| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elimag | Structured version Visualization version GIF version | ||
| Description: Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 20-Jan-2007.) |
| Ref | Expression |
|---|---|
| elimag | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 𝑥𝐵𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5095 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑥𝐵𝑦 ↔ 𝑥𝐵𝐴)) | |
| 2 | 1 | rexbidv 3156 | . 2 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ 𝐶 𝑥𝐵𝑦 ↔ ∃𝑥 ∈ 𝐶 𝑥𝐵𝐴)) |
| 3 | dfima2 6011 | . 2 ⊢ (𝐵 “ 𝐶) = {𝑦 ∣ ∃𝑥 ∈ 𝐶 𝑥𝐵𝑦} | |
| 4 | 2, 3 | elab2g 3636 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 𝑥𝐵𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 class class class wbr 5091 “ cima 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 |
| This theorem is referenced by: elima 6014 fvelima2 6874 fvelima 6887 fvelimad 6889 opelco3 35807 afvelima 47197 inisegn0a 48866 |
| Copyright terms: Public domain | W3C validator |