Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elimag | Structured version Visualization version GIF version |
Description: Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 20-Jan-2007.) |
Ref | Expression |
---|---|
elimag | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 𝑥𝐵𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5036 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑥𝐵𝑦 ↔ 𝑥𝐵𝐴)) | |
2 | 1 | rexbidv 3221 | . 2 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ 𝐶 𝑥𝐵𝑦 ↔ ∃𝑥 ∈ 𝐶 𝑥𝐵𝐴)) |
3 | dfima2 5903 | . 2 ⊢ (𝐵 “ 𝐶) = {𝑦 ∣ ∃𝑥 ∈ 𝐶 𝑥𝐵𝑦} | |
4 | 2, 3 | elab2g 3589 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 𝑥𝐵𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1538 ∈ wcel 2111 ∃wrex 3071 class class class wbr 5032 “ cima 5527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-v 3411 df-dif 3861 df-un 3863 df-in 3865 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-br 5033 df-opab 5095 df-xp 5530 df-cnv 5532 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 |
This theorem is referenced by: elima 5906 fvelima 6719 fvelimad 6720 opelco3 33265 fvelima2 42266 afvelima 44091 |
Copyright terms: Public domain | W3C validator |