11 12141 avglt2 12478 qbtwnre 13213 iooshf 13441 clim2c 15519 lo1o1 15546 climabs0 15599 reef11 16135 absefib 16214 efieq1re 16215 nndivides 16280 oddnn02np1 16365 oddge22np1 16366 evennn02n 16367 evennn2n 16368 halfleoddlt 16379 pc2dvds 16897 pcmpt 16910 subsubc 17864 ghmqusker 19268 odmulgid 19533 gexdvds 19563 submcmn2 19818 obslbs 21688 cnntr 23211 cndis 23227 cnindis 23228 cnpdis 23229 lmres 23236 cmpfi 23344 ist0-4 23665 txhmeo 23739 tsmssubm 24079 blin 24358 cncfmet 24851 icopnfcnv 24889 lmmbrf 25212 iscauf 25230 causs 25248 mbfposr 25603 itg2gt0 25711 limcflf 25832 limcres 25837 lhop1 25969 dvdsr1p 26119 fsumvma2 27175 vmasum 27177 chpchtsum 27180 bposlem1 27245 addscan2 27943 slesubaddd 28040 mulscan2dlem 28121 iscgrgd 28438 tgcgr4 28456 lnrot1 28548 eqeelen 28829 nbusgreledg 29278 nb3grprlem2 29306 wspthsnwspthsnon 29844 rusgrnumwwlks 29902 clwwlkwwlksb 29981 clwwlknwwlksnb 29982 dmdmd 32227 nfpconfp 32556 funcnvmpt 32591 1stpreimas 32629 xrdifh 32703 swrdrn3 32877 lsmsnorb 33352 fldextrspunlsp 33661 rhmpreimacnlem 33861 ismntop 34003 eulerpartlemgh 34356 signslema 34540 fmlafvel 35353 topdifinfindis 37310 leceifl 37579 lindsadd 37583 lindsenlbs 37585 iblabsnclem 37653 ftc1anclem6 37668 areacirclem5 37682 areacirc 37683 brcoss3 38397 lsatfixedN 38973 cdlemg10c 40604 diaglbN 41020 dih1 41251 dihglbcpreN 41265 mapdcv 41625 dvdsexpnn0 42330 ef11d 42335 ellz1 42737 islssfg 43041 proot1ex 43167 tfsconcat00 43318 eliooshift 45483 clim2cf 45627 dfatdmfcoafv2 47231 sfprmdvdsmersenne 47565 odd2np1ALTV 47636 vopnbgrelself 47816 rrx2plordisom 48651 i0oii 48842 io1ii 48843 oppccic 48959 |
| Copyright terms: Public domain | W3C validator |