Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inisegn0a Structured version   Visualization version   GIF version

Theorem inisegn0a 48946
Description: The inverse image of a singleton subset of an image is non-empty. (Contributed by Zhi Wang, 7-Nov-2025.)
Assertion
Ref Expression
inisegn0a (𝐴 ∈ (𝐹𝐵) → (𝐹 “ {𝐴}) ≠ ∅)

Proof of Theorem inisegn0a
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elimag 6012 . . 3 (𝐴 ∈ (𝐹𝐵) → (𝐴 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 𝑥𝐹𝐴))
21ibi 267 . 2 (𝐴 ∈ (𝐹𝐵) → ∃𝑥𝐵 𝑥𝐹𝐴)
3 vex 3440 . . . . 5 𝑥 ∈ V
43eliniseg 6042 . . . 4 (𝐴 ∈ (𝐹𝐵) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝑥𝐹𝐴))
5 ne0i 4288 . . . 4 (𝑥 ∈ (𝐹 “ {𝐴}) → (𝐹 “ {𝐴}) ≠ ∅)
64, 5biimtrrdi 254 . . 3 (𝐴 ∈ (𝐹𝐵) → (𝑥𝐹𝐴 → (𝐹 “ {𝐴}) ≠ ∅))
76rexlimdvw 3138 . 2 (𝐴 ∈ (𝐹𝐵) → (∃𝑥𝐵 𝑥𝐹𝐴 → (𝐹 “ {𝐴}) ≠ ∅))
82, 7mpd 15 1 (𝐴 ∈ (𝐹𝐵) → (𝐹 “ {𝐴}) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  wne 2928  wrex 3056  c0 4280  {csn 4573   class class class wbr 5089  ccnv 5613  cima 5617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627
This theorem is referenced by:  imasubc  49262  imaid  49265
  Copyright terms: Public domain W3C validator