| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elimag | Structured version Visualization version GIF version | ||
| Description: Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 20-Jan-2007.) |
| Ref | Expression |
|---|---|
| elimag | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 𝑥𝐵𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5097 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑥𝐵𝑦 ↔ 𝑥𝐵𝐴)) | |
| 2 | 1 | rexbidv 3157 | . 2 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ 𝐶 𝑥𝐵𝑦 ↔ ∃𝑥 ∈ 𝐶 𝑥𝐵𝐴)) |
| 3 | dfima2 6015 | . 2 ⊢ (𝐵 “ 𝐶) = {𝑦 ∣ ∃𝑥 ∈ 𝐶 𝑥𝐵𝑦} | |
| 4 | 2, 3 | elab2g 3632 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 𝑥𝐵𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 class class class wbr 5093 “ cima 5622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-xp 5625 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 |
| This theorem is referenced by: elima 6018 fvelima2 6880 fvelima 6893 fvelimad 6895 opelco3 35840 afvelima 47291 inisegn0a 48960 |
| Copyright terms: Public domain | W3C validator |