Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3bitr4rd | Structured version Visualization version GIF version |
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr4d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
3bitr4d.3 | ⊢ (𝜑 → (𝜏 ↔ 𝜒)) |
Ref | Expression |
---|---|
3bitr4rd | ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4d.3 | . . 3 ⊢ (𝜑 → (𝜏 ↔ 𝜒)) | |
2 | 3bitr4d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | bitr4d 281 | . 2 ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
4 | 3bitr4d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) | |
5 | 3, 4 | bitr4d 281 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: snssg 4715 inimasn 6048 isof1oidb 7175 oacan 8341 ecdmn0 8503 wemapwe 9385 r1pw 9534 adderpqlem 10641 mulerpqlem 10642 lterpq 10657 ltanq 10658 genpass 10696 readdcan 11079 lemuldiv 11785 msq11 11806 avglt2 12142 qbtwnre 12862 iooshf 13087 clim2c 15142 lo1o1 15169 climabs0 15222 reef11 15756 absefib 15835 efieq1re 15836 nndivides 15901 oddnn02np1 15985 oddge22np1 15986 evennn02n 15987 evennn2n 15988 halfleoddlt 15999 pc2dvds 16508 pcmpt 16521 subsubc 17484 odmulgid 19076 gexdvds 19104 submcmn2 19355 obslbs 20847 cnntr 22334 cndis 22350 cnindis 22351 cnpdis 22352 lmres 22359 cmpfi 22467 ist0-4 22788 txhmeo 22862 tsmssubm 23202 blin 23482 cncfmet 23978 icopnfcnv 24011 lmmbrf 24331 iscauf 24349 causs 24367 mbfposr 24721 itg2gt0 24830 limcflf 24950 limcres 24955 lhop1 25083 dvdsr1p 25231 fsumvma2 26267 vmasum 26269 chpchtsum 26272 bposlem1 26337 iscgrgd 26778 tgcgr4 26796 lnrot1 26888 eqeelen 27175 nbusgreledg 27623 nb3grprlem2 27651 wspthsnwspthsnon 28182 rusgrnumwwlks 28240 clwwlkwwlksb 28319 clwwlknwwlksnb 28320 dmdmd 30563 nfpconfp 30868 funcnvmpt 30906 1stpreimas 30940 xrdifh 31003 swrdrn3 31129 lsmsnorb 31481 rhmpreimacnlem 31736 ismntop 31876 eulerpartlemgh 32245 signslema 32441 fmlafvel 33247 ttrclselem2 33712 topdifinfindis 35444 leceifl 35693 lindsadd 35697 lindsenlbs 35699 iblabsnclem 35767 ftc1anclem6 35782 areacirclem5 35796 areacirc 35797 brcoss3 36483 lsatfixedN 36950 cdlemg10c 38580 diaglbN 38996 dih1 39227 dihglbcpreN 39241 mapdcv 39601 dvdsexpnn0 40262 ellz1 40505 islssfg 40811 proot1ex 40942 eliooshift 42934 clim2cf 43081 dfatdmfcoafv2 44633 sfprmdvdsmersenne 44943 odd2np1ALTV 45014 rrx2plordisom 45957 i0oii 46101 io1ii 46102 |
Copyright terms: Public domain | W3C validator |