| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > inisegn0a | Structured version Visualization version GIF version | ||
| Description: The inverse image of a singleton subset of an image is non-empty. (Contributed by Zhi Wang, 7-Nov-2025.) |
| Ref | Expression |
|---|---|
| inisegn0a | ⊢ (𝐴 ∈ (𝐹 “ 𝐵) → (◡𝐹 “ {𝐴}) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elimag 6012 | . . 3 ⊢ (𝐴 ∈ (𝐹 “ 𝐵) → (𝐴 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 𝑥𝐹𝐴)) | |
| 2 | 1 | ibi 267 | . 2 ⊢ (𝐴 ∈ (𝐹 “ 𝐵) → ∃𝑥 ∈ 𝐵 𝑥𝐹𝐴) |
| 3 | vex 3440 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 4 | 3 | eliniseg 6042 | . . . 4 ⊢ (𝐴 ∈ (𝐹 “ 𝐵) → (𝑥 ∈ (◡𝐹 “ {𝐴}) ↔ 𝑥𝐹𝐴)) |
| 5 | ne0i 4288 | . . . 4 ⊢ (𝑥 ∈ (◡𝐹 “ {𝐴}) → (◡𝐹 “ {𝐴}) ≠ ∅) | |
| 6 | 4, 5 | biimtrrdi 254 | . . 3 ⊢ (𝐴 ∈ (𝐹 “ 𝐵) → (𝑥𝐹𝐴 → (◡𝐹 “ {𝐴}) ≠ ∅)) |
| 7 | 6 | rexlimdvw 3138 | . 2 ⊢ (𝐴 ∈ (𝐹 “ 𝐵) → (∃𝑥 ∈ 𝐵 𝑥𝐹𝐴 → (◡𝐹 “ {𝐴}) ≠ ∅)) |
| 8 | 2, 7 | mpd 15 | 1 ⊢ (𝐴 ∈ (𝐹 “ 𝐵) → (◡𝐹 “ {𝐴}) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 ∅c0 4280 {csn 4573 class class class wbr 5089 ◡ccnv 5613 “ cima 5617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 |
| This theorem is referenced by: imasubc 49262 imaid 49265 |
| Copyright terms: Public domain | W3C validator |