Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inisegn0a Structured version   Visualization version   GIF version

Theorem inisegn0a 48830
Description: The inverse image of a singleton subset of an image is non-empty. (Contributed by Zhi Wang, 7-Nov-2025.)
Assertion
Ref Expression
inisegn0a (𝐴 ∈ (𝐹𝐵) → (𝐹 “ {𝐴}) ≠ ∅)

Proof of Theorem inisegn0a
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elimag 6015 . . 3 (𝐴 ∈ (𝐹𝐵) → (𝐴 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 𝑥𝐹𝐴))
21ibi 267 . 2 (𝐴 ∈ (𝐹𝐵) → ∃𝑥𝐵 𝑥𝐹𝐴)
3 vex 3440 . . . . 5 𝑥 ∈ V
43eliniseg 6045 . . . 4 (𝐴 ∈ (𝐹𝐵) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝑥𝐹𝐴))
5 ne0i 4292 . . . 4 (𝑥 ∈ (𝐹 “ {𝐴}) → (𝐹 “ {𝐴}) ≠ ∅)
64, 5biimtrrdi 254 . . 3 (𝐴 ∈ (𝐹𝐵) → (𝑥𝐹𝐴 → (𝐹 “ {𝐴}) ≠ ∅))
76rexlimdvw 3135 . 2 (𝐴 ∈ (𝐹𝐵) → (∃𝑥𝐵 𝑥𝐹𝐴 → (𝐹 “ {𝐴}) ≠ ∅))
82, 7mpd 15 1 (𝐴 ∈ (𝐹𝐵) → (𝐹 “ {𝐴}) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wne 2925  wrex 3053  c0 4284  {csn 4577   class class class wbr 5092  ccnv 5618  cima 5622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-xp 5625  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632
This theorem is referenced by:  imasubc  49146  imaid  49149
  Copyright terms: Public domain W3C validator