Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3bitr4rd | Structured version Visualization version GIF version |
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr4d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
3bitr4d.3 | ⊢ (𝜑 → (𝜏 ↔ 𝜒)) |
Ref | Expression |
---|---|
3bitr4rd | ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4d.3 | . . 3 ⊢ (𝜑 → (𝜏 ↔ 𝜒)) | |
2 | 3bitr4d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | bitr4d 281 | . 2 ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
4 | 3bitr4d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) | |
5 | 3, 4 | bitr4d 281 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: snssg 4719 inimasn 6064 isof1oidb 7204 oacan 8388 ecdmn0 8554 wemapwe 9464 ttrclselem2 9493 r1pw 9612 adderpqlem 10719 mulerpqlem 10720 lterpq 10735 ltanq 10736 genpass 10774 readdcan 11158 lemuldiv 11864 msq11 11885 avglt2 12221 qbtwnre 12942 iooshf 13167 clim2c 15223 lo1o1 15250 climabs0 15303 reef11 15837 absefib 15916 efieq1re 15917 nndivides 15982 oddnn02np1 16066 oddge22np1 16067 evennn02n 16068 evennn2n 16069 halfleoddlt 16080 pc2dvds 16589 pcmpt 16602 subsubc 17577 odmulgid 19170 gexdvds 19198 submcmn2 19449 obslbs 20946 cnntr 22435 cndis 22451 cnindis 22452 cnpdis 22453 lmres 22460 cmpfi 22568 ist0-4 22889 txhmeo 22963 tsmssubm 23303 blin 23583 cncfmet 24081 icopnfcnv 24114 lmmbrf 24435 iscauf 24453 causs 24471 mbfposr 24825 itg2gt0 24934 limcflf 25054 limcres 25059 lhop1 25187 dvdsr1p 25335 fsumvma2 26371 vmasum 26373 chpchtsum 26376 bposlem1 26441 iscgrgd 26883 tgcgr4 26901 lnrot1 26993 eqeelen 27281 nbusgreledg 27729 nb3grprlem2 27757 wspthsnwspthsnon 28290 rusgrnumwwlks 28348 clwwlkwwlksb 28427 clwwlknwwlksnb 28428 dmdmd 30671 nfpconfp 30976 funcnvmpt 31013 1stpreimas 31047 xrdifh 31110 swrdrn3 31236 lsmsnorb 31588 rhmpreimacnlem 31843 ismntop 31985 eulerpartlemgh 32354 signslema 32550 fmlafvel 33356 topdifinfindis 35526 leceifl 35775 lindsadd 35779 lindsenlbs 35781 iblabsnclem 35849 ftc1anclem6 35864 areacirclem5 35878 areacirc 35879 brcoss3 36563 lsatfixedN 37030 cdlemg10c 38660 diaglbN 39076 dih1 39307 dihglbcpreN 39321 mapdcv 39681 dvdsexpnn0 40348 ellz1 40596 islssfg 40902 proot1ex 41033 eliooshift 43051 clim2cf 43198 dfatdmfcoafv2 44757 sfprmdvdsmersenne 45066 odd2np1ALTV 45137 rrx2plordisom 46080 i0oii 46224 io1ii 46225 |
Copyright terms: Public domain | W3C validator |