Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elimag | Structured version Visualization version GIF version |
Description: Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 20-Jan-2007.) |
Ref | Expression |
---|---|
elimag | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 𝑥𝐵𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5074 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑥𝐵𝑦 ↔ 𝑥𝐵𝐴)) | |
2 | 1 | rexbidv 3225 | . 2 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ 𝐶 𝑥𝐵𝑦 ↔ ∃𝑥 ∈ 𝐶 𝑥𝐵𝐴)) |
3 | dfima2 5960 | . 2 ⊢ (𝐵 “ 𝐶) = {𝑦 ∣ ∃𝑥 ∈ 𝐶 𝑥𝐵𝑦} | |
4 | 2, 3 | elab2g 3604 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 𝑥𝐵𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 class class class wbr 5070 “ cima 5583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 |
This theorem is referenced by: elima 5963 fvelima 6817 fvelimad 6818 opelco3 33655 fvelima2 42695 afvelima 44546 |
Copyright terms: Public domain | W3C validator |