Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imaid Structured version   Visualization version   GIF version

Theorem imaid 49265
Description: An image of a functor preserves the identity morphism. (Contributed by Zhi Wang, 7-Nov-2025.)
Hypotheses
Ref Expression
imasubc.s 𝑆 = (𝐹𝐴)
imasubc.h 𝐻 = (Hom ‘𝐷)
imasubc.k 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
imassc.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
imaid.i 𝐼 = (Id‘𝐸)
imaid.x (𝜑𝑋𝑆)
Assertion
Ref Expression
imaid (𝜑 → (𝐼𝑋) ∈ (𝑋𝐾𝑋))
Distinct variable groups:   𝐹,𝑝,𝑥,𝑦   𝐺,𝑝,𝑥,𝑦   𝐻,𝑝,𝑥,𝑦   𝑥,𝑆,𝑦   𝐼,𝑝   𝑋,𝑝,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑝)   𝐴(𝑥,𝑦,𝑝)   𝐷(𝑥,𝑦,𝑝)   𝑆(𝑝)   𝐸(𝑥,𝑦,𝑝)   𝐼(𝑥,𝑦)   𝐾(𝑥,𝑦,𝑝)

Proof of Theorem imaid
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 imaid.x . . . . . . 7 (𝜑𝑋𝑆)
2 imasubc.s . . . . . . 7 𝑆 = (𝐹𝐴)
31, 2eleqtrdi 2841 . . . . . 6 (𝜑𝑋 ∈ (𝐹𝐴))
4 inisegn0a 48946 . . . . . 6 (𝑋 ∈ (𝐹𝐴) → (𝐹 “ {𝑋}) ≠ ∅)
53, 4syl 17 . . . . 5 (𝜑 → (𝐹 “ {𝑋}) ≠ ∅)
6 n0 4300 . . . . 5 ((𝐹 “ {𝑋}) ≠ ∅ ↔ ∃𝑚 𝑚 ∈ (𝐹 “ {𝑋}))
75, 6sylib 218 . . . 4 (𝜑 → ∃𝑚 𝑚 ∈ (𝐹 “ {𝑋}))
8 fveq2 6822 . . . . . . . 8 (𝑝 = ⟨𝑚, 𝑚⟩ → (𝐺𝑝) = (𝐺‘⟨𝑚, 𝑚⟩))
9 df-ov 7349 . . . . . . . 8 (𝑚𝐺𝑚) = (𝐺‘⟨𝑚, 𝑚⟩)
108, 9eqtr4di 2784 . . . . . . 7 (𝑝 = ⟨𝑚, 𝑚⟩ → (𝐺𝑝) = (𝑚𝐺𝑚))
11 fveq2 6822 . . . . . . . 8 (𝑝 = ⟨𝑚, 𝑚⟩ → (𝐻𝑝) = (𝐻‘⟨𝑚, 𝑚⟩))
12 df-ov 7349 . . . . . . . 8 (𝑚𝐻𝑚) = (𝐻‘⟨𝑚, 𝑚⟩)
1311, 12eqtr4di 2784 . . . . . . 7 (𝑝 = ⟨𝑚, 𝑚⟩ → (𝐻𝑝) = (𝑚𝐻𝑚))
1410, 13imaeq12d 6009 . . . . . 6 (𝑝 = ⟨𝑚, 𝑚⟩ → ((𝐺𝑝) “ (𝐻𝑝)) = ((𝑚𝐺𝑚) “ (𝑚𝐻𝑚)))
1514eleq2d 2817 . . . . 5 (𝑝 = ⟨𝑚, 𝑚⟩ → ((𝐼𝑋) ∈ ((𝐺𝑝) “ (𝐻𝑝)) ↔ (𝐼𝑋) ∈ ((𝑚𝐺𝑚) “ (𝑚𝐻𝑚))))
16 simpr 484 . . . . . 6 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → 𝑚 ∈ (𝐹 “ {𝑋}))
1716, 16opelxpd 5653 . . . . 5 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → ⟨𝑚, 𝑚⟩ ∈ ((𝐹 “ {𝑋}) × (𝐹 “ {𝑋})))
18 eqid 2731 . . . . . . . 8 (Base‘𝐷) = (Base‘𝐷)
19 eqid 2731 . . . . . . . 8 (Id‘𝐷) = (Id‘𝐷)
20 imaid.i . . . . . . . 8 𝐼 = (Id‘𝐸)
21 imassc.f . . . . . . . . 9 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
2221adantr 480 . . . . . . . 8 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → 𝐹(𝐷 Func 𝐸)𝐺)
23 eqid 2731 . . . . . . . . . . . . 13 (Base‘𝐸) = (Base‘𝐸)
2418, 23, 21funcf1 17773 . . . . . . . . . . . 12 (𝜑𝐹:(Base‘𝐷)⟶(Base‘𝐸))
2524ffnd 6652 . . . . . . . . . . 11 (𝜑𝐹 Fn (Base‘𝐷))
26 fniniseg 6993 . . . . . . . . . . 11 (𝐹 Fn (Base‘𝐷) → (𝑚 ∈ (𝐹 “ {𝑋}) ↔ (𝑚 ∈ (Base‘𝐷) ∧ (𝐹𝑚) = 𝑋)))
2725, 26syl 17 . . . . . . . . . 10 (𝜑 → (𝑚 ∈ (𝐹 “ {𝑋}) ↔ (𝑚 ∈ (Base‘𝐷) ∧ (𝐹𝑚) = 𝑋)))
2827biimpa 476 . . . . . . . . 9 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → (𝑚 ∈ (Base‘𝐷) ∧ (𝐹𝑚) = 𝑋))
2928simpld 494 . . . . . . . 8 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → 𝑚 ∈ (Base‘𝐷))
3018, 19, 20, 22, 29funcid 17777 . . . . . . 7 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → ((𝑚𝐺𝑚)‘((Id‘𝐷)‘𝑚)) = (𝐼‘(𝐹𝑚)))
3128simprd 495 . . . . . . . 8 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → (𝐹𝑚) = 𝑋)
3231fveq2d 6826 . . . . . . 7 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → (𝐼‘(𝐹𝑚)) = (𝐼𝑋))
3330, 32eqtrd 2766 . . . . . 6 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → ((𝑚𝐺𝑚)‘((Id‘𝐷)‘𝑚)) = (𝐼𝑋))
34 imasubc.h . . . . . . . 8 𝐻 = (Hom ‘𝐷)
3522funcrcl2 49190 . . . . . . . 8 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → 𝐷 ∈ Cat)
3618, 34, 19, 35, 29catidcl 17588 . . . . . . 7 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → ((Id‘𝐷)‘𝑚) ∈ (𝑚𝐻𝑚))
37 eqid 2731 . . . . . . . . 9 (Hom ‘𝐸) = (Hom ‘𝐸)
3818, 34, 37, 22, 29, 29funcf2 17775 . . . . . . . 8 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → (𝑚𝐺𝑚):(𝑚𝐻𝑚)⟶((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑚)))
3938funfvima2d 7166 . . . . . . 7 (((𝜑𝑚 ∈ (𝐹 “ {𝑋})) ∧ ((Id‘𝐷)‘𝑚) ∈ (𝑚𝐻𝑚)) → ((𝑚𝐺𝑚)‘((Id‘𝐷)‘𝑚)) ∈ ((𝑚𝐺𝑚) “ (𝑚𝐻𝑚)))
4036, 39mpdan 687 . . . . . 6 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → ((𝑚𝐺𝑚)‘((Id‘𝐷)‘𝑚)) ∈ ((𝑚𝐺𝑚) “ (𝑚𝐻𝑚)))
4133, 40eqeltrrd 2832 . . . . 5 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → (𝐼𝑋) ∈ ((𝑚𝐺𝑚) “ (𝑚𝐻𝑚)))
4215, 17, 41rspcedvdw 3575 . . . 4 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → ∃𝑝 ∈ ((𝐹 “ {𝑋}) × (𝐹 “ {𝑋}))(𝐼𝑋) ∈ ((𝐺𝑝) “ (𝐻𝑝)))
437, 42exlimddv 1936 . . 3 (𝜑 → ∃𝑝 ∈ ((𝐹 “ {𝑋}) × (𝐹 “ {𝑋}))(𝐼𝑋) ∈ ((𝐺𝑝) “ (𝐻𝑝)))
4443eliund 4946 . 2 (𝜑 → (𝐼𝑋) ∈ 𝑝 ∈ ((𝐹 “ {𝑋}) × (𝐹 “ {𝑋}))((𝐺𝑝) “ (𝐻𝑝)))
45 relfunc 17769 . . . . 5 Rel (𝐷 Func 𝐸)
4645brrelex1i 5670 . . . 4 (𝐹(𝐷 Func 𝐸)𝐺𝐹 ∈ V)
4721, 46syl 17 . . 3 (𝜑𝐹 ∈ V)
48 imasubc.k . . 3 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
4947, 47, 1, 1, 48imasubclem3 49217 . 2 (𝜑 → (𝑋𝐾𝑋) = 𝑝 ∈ ((𝐹 “ {𝑋}) × (𝐹 “ {𝑋}))((𝐺𝑝) “ (𝐻𝑝)))
5044, 49eleqtrrd 2834 1 (𝜑 → (𝐼𝑋) ∈ (𝑋𝐾𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  wne 2928  wrex 3056  Vcvv 3436  c0 4280  {csn 4573  cop 4579   ciun 4939   class class class wbr 5089   × cxp 5612  ccnv 5613  cima 5617   Fn wfn 6476  cfv 6481  (class class class)co 7346  cmpo 7348  Basecbs 17120  Hom chom 17172  Idccid 17571   Func cfunc 17761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-ixp 8822  df-cat 17574  df-cid 17575  df-func 17765
This theorem is referenced by:  imasubc3  49267
  Copyright terms: Public domain W3C validator