| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > inisegn0a | Structured version Visualization version GIF version | ||
| Description: The inverse image of a singleton subset of an image is non-empty. (Contributed by Zhi Wang, 7-Nov-2025.) |
| Ref | Expression |
|---|---|
| inisegn0a | ⊢ (𝐴 ∈ (𝐹 “ 𝐵) → (◡𝐹 “ {𝐴}) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elimag 6049 | . . 3 ⊢ (𝐴 ∈ (𝐹 “ 𝐵) → (𝐴 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 𝑥𝐹𝐴)) | |
| 2 | 1 | ibi 267 | . 2 ⊢ (𝐴 ∈ (𝐹 “ 𝐵) → ∃𝑥 ∈ 𝐵 𝑥𝐹𝐴) |
| 3 | vex 3461 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 4 | 3 | eliniseg 6079 | . . . 4 ⊢ (𝐴 ∈ (𝐹 “ 𝐵) → (𝑥 ∈ (◡𝐹 “ {𝐴}) ↔ 𝑥𝐹𝐴)) |
| 5 | ne0i 4314 | . . . 4 ⊢ (𝑥 ∈ (◡𝐹 “ {𝐴}) → (◡𝐹 “ {𝐴}) ≠ ∅) | |
| 6 | 4, 5 | biimtrrdi 254 | . . 3 ⊢ (𝐴 ∈ (𝐹 “ 𝐵) → (𝑥𝐹𝐴 → (◡𝐹 “ {𝐴}) ≠ ∅)) |
| 7 | 6 | rexlimdvw 3144 | . 2 ⊢ (𝐴 ∈ (𝐹 “ 𝐵) → (∃𝑥 ∈ 𝐵 𝑥𝐹𝐴 → (◡𝐹 “ {𝐴}) ≠ ∅)) |
| 8 | 2, 7 | mpd 15 | 1 ⊢ (𝐴 ∈ (𝐹 “ 𝐵) → (◡𝐹 “ {𝐴}) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 ≠ wne 2931 ∃wrex 3059 ∅c0 4306 {csn 4599 class class class wbr 5117 ◡ccnv 5651 “ cima 5655 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pr 5400 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-br 5118 df-opab 5180 df-xp 5658 df-cnv 5660 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 |
| This theorem is referenced by: imasubc 48961 imaid 48964 |
| Copyright terms: Public domain | W3C validator |