MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimag Structured version   Visualization version   GIF version

Theorem elimag 6013
Description: Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 20-Jan-2007.)
Assertion
Ref Expression
elimag (𝐴𝑉 → (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥𝐶 𝑥𝐵𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem elimag
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 breq2 5095 . . 3 (𝑦 = 𝐴 → (𝑥𝐵𝑦𝑥𝐵𝐴))
21rexbidv 3156 . 2 (𝑦 = 𝐴 → (∃𝑥𝐶 𝑥𝐵𝑦 ↔ ∃𝑥𝐶 𝑥𝐵𝐴))
3 dfima2 6011 . 2 (𝐵𝐶) = {𝑦 ∣ ∃𝑥𝐶 𝑥𝐵𝑦}
42, 3elab2g 3636 1 (𝐴𝑉 → (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥𝐶 𝑥𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  wrex 3056   class class class wbr 5091  cima 5619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-xp 5622  df-cnv 5624  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629
This theorem is referenced by:  elima  6014  fvelima2  6874  fvelima  6887  fvelimad  6889  opelco3  35807  afvelima  47197  inisegn0a  48866
  Copyright terms: Public domain W3C validator