| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr4rd | Structured version Visualization version GIF version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr4d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| 3bitr4d.3 | ⊢ (𝜑 → (𝜏 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 3bitr4rd | ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4d.3 | . . 3 ⊢ (𝜑 → (𝜏 ↔ 𝜒)) | |
| 2 | 3bitr4d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr4d 282 | . 2 ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
| 4 | 3bitr4d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) | |
| 5 | 3, 4 | bitr4d 282 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: snssgOLD 4748 inimasn 6129 isof1oidb 7299 oacan 8512 ecdmn0 8723 wemapwe 9650 ttrclselem2 9679 r1pw 9798 adderpqlem 10907 mulerpqlem 10908 lterpq 10923 ltanq 10924 genpass 10962 readdcan 11348 lemuldiv 12063 msq11 12084 avglt2 12421 qbtwnre 13159 iooshf 13387 clim2c 15471 lo1o1 15498 climabs0 15551 reef11 16087 absefib 16166 efieq1re 16167 nndivides 16232 oddnn02np1 16318 oddge22np1 16319 evennn02n 16320 evennn2n 16321 halfleoddlt 16332 pc2dvds 16850 pcmpt 16863 subsubc 17815 ghmqusker 19219 odmulgid 19484 gexdvds 19514 submcmn2 19769 obslbs 21639 cnntr 23162 cndis 23178 cnindis 23179 cnpdis 23180 lmres 23187 cmpfi 23295 ist0-4 23616 txhmeo 23690 tsmssubm 24030 blin 24309 cncfmet 24802 icopnfcnv 24840 lmmbrf 25162 iscauf 25180 causs 25198 mbfposr 25553 itg2gt0 25661 limcflf 25782 limcres 25787 lhop1 25919 dvdsr1p 26069 fsumvma2 27125 vmasum 27127 chpchtsum 27130 bposlem1 27195 addscan2 27900 slesubaddd 27997 mulscan2dlem 28081 iscgrgd 28440 tgcgr4 28458 lnrot1 28550 eqeelen 28831 nbusgreledg 29280 nb3grprlem2 29308 wspthsnwspthsnon 29846 rusgrnumwwlks 29904 clwwlkwwlksb 29983 clwwlknwwlksnb 29984 dmdmd 32229 nfpconfp 32556 funcnvmpt 32591 1stpreimas 32629 xrdifh 32703 swrdrn3 32877 lsmsnorb 33362 fldextrspunlsp 33669 rhmpreimacnlem 33874 ismntop 34016 eulerpartlemgh 34369 signslema 34553 fmlafvel 35372 topdifinfindis 37334 leceifl 37603 lindsadd 37607 lindsenlbs 37609 iblabsnclem 37677 ftc1anclem6 37692 areacirclem5 37706 areacirc 37707 brcoss3 38424 lsatfixedN 39002 cdlemg10c 40633 diaglbN 41049 dih1 41280 dihglbcpreN 41294 mapdcv 41654 dvdsexpnn0 42322 ef11d 42327 ellz1 42755 islssfg 43059 proot1ex 43185 tfsconcat00 43336 eliooshift 45504 clim2cf 45648 dfatdmfcoafv2 47255 sfprmdvdsmersenne 47604 odd2np1ALTV 47675 vopnbgrelself 47855 rrx2plordisom 48712 i0oii 48908 io1ii 48909 oppccic 49033 uptrlem3 49201 uptr2 49210 |
| Copyright terms: Public domain | W3C validator |