Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inisegn0a Structured version   Visualization version   GIF version

Theorem inisegn0a 48708
Description: The inverse image of a singleton subset of an image is non-empty. (Contributed by Zhi Wang, 7-Nov-2025.)
Assertion
Ref Expression
inisegn0a (𝐴 ∈ (𝐹𝐵) → (𝐹 “ {𝐴}) ≠ ∅)

Proof of Theorem inisegn0a
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elimag 6049 . . 3 (𝐴 ∈ (𝐹𝐵) → (𝐴 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 𝑥𝐹𝐴))
21ibi 267 . 2 (𝐴 ∈ (𝐹𝐵) → ∃𝑥𝐵 𝑥𝐹𝐴)
3 vex 3461 . . . . 5 𝑥 ∈ V
43eliniseg 6079 . . . 4 (𝐴 ∈ (𝐹𝐵) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝑥𝐹𝐴))
5 ne0i 4314 . . . 4 (𝑥 ∈ (𝐹 “ {𝐴}) → (𝐹 “ {𝐴}) ≠ ∅)
64, 5biimtrrdi 254 . . 3 (𝐴 ∈ (𝐹𝐵) → (𝑥𝐹𝐴 → (𝐹 “ {𝐴}) ≠ ∅))
76rexlimdvw 3144 . 2 (𝐴 ∈ (𝐹𝐵) → (∃𝑥𝐵 𝑥𝐹𝐴 → (𝐹 “ {𝐴}) ≠ ∅))
82, 7mpd 15 1 (𝐴 ∈ (𝐹𝐵) → (𝐹 “ {𝐴}) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  wne 2931  wrex 3059  c0 4306  {csn 4599   class class class wbr 5117  ccnv 5651  cima 5655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pr 5400
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-br 5118  df-opab 5180  df-xp 5658  df-cnv 5660  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665
This theorem is referenced by:  imasubc  48961  imaid  48964
  Copyright terms: Public domain W3C validator