MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimag Structured version   Visualization version   GIF version

Theorem elimag 6017
Description: Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 20-Jan-2007.)
Assertion
Ref Expression
elimag (𝐴𝑉 → (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥𝐶 𝑥𝐵𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem elimag
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 breq2 5097 . . 3 (𝑦 = 𝐴 → (𝑥𝐵𝑦𝑥𝐵𝐴))
21rexbidv 3157 . 2 (𝑦 = 𝐴 → (∃𝑥𝐶 𝑥𝐵𝑦 ↔ ∃𝑥𝐶 𝑥𝐵𝐴))
3 dfima2 6015 . 2 (𝐵𝐶) = {𝑦 ∣ ∃𝑥𝐶 𝑥𝐵𝑦}
42, 3elab2g 3632 1 (𝐴𝑉 → (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥𝐶 𝑥𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2113  wrex 3057   class class class wbr 5093  cima 5622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-xp 5625  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632
This theorem is referenced by:  elima  6018  fvelima2  6880  fvelima  6893  fvelimad  6895  opelco3  35840  afvelima  47291  inisegn0a  48960
  Copyright terms: Public domain W3C validator