Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imaid Structured version   Visualization version   GIF version

Theorem imaid 49149
Description: An image of a functor preserves the identity morphism. (Contributed by Zhi Wang, 7-Nov-2025.)
Hypotheses
Ref Expression
imasubc.s 𝑆 = (𝐹𝐴)
imasubc.h 𝐻 = (Hom ‘𝐷)
imasubc.k 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
imassc.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
imaid.i 𝐼 = (Id‘𝐸)
imaid.x (𝜑𝑋𝑆)
Assertion
Ref Expression
imaid (𝜑 → (𝐼𝑋) ∈ (𝑋𝐾𝑋))
Distinct variable groups:   𝐹,𝑝,𝑥,𝑦   𝐺,𝑝,𝑥,𝑦   𝐻,𝑝,𝑥,𝑦   𝑥,𝑆,𝑦   𝐼,𝑝   𝑋,𝑝,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑝)   𝐴(𝑥,𝑦,𝑝)   𝐷(𝑥,𝑦,𝑝)   𝑆(𝑝)   𝐸(𝑥,𝑦,𝑝)   𝐼(𝑥,𝑦)   𝐾(𝑥,𝑦,𝑝)

Proof of Theorem imaid
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 imaid.x . . . . . . 7 (𝜑𝑋𝑆)
2 imasubc.s . . . . . . 7 𝑆 = (𝐹𝐴)
31, 2eleqtrdi 2838 . . . . . 6 (𝜑𝑋 ∈ (𝐹𝐴))
4 inisegn0a 48830 . . . . . 6 (𝑋 ∈ (𝐹𝐴) → (𝐹 “ {𝑋}) ≠ ∅)
53, 4syl 17 . . . . 5 (𝜑 → (𝐹 “ {𝑋}) ≠ ∅)
6 n0 4304 . . . . 5 ((𝐹 “ {𝑋}) ≠ ∅ ↔ ∃𝑚 𝑚 ∈ (𝐹 “ {𝑋}))
75, 6sylib 218 . . . 4 (𝜑 → ∃𝑚 𝑚 ∈ (𝐹 “ {𝑋}))
8 fveq2 6822 . . . . . . . 8 (𝑝 = ⟨𝑚, 𝑚⟩ → (𝐺𝑝) = (𝐺‘⟨𝑚, 𝑚⟩))
9 df-ov 7352 . . . . . . . 8 (𝑚𝐺𝑚) = (𝐺‘⟨𝑚, 𝑚⟩)
108, 9eqtr4di 2782 . . . . . . 7 (𝑝 = ⟨𝑚, 𝑚⟩ → (𝐺𝑝) = (𝑚𝐺𝑚))
11 fveq2 6822 . . . . . . . 8 (𝑝 = ⟨𝑚, 𝑚⟩ → (𝐻𝑝) = (𝐻‘⟨𝑚, 𝑚⟩))
12 df-ov 7352 . . . . . . . 8 (𝑚𝐻𝑚) = (𝐻‘⟨𝑚, 𝑚⟩)
1311, 12eqtr4di 2782 . . . . . . 7 (𝑝 = ⟨𝑚, 𝑚⟩ → (𝐻𝑝) = (𝑚𝐻𝑚))
1410, 13imaeq12d 6012 . . . . . 6 (𝑝 = ⟨𝑚, 𝑚⟩ → ((𝐺𝑝) “ (𝐻𝑝)) = ((𝑚𝐺𝑚) “ (𝑚𝐻𝑚)))
1514eleq2d 2814 . . . . 5 (𝑝 = ⟨𝑚, 𝑚⟩ → ((𝐼𝑋) ∈ ((𝐺𝑝) “ (𝐻𝑝)) ↔ (𝐼𝑋) ∈ ((𝑚𝐺𝑚) “ (𝑚𝐻𝑚))))
16 simpr 484 . . . . . 6 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → 𝑚 ∈ (𝐹 “ {𝑋}))
1716, 16opelxpd 5658 . . . . 5 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → ⟨𝑚, 𝑚⟩ ∈ ((𝐹 “ {𝑋}) × (𝐹 “ {𝑋})))
18 eqid 2729 . . . . . . . 8 (Base‘𝐷) = (Base‘𝐷)
19 eqid 2729 . . . . . . . 8 (Id‘𝐷) = (Id‘𝐷)
20 imaid.i . . . . . . . 8 𝐼 = (Id‘𝐸)
21 imassc.f . . . . . . . . 9 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
2221adantr 480 . . . . . . . 8 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → 𝐹(𝐷 Func 𝐸)𝐺)
23 eqid 2729 . . . . . . . . . . . . 13 (Base‘𝐸) = (Base‘𝐸)
2418, 23, 21funcf1 17773 . . . . . . . . . . . 12 (𝜑𝐹:(Base‘𝐷)⟶(Base‘𝐸))
2524ffnd 6653 . . . . . . . . . . 11 (𝜑𝐹 Fn (Base‘𝐷))
26 fniniseg 6994 . . . . . . . . . . 11 (𝐹 Fn (Base‘𝐷) → (𝑚 ∈ (𝐹 “ {𝑋}) ↔ (𝑚 ∈ (Base‘𝐷) ∧ (𝐹𝑚) = 𝑋)))
2725, 26syl 17 . . . . . . . . . 10 (𝜑 → (𝑚 ∈ (𝐹 “ {𝑋}) ↔ (𝑚 ∈ (Base‘𝐷) ∧ (𝐹𝑚) = 𝑋)))
2827biimpa 476 . . . . . . . . 9 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → (𝑚 ∈ (Base‘𝐷) ∧ (𝐹𝑚) = 𝑋))
2928simpld 494 . . . . . . . 8 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → 𝑚 ∈ (Base‘𝐷))
3018, 19, 20, 22, 29funcid 17777 . . . . . . 7 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → ((𝑚𝐺𝑚)‘((Id‘𝐷)‘𝑚)) = (𝐼‘(𝐹𝑚)))
3128simprd 495 . . . . . . . 8 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → (𝐹𝑚) = 𝑋)
3231fveq2d 6826 . . . . . . 7 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → (𝐼‘(𝐹𝑚)) = (𝐼𝑋))
3330, 32eqtrd 2764 . . . . . 6 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → ((𝑚𝐺𝑚)‘((Id‘𝐷)‘𝑚)) = (𝐼𝑋))
34 imasubc.h . . . . . . . 8 𝐻 = (Hom ‘𝐷)
3522funcrcl2 49074 . . . . . . . 8 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → 𝐷 ∈ Cat)
3618, 34, 19, 35, 29catidcl 17588 . . . . . . 7 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → ((Id‘𝐷)‘𝑚) ∈ (𝑚𝐻𝑚))
37 eqid 2729 . . . . . . . . 9 (Hom ‘𝐸) = (Hom ‘𝐸)
3818, 34, 37, 22, 29, 29funcf2 17775 . . . . . . . 8 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → (𝑚𝐺𝑚):(𝑚𝐻𝑚)⟶((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑚)))
3938funfvima2d 7168 . . . . . . 7 (((𝜑𝑚 ∈ (𝐹 “ {𝑋})) ∧ ((Id‘𝐷)‘𝑚) ∈ (𝑚𝐻𝑚)) → ((𝑚𝐺𝑚)‘((Id‘𝐷)‘𝑚)) ∈ ((𝑚𝐺𝑚) “ (𝑚𝐻𝑚)))
4036, 39mpdan 687 . . . . . 6 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → ((𝑚𝐺𝑚)‘((Id‘𝐷)‘𝑚)) ∈ ((𝑚𝐺𝑚) “ (𝑚𝐻𝑚)))
4133, 40eqeltrrd 2829 . . . . 5 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → (𝐼𝑋) ∈ ((𝑚𝐺𝑚) “ (𝑚𝐻𝑚)))
4215, 17, 41rspcedvdw 3580 . . . 4 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → ∃𝑝 ∈ ((𝐹 “ {𝑋}) × (𝐹 “ {𝑋}))(𝐼𝑋) ∈ ((𝐺𝑝) “ (𝐻𝑝)))
437, 42exlimddv 1935 . . 3 (𝜑 → ∃𝑝 ∈ ((𝐹 “ {𝑋}) × (𝐹 “ {𝑋}))(𝐼𝑋) ∈ ((𝐺𝑝) “ (𝐻𝑝)))
4443eliund 4948 . 2 (𝜑 → (𝐼𝑋) ∈ 𝑝 ∈ ((𝐹 “ {𝑋}) × (𝐹 “ {𝑋}))((𝐺𝑝) “ (𝐻𝑝)))
45 relfunc 17769 . . . . 5 Rel (𝐷 Func 𝐸)
4645brrelex1i 5675 . . . 4 (𝐹(𝐷 Func 𝐸)𝐺𝐹 ∈ V)
4721, 46syl 17 . . 3 (𝜑𝐹 ∈ V)
48 imasubc.k . . 3 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
4947, 47, 1, 1, 48imasubclem3 49101 . 2 (𝜑 → (𝑋𝐾𝑋) = 𝑝 ∈ ((𝐹 “ {𝑋}) × (𝐹 “ {𝑋}))((𝐺𝑝) “ (𝐻𝑝)))
5044, 49eleqtrrd 2831 1 (𝜑 → (𝐼𝑋) ∈ (𝑋𝐾𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  wrex 3053  Vcvv 3436  c0 4284  {csn 4577  cop 4583   ciun 4941   class class class wbr 5092   × cxp 5617  ccnv 5618  cima 5622   Fn wfn 6477  cfv 6482  (class class class)co 7349  cmpo 7351  Basecbs 17120  Hom chom 17172  Idccid 17571   Func cfunc 17761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-map 8755  df-ixp 8825  df-cat 17574  df-cid 17575  df-func 17765
This theorem is referenced by:  imasubc3  49151
  Copyright terms: Public domain W3C validator