![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitr4rd | Structured version Visualization version GIF version |
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr4d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
3bitr4d.3 | ⊢ (𝜑 → (𝜏 ↔ 𝜒)) |
Ref | Expression |
---|---|
3bitr4rd | ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4d.3 | . . 3 ⊢ (𝜑 → (𝜏 ↔ 𝜒)) | |
2 | 3bitr4d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | bitr4d 282 | . 2 ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
4 | 3bitr4d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) | |
5 | 3, 4 | bitr4d 282 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: snssgOLD 4788 inimasn 6177 isof1oidb 7343 oacan 8584 ecdmn0 8792 wemapwe 9734 ttrclselem2 9763 r1pw 9882 adderpqlem 10991 mulerpqlem 10992 lterpq 11007 ltanq 11008 genpass 11046 readdcan 11432 lemuldiv 12145 msq11 12166 avglt2 12502 qbtwnre 13237 iooshf 13462 clim2c 15537 lo1o1 15564 climabs0 15617 reef11 16151 absefib 16230 efieq1re 16231 nndivides 16296 oddnn02np1 16381 oddge22np1 16382 evennn02n 16383 evennn2n 16384 halfleoddlt 16395 pc2dvds 16912 pcmpt 16925 subsubc 17903 ghmqusker 19317 odmulgid 19586 gexdvds 19616 submcmn2 19871 obslbs 21767 cnntr 23298 cndis 23314 cnindis 23315 cnpdis 23316 lmres 23323 cmpfi 23431 ist0-4 23752 txhmeo 23826 tsmssubm 24166 blin 24446 cncfmet 24948 icopnfcnv 24986 lmmbrf 25309 iscauf 25327 causs 25345 mbfposr 25700 itg2gt0 25809 limcflf 25930 limcres 25935 lhop1 26067 dvdsr1p 26217 fsumvma2 27272 vmasum 27274 chpchtsum 27277 bposlem1 27342 addscan2 28040 slesubaddd 28137 mulscan2dlem 28218 iscgrgd 28535 tgcgr4 28553 lnrot1 28645 eqeelen 28933 nbusgreledg 29384 nb3grprlem2 29412 wspthsnwspthsnon 29945 rusgrnumwwlks 30003 clwwlkwwlksb 30082 clwwlknwwlksnb 30083 dmdmd 32328 nfpconfp 32648 funcnvmpt 32683 1stpreimas 32720 xrdifh 32788 swrdrn3 32924 lsmsnorb 33398 rhmpreimacnlem 33844 ismntop 33988 eulerpartlemgh 34359 signslema 34555 fmlafvel 35369 topdifinfindis 37328 leceifl 37595 lindsadd 37599 lindsenlbs 37601 iblabsnclem 37669 ftc1anclem6 37684 areacirclem5 37698 areacirc 37699 brcoss3 38414 lsatfixedN 38990 cdlemg10c 40621 diaglbN 41037 dih1 41268 dihglbcpreN 41282 mapdcv 41642 dvdsexpnn0 42347 ef11d 42353 ellz1 42754 islssfg 43058 proot1ex 43184 tfsconcat00 43336 eliooshift 45458 clim2cf 45605 dfatdmfcoafv2 47203 sfprmdvdsmersenne 47527 odd2np1ALTV 47598 vopnbgrelself 47778 rrx2plordisom 48572 i0oii 48715 io1ii 48716 |
Copyright terms: Public domain | W3C validator |