Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imaid Structured version   Visualization version   GIF version

Theorem imaid 48964
Description: An image of a functor preserves the identity morphism. (Contributed by Zhi Wang, 7-Nov-2025.)
Hypotheses
Ref Expression
imasubc.s 𝑆 = (𝐹𝐴)
imasubc.h 𝐻 = (Hom ‘𝐷)
imasubc.k 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
imassc.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
imaid.i 𝐼 = (Id‘𝐸)
imaid.x (𝜑𝑋𝑆)
Assertion
Ref Expression
imaid (𝜑 → (𝐼𝑋) ∈ (𝑋𝐾𝑋))
Distinct variable groups:   𝐹,𝑝,𝑥,𝑦   𝐺,𝑝,𝑥,𝑦   𝐻,𝑝,𝑥,𝑦   𝑥,𝑆,𝑦   𝐼,𝑝   𝑋,𝑝,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑝)   𝐴(𝑥,𝑦,𝑝)   𝐷(𝑥,𝑦,𝑝)   𝑆(𝑝)   𝐸(𝑥,𝑦,𝑝)   𝐼(𝑥,𝑦)   𝐾(𝑥,𝑦,𝑝)

Proof of Theorem imaid
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 imaid.x . . . . . . 7 (𝜑𝑋𝑆)
2 imasubc.s . . . . . . 7 𝑆 = (𝐹𝐴)
31, 2eleqtrdi 2843 . . . . . 6 (𝜑𝑋 ∈ (𝐹𝐴))
4 inisegn0a 48708 . . . . . 6 (𝑋 ∈ (𝐹𝐴) → (𝐹 “ {𝑋}) ≠ ∅)
53, 4syl 17 . . . . 5 (𝜑 → (𝐹 “ {𝑋}) ≠ ∅)
6 n0 4326 . . . . 5 ((𝐹 “ {𝑋}) ≠ ∅ ↔ ∃𝑚 𝑚 ∈ (𝐹 “ {𝑋}))
75, 6sylib 218 . . . 4 (𝜑 → ∃𝑚 𝑚 ∈ (𝐹 “ {𝑋}))
8 fveq2 6873 . . . . . . . 8 (𝑝 = ⟨𝑚, 𝑚⟩ → (𝐺𝑝) = (𝐺‘⟨𝑚, 𝑚⟩))
9 df-ov 7403 . . . . . . . 8 (𝑚𝐺𝑚) = (𝐺‘⟨𝑚, 𝑚⟩)
108, 9eqtr4di 2787 . . . . . . 7 (𝑝 = ⟨𝑚, 𝑚⟩ → (𝐺𝑝) = (𝑚𝐺𝑚))
11 fveq2 6873 . . . . . . . 8 (𝑝 = ⟨𝑚, 𝑚⟩ → (𝐻𝑝) = (𝐻‘⟨𝑚, 𝑚⟩))
12 df-ov 7403 . . . . . . . 8 (𝑚𝐻𝑚) = (𝐻‘⟨𝑚, 𝑚⟩)
1311, 12eqtr4di 2787 . . . . . . 7 (𝑝 = ⟨𝑚, 𝑚⟩ → (𝐻𝑝) = (𝑚𝐻𝑚))
1410, 13imaeq12d 6046 . . . . . 6 (𝑝 = ⟨𝑚, 𝑚⟩ → ((𝐺𝑝) “ (𝐻𝑝)) = ((𝑚𝐺𝑚) “ (𝑚𝐻𝑚)))
1514eleq2d 2819 . . . . 5 (𝑝 = ⟨𝑚, 𝑚⟩ → ((𝐼𝑋) ∈ ((𝐺𝑝) “ (𝐻𝑝)) ↔ (𝐼𝑋) ∈ ((𝑚𝐺𝑚) “ (𝑚𝐻𝑚))))
16 simpr 484 . . . . . 6 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → 𝑚 ∈ (𝐹 “ {𝑋}))
1716, 16opelxpd 5691 . . . . 5 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → ⟨𝑚, 𝑚⟩ ∈ ((𝐹 “ {𝑋}) × (𝐹 “ {𝑋})))
18 eqid 2734 . . . . . . . 8 (Base‘𝐷) = (Base‘𝐷)
19 eqid 2734 . . . . . . . 8 (Id‘𝐷) = (Id‘𝐷)
20 imaid.i . . . . . . . 8 𝐼 = (Id‘𝐸)
21 imassc.f . . . . . . . . 9 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
2221adantr 480 . . . . . . . 8 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → 𝐹(𝐷 Func 𝐸)𝐺)
23 eqid 2734 . . . . . . . . . . . . 13 (Base‘𝐸) = (Base‘𝐸)
2418, 23, 21funcf1 17866 . . . . . . . . . . . 12 (𝜑𝐹:(Base‘𝐷)⟶(Base‘𝐸))
2524ffnd 6704 . . . . . . . . . . 11 (𝜑𝐹 Fn (Base‘𝐷))
26 fniniseg 7047 . . . . . . . . . . 11 (𝐹 Fn (Base‘𝐷) → (𝑚 ∈ (𝐹 “ {𝑋}) ↔ (𝑚 ∈ (Base‘𝐷) ∧ (𝐹𝑚) = 𝑋)))
2725, 26syl 17 . . . . . . . . . 10 (𝜑 → (𝑚 ∈ (𝐹 “ {𝑋}) ↔ (𝑚 ∈ (Base‘𝐷) ∧ (𝐹𝑚) = 𝑋)))
2827biimpa 476 . . . . . . . . 9 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → (𝑚 ∈ (Base‘𝐷) ∧ (𝐹𝑚) = 𝑋))
2928simpld 494 . . . . . . . 8 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → 𝑚 ∈ (Base‘𝐷))
3018, 19, 20, 22, 29funcid 17870 . . . . . . 7 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → ((𝑚𝐺𝑚)‘((Id‘𝐷)‘𝑚)) = (𝐼‘(𝐹𝑚)))
3128simprd 495 . . . . . . . 8 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → (𝐹𝑚) = 𝑋)
3231fveq2d 6877 . . . . . . 7 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → (𝐼‘(𝐹𝑚)) = (𝐼𝑋))
3330, 32eqtrd 2769 . . . . . 6 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → ((𝑚𝐺𝑚)‘((Id‘𝐷)‘𝑚)) = (𝐼𝑋))
34 imasubc.h . . . . . . . 8 𝐻 = (Hom ‘𝐷)
3522funcrcl2 48937 . . . . . . . 8 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → 𝐷 ∈ Cat)
3618, 34, 19, 35, 29catidcl 17681 . . . . . . 7 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → ((Id‘𝐷)‘𝑚) ∈ (𝑚𝐻𝑚))
37 eqid 2734 . . . . . . . . 9 (Hom ‘𝐸) = (Hom ‘𝐸)
3818, 34, 37, 22, 29, 29funcf2 17868 . . . . . . . 8 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → (𝑚𝐺𝑚):(𝑚𝐻𝑚)⟶((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑚)))
3938funfvima2d 7221 . . . . . . 7 (((𝜑𝑚 ∈ (𝐹 “ {𝑋})) ∧ ((Id‘𝐷)‘𝑚) ∈ (𝑚𝐻𝑚)) → ((𝑚𝐺𝑚)‘((Id‘𝐷)‘𝑚)) ∈ ((𝑚𝐺𝑚) “ (𝑚𝐻𝑚)))
4036, 39mpdan 687 . . . . . 6 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → ((𝑚𝐺𝑚)‘((Id‘𝐷)‘𝑚)) ∈ ((𝑚𝐺𝑚) “ (𝑚𝐻𝑚)))
4133, 40eqeltrrd 2834 . . . . 5 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → (𝐼𝑋) ∈ ((𝑚𝐺𝑚) “ (𝑚𝐻𝑚)))
4215, 17, 41rspcedvdw 3602 . . . 4 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → ∃𝑝 ∈ ((𝐹 “ {𝑋}) × (𝐹 “ {𝑋}))(𝐼𝑋) ∈ ((𝐺𝑝) “ (𝐻𝑝)))
437, 42exlimddv 1934 . . 3 (𝜑 → ∃𝑝 ∈ ((𝐹 “ {𝑋}) × (𝐹 “ {𝑋}))(𝐼𝑋) ∈ ((𝐺𝑝) “ (𝐻𝑝)))
4443eliund 4972 . 2 (𝜑 → (𝐼𝑋) ∈ 𝑝 ∈ ((𝐹 “ {𝑋}) × (𝐹 “ {𝑋}))((𝐺𝑝) “ (𝐻𝑝)))
45 relfunc 17862 . . . . 5 Rel (𝐷 Func 𝐸)
4645brrelex1i 5708 . . . 4 (𝐹(𝐷 Func 𝐸)𝐺𝐹 ∈ V)
4721, 46syl 17 . . 3 (𝜑𝐹 ∈ V)
48 imasubc.k . . 3 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
4947, 47, 1, 1, 48imasubclem3 48958 . 2 (𝜑 → (𝑋𝐾𝑋) = 𝑝 ∈ ((𝐹 “ {𝑋}) × (𝐹 “ {𝑋}))((𝐺𝑝) “ (𝐻𝑝)))
5044, 49eleqtrrd 2836 1 (𝜑 → (𝐼𝑋) ∈ (𝑋𝐾𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wex 1778  wcel 2107  wne 2931  wrex 3059  Vcvv 3457  c0 4306  {csn 4599  cop 4605   ciun 4965   class class class wbr 5117   × cxp 5650  ccnv 5651  cima 5655   Fn wfn 6523  cfv 6528  (class class class)co 7400  cmpo 7402  Basecbs 17215  Hom chom 17269  Idccid 17664   Func cfunc 17854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-1st 7983  df-2nd 7984  df-map 8837  df-ixp 8907  df-cat 17667  df-cid 17668  df-func 17858
This theorem is referenced by:  imasubc3  48966
  Copyright terms: Public domain W3C validator