![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitr4rd | Structured version Visualization version GIF version |
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr4d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
3bitr4d.3 | ⊢ (𝜑 → (𝜏 ↔ 𝜒)) |
Ref | Expression |
---|---|
3bitr4rd | ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4d.3 | . . 3 ⊢ (𝜑 → (𝜏 ↔ 𝜒)) | |
2 | 3bitr4d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | bitr4d 282 | . 2 ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
4 | 3bitr4d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) | |
5 | 3, 4 | bitr4d 282 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: snssgOLD 4809 inimasn 6187 isof1oidb 7360 oacan 8604 ecdmn0 8812 wemapwe 9766 ttrclselem2 9795 r1pw 9914 adderpqlem 11023 mulerpqlem 11024 lterpq 11039 ltanq 11040 genpass 11078 readdcan 11464 lemuldiv 12175 msq11 12196 avglt2 12532 qbtwnre 13261 iooshf 13486 clim2c 15551 lo1o1 15578 climabs0 15631 reef11 16167 absefib 16246 efieq1re 16247 nndivides 16312 oddnn02np1 16396 oddge22np1 16397 evennn02n 16398 evennn2n 16399 halfleoddlt 16410 pc2dvds 16926 pcmpt 16939 subsubc 17917 ghmqusker 19327 odmulgid 19596 gexdvds 19626 submcmn2 19881 obslbs 21773 cnntr 23304 cndis 23320 cnindis 23321 cnpdis 23322 lmres 23329 cmpfi 23437 ist0-4 23758 txhmeo 23832 tsmssubm 24172 blin 24452 cncfmet 24954 icopnfcnv 24992 lmmbrf 25315 iscauf 25333 causs 25351 mbfposr 25706 itg2gt0 25815 limcflf 25936 limcres 25941 lhop1 26073 dvdsr1p 26223 fsumvma2 27276 vmasum 27278 chpchtsum 27281 bposlem1 27346 addscan2 28044 slesubaddd 28141 mulscan2dlem 28222 iscgrgd 28539 tgcgr4 28557 lnrot1 28649 eqeelen 28937 nbusgreledg 29388 nb3grprlem2 29416 wspthsnwspthsnon 29949 rusgrnumwwlks 30007 clwwlkwwlksb 30086 clwwlknwwlksnb 30087 dmdmd 32332 nfpconfp 32651 funcnvmpt 32685 1stpreimas 32717 xrdifh 32785 swrdrn3 32922 lsmsnorb 33384 rhmpreimacnlem 33830 ismntop 33972 eulerpartlemgh 34343 signslema 34539 fmlafvel 35353 topdifinfindis 37312 leceifl 37569 lindsadd 37573 lindsenlbs 37575 iblabsnclem 37643 ftc1anclem6 37658 areacirclem5 37672 areacirc 37673 brcoss3 38389 lsatfixedN 38965 cdlemg10c 40596 diaglbN 41012 dih1 41243 dihglbcpreN 41257 mapdcv 41617 dvdsexpnn0 42321 ef11d 42327 ellz1 42723 islssfg 43027 proot1ex 43157 tfsconcat00 43309 eliooshift 45424 clim2cf 45571 dfatdmfcoafv2 47169 sfprmdvdsmersenne 47477 odd2np1ALTV 47548 vopnbgrelself 47727 rrx2plordisom 48457 i0oii 48599 io1ii 48600 |
Copyright terms: Public domain | W3C validator |