Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imaid Structured version   Visualization version   GIF version

Theorem imaid 49136
Description: An image of a functor preserves the identity morphism. (Contributed by Zhi Wang, 7-Nov-2025.)
Hypotheses
Ref Expression
imasubc.s 𝑆 = (𝐹𝐴)
imasubc.h 𝐻 = (Hom ‘𝐷)
imasubc.k 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
imassc.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
imaid.i 𝐼 = (Id‘𝐸)
imaid.x (𝜑𝑋𝑆)
Assertion
Ref Expression
imaid (𝜑 → (𝐼𝑋) ∈ (𝑋𝐾𝑋))
Distinct variable groups:   𝐹,𝑝,𝑥,𝑦   𝐺,𝑝,𝑥,𝑦   𝐻,𝑝,𝑥,𝑦   𝑥,𝑆,𝑦   𝐼,𝑝   𝑋,𝑝,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑝)   𝐴(𝑥,𝑦,𝑝)   𝐷(𝑥,𝑦,𝑝)   𝑆(𝑝)   𝐸(𝑥,𝑦,𝑝)   𝐼(𝑥,𝑦)   𝐾(𝑥,𝑦,𝑝)

Proof of Theorem imaid
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 imaid.x . . . . . . 7 (𝜑𝑋𝑆)
2 imasubc.s . . . . . . 7 𝑆 = (𝐹𝐴)
31, 2eleqtrdi 2838 . . . . . 6 (𝜑𝑋 ∈ (𝐹𝐴))
4 inisegn0a 48817 . . . . . 6 (𝑋 ∈ (𝐹𝐴) → (𝐹 “ {𝑋}) ≠ ∅)
53, 4syl 17 . . . . 5 (𝜑 → (𝐹 “ {𝑋}) ≠ ∅)
6 n0 4312 . . . . 5 ((𝐹 “ {𝑋}) ≠ ∅ ↔ ∃𝑚 𝑚 ∈ (𝐹 “ {𝑋}))
75, 6sylib 218 . . . 4 (𝜑 → ∃𝑚 𝑚 ∈ (𝐹 “ {𝑋}))
8 fveq2 6840 . . . . . . . 8 (𝑝 = ⟨𝑚, 𝑚⟩ → (𝐺𝑝) = (𝐺‘⟨𝑚, 𝑚⟩))
9 df-ov 7372 . . . . . . . 8 (𝑚𝐺𝑚) = (𝐺‘⟨𝑚, 𝑚⟩)
108, 9eqtr4di 2782 . . . . . . 7 (𝑝 = ⟨𝑚, 𝑚⟩ → (𝐺𝑝) = (𝑚𝐺𝑚))
11 fveq2 6840 . . . . . . . 8 (𝑝 = ⟨𝑚, 𝑚⟩ → (𝐻𝑝) = (𝐻‘⟨𝑚, 𝑚⟩))
12 df-ov 7372 . . . . . . . 8 (𝑚𝐻𝑚) = (𝐻‘⟨𝑚, 𝑚⟩)
1311, 12eqtr4di 2782 . . . . . . 7 (𝑝 = ⟨𝑚, 𝑚⟩ → (𝐻𝑝) = (𝑚𝐻𝑚))
1410, 13imaeq12d 6021 . . . . . 6 (𝑝 = ⟨𝑚, 𝑚⟩ → ((𝐺𝑝) “ (𝐻𝑝)) = ((𝑚𝐺𝑚) “ (𝑚𝐻𝑚)))
1514eleq2d 2814 . . . . 5 (𝑝 = ⟨𝑚, 𝑚⟩ → ((𝐼𝑋) ∈ ((𝐺𝑝) “ (𝐻𝑝)) ↔ (𝐼𝑋) ∈ ((𝑚𝐺𝑚) “ (𝑚𝐻𝑚))))
16 simpr 484 . . . . . 6 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → 𝑚 ∈ (𝐹 “ {𝑋}))
1716, 16opelxpd 5670 . . . . 5 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → ⟨𝑚, 𝑚⟩ ∈ ((𝐹 “ {𝑋}) × (𝐹 “ {𝑋})))
18 eqid 2729 . . . . . . . 8 (Base‘𝐷) = (Base‘𝐷)
19 eqid 2729 . . . . . . . 8 (Id‘𝐷) = (Id‘𝐷)
20 imaid.i . . . . . . . 8 𝐼 = (Id‘𝐸)
21 imassc.f . . . . . . . . 9 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
2221adantr 480 . . . . . . . 8 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → 𝐹(𝐷 Func 𝐸)𝐺)
23 eqid 2729 . . . . . . . . . . . . 13 (Base‘𝐸) = (Base‘𝐸)
2418, 23, 21funcf1 17808 . . . . . . . . . . . 12 (𝜑𝐹:(Base‘𝐷)⟶(Base‘𝐸))
2524ffnd 6671 . . . . . . . . . . 11 (𝜑𝐹 Fn (Base‘𝐷))
26 fniniseg 7014 . . . . . . . . . . 11 (𝐹 Fn (Base‘𝐷) → (𝑚 ∈ (𝐹 “ {𝑋}) ↔ (𝑚 ∈ (Base‘𝐷) ∧ (𝐹𝑚) = 𝑋)))
2725, 26syl 17 . . . . . . . . . 10 (𝜑 → (𝑚 ∈ (𝐹 “ {𝑋}) ↔ (𝑚 ∈ (Base‘𝐷) ∧ (𝐹𝑚) = 𝑋)))
2827biimpa 476 . . . . . . . . 9 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → (𝑚 ∈ (Base‘𝐷) ∧ (𝐹𝑚) = 𝑋))
2928simpld 494 . . . . . . . 8 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → 𝑚 ∈ (Base‘𝐷))
3018, 19, 20, 22, 29funcid 17812 . . . . . . 7 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → ((𝑚𝐺𝑚)‘((Id‘𝐷)‘𝑚)) = (𝐼‘(𝐹𝑚)))
3128simprd 495 . . . . . . . 8 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → (𝐹𝑚) = 𝑋)
3231fveq2d 6844 . . . . . . 7 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → (𝐼‘(𝐹𝑚)) = (𝐼𝑋))
3330, 32eqtrd 2764 . . . . . 6 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → ((𝑚𝐺𝑚)‘((Id‘𝐷)‘𝑚)) = (𝐼𝑋))
34 imasubc.h . . . . . . . 8 𝐻 = (Hom ‘𝐷)
3522funcrcl2 49061 . . . . . . . 8 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → 𝐷 ∈ Cat)
3618, 34, 19, 35, 29catidcl 17623 . . . . . . 7 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → ((Id‘𝐷)‘𝑚) ∈ (𝑚𝐻𝑚))
37 eqid 2729 . . . . . . . . 9 (Hom ‘𝐸) = (Hom ‘𝐸)
3818, 34, 37, 22, 29, 29funcf2 17810 . . . . . . . 8 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → (𝑚𝐺𝑚):(𝑚𝐻𝑚)⟶((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑚)))
3938funfvima2d 7188 . . . . . . 7 (((𝜑𝑚 ∈ (𝐹 “ {𝑋})) ∧ ((Id‘𝐷)‘𝑚) ∈ (𝑚𝐻𝑚)) → ((𝑚𝐺𝑚)‘((Id‘𝐷)‘𝑚)) ∈ ((𝑚𝐺𝑚) “ (𝑚𝐻𝑚)))
4036, 39mpdan 687 . . . . . 6 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → ((𝑚𝐺𝑚)‘((Id‘𝐷)‘𝑚)) ∈ ((𝑚𝐺𝑚) “ (𝑚𝐻𝑚)))
4133, 40eqeltrrd 2829 . . . . 5 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → (𝐼𝑋) ∈ ((𝑚𝐺𝑚) “ (𝑚𝐻𝑚)))
4215, 17, 41rspcedvdw 3588 . . . 4 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → ∃𝑝 ∈ ((𝐹 “ {𝑋}) × (𝐹 “ {𝑋}))(𝐼𝑋) ∈ ((𝐺𝑝) “ (𝐻𝑝)))
437, 42exlimddv 1935 . . 3 (𝜑 → ∃𝑝 ∈ ((𝐹 “ {𝑋}) × (𝐹 “ {𝑋}))(𝐼𝑋) ∈ ((𝐺𝑝) “ (𝐻𝑝)))
4443eliund 4958 . 2 (𝜑 → (𝐼𝑋) ∈ 𝑝 ∈ ((𝐹 “ {𝑋}) × (𝐹 “ {𝑋}))((𝐺𝑝) “ (𝐻𝑝)))
45 relfunc 17804 . . . . 5 Rel (𝐷 Func 𝐸)
4645brrelex1i 5687 . . . 4 (𝐹(𝐷 Func 𝐸)𝐺𝐹 ∈ V)
4721, 46syl 17 . . 3 (𝜑𝐹 ∈ V)
48 imasubc.k . . 3 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
4947, 47, 1, 1, 48imasubclem3 49088 . 2 (𝜑 → (𝑋𝐾𝑋) = 𝑝 ∈ ((𝐹 “ {𝑋}) × (𝐹 “ {𝑋}))((𝐺𝑝) “ (𝐻𝑝)))
5044, 49eleqtrrd 2831 1 (𝜑 → (𝐼𝑋) ∈ (𝑋𝐾𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  wrex 3053  Vcvv 3444  c0 4292  {csn 4585  cop 4591   ciun 4951   class class class wbr 5102   × cxp 5629  ccnv 5630  cima 5634   Fn wfn 6494  cfv 6499  (class class class)co 7369  cmpo 7371  Basecbs 17155  Hom chom 17207  Idccid 17606   Func cfunc 17796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778  df-ixp 8848  df-cat 17609  df-cid 17610  df-func 17800
This theorem is referenced by:  imasubc3  49138
  Copyright terms: Public domain W3C validator