| Step | Hyp | Ref
| Expression |
| 1 | | imaid.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ 𝑆) |
| 2 | | imasubc.s |
. . . . . . 7
⊢ 𝑆 = (𝐹 “ 𝐴) |
| 3 | 1, 2 | eleqtrdi 2843 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ (𝐹 “ 𝐴)) |
| 4 | | inisegn0a 48708 |
. . . . . 6
⊢ (𝑋 ∈ (𝐹 “ 𝐴) → (◡𝐹 “ {𝑋}) ≠ ∅) |
| 5 | 3, 4 | syl 17 |
. . . . 5
⊢ (𝜑 → (◡𝐹 “ {𝑋}) ≠ ∅) |
| 6 | | n0 4326 |
. . . . 5
⊢ ((◡𝐹 “ {𝑋}) ≠ ∅ ↔ ∃𝑚 𝑚 ∈ (◡𝐹 “ {𝑋})) |
| 7 | 5, 6 | sylib 218 |
. . . 4
⊢ (𝜑 → ∃𝑚 𝑚 ∈ (◡𝐹 “ {𝑋})) |
| 8 | | fveq2 6873 |
. . . . . . . 8
⊢ (𝑝 = 〈𝑚, 𝑚〉 → (𝐺‘𝑝) = (𝐺‘〈𝑚, 𝑚〉)) |
| 9 | | df-ov 7403 |
. . . . . . . 8
⊢ (𝑚𝐺𝑚) = (𝐺‘〈𝑚, 𝑚〉) |
| 10 | 8, 9 | eqtr4di 2787 |
. . . . . . 7
⊢ (𝑝 = 〈𝑚, 𝑚〉 → (𝐺‘𝑝) = (𝑚𝐺𝑚)) |
| 11 | | fveq2 6873 |
. . . . . . . 8
⊢ (𝑝 = 〈𝑚, 𝑚〉 → (𝐻‘𝑝) = (𝐻‘〈𝑚, 𝑚〉)) |
| 12 | | df-ov 7403 |
. . . . . . . 8
⊢ (𝑚𝐻𝑚) = (𝐻‘〈𝑚, 𝑚〉) |
| 13 | 11, 12 | eqtr4di 2787 |
. . . . . . 7
⊢ (𝑝 = 〈𝑚, 𝑚〉 → (𝐻‘𝑝) = (𝑚𝐻𝑚)) |
| 14 | 10, 13 | imaeq12d 6046 |
. . . . . 6
⊢ (𝑝 = 〈𝑚, 𝑚〉 → ((𝐺‘𝑝) “ (𝐻‘𝑝)) = ((𝑚𝐺𝑚) “ (𝑚𝐻𝑚))) |
| 15 | 14 | eleq2d 2819 |
. . . . 5
⊢ (𝑝 = 〈𝑚, 𝑚〉 → ((𝐼‘𝑋) ∈ ((𝐺‘𝑝) “ (𝐻‘𝑝)) ↔ (𝐼‘𝑋) ∈ ((𝑚𝐺𝑚) “ (𝑚𝐻𝑚)))) |
| 16 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (◡𝐹 “ {𝑋})) → 𝑚 ∈ (◡𝐹 “ {𝑋})) |
| 17 | 16, 16 | opelxpd 5691 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ (◡𝐹 “ {𝑋})) → 〈𝑚, 𝑚〉 ∈ ((◡𝐹 “ {𝑋}) × (◡𝐹 “ {𝑋}))) |
| 18 | | eqid 2734 |
. . . . . . . 8
⊢
(Base‘𝐷) =
(Base‘𝐷) |
| 19 | | eqid 2734 |
. . . . . . . 8
⊢
(Id‘𝐷) =
(Id‘𝐷) |
| 20 | | imaid.i |
. . . . . . . 8
⊢ 𝐼 = (Id‘𝐸) |
| 21 | | imassc.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| 22 | 21 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (◡𝐹 “ {𝑋})) → 𝐹(𝐷 Func 𝐸)𝐺) |
| 23 | | eqid 2734 |
. . . . . . . . . . . . 13
⊢
(Base‘𝐸) =
(Base‘𝐸) |
| 24 | 18, 23, 21 | funcf1 17866 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:(Base‘𝐷)⟶(Base‘𝐸)) |
| 25 | 24 | ffnd 6704 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 Fn (Base‘𝐷)) |
| 26 | | fniniseg 7047 |
. . . . . . . . . . 11
⊢ (𝐹 Fn (Base‘𝐷) → (𝑚 ∈ (◡𝐹 “ {𝑋}) ↔ (𝑚 ∈ (Base‘𝐷) ∧ (𝐹‘𝑚) = 𝑋))) |
| 27 | 25, 26 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑚 ∈ (◡𝐹 “ {𝑋}) ↔ (𝑚 ∈ (Base‘𝐷) ∧ (𝐹‘𝑚) = 𝑋))) |
| 28 | 27 | biimpa 476 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (◡𝐹 “ {𝑋})) → (𝑚 ∈ (Base‘𝐷) ∧ (𝐹‘𝑚) = 𝑋)) |
| 29 | 28 | simpld 494 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (◡𝐹 “ {𝑋})) → 𝑚 ∈ (Base‘𝐷)) |
| 30 | 18, 19, 20, 22, 29 | funcid 17870 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (◡𝐹 “ {𝑋})) → ((𝑚𝐺𝑚)‘((Id‘𝐷)‘𝑚)) = (𝐼‘(𝐹‘𝑚))) |
| 31 | 28 | simprd 495 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (◡𝐹 “ {𝑋})) → (𝐹‘𝑚) = 𝑋) |
| 32 | 31 | fveq2d 6877 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (◡𝐹 “ {𝑋})) → (𝐼‘(𝐹‘𝑚)) = (𝐼‘𝑋)) |
| 33 | 30, 32 | eqtrd 2769 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (◡𝐹 “ {𝑋})) → ((𝑚𝐺𝑚)‘((Id‘𝐷)‘𝑚)) = (𝐼‘𝑋)) |
| 34 | | imasubc.h |
. . . . . . . 8
⊢ 𝐻 = (Hom ‘𝐷) |
| 35 | 22 | funcrcl2 48937 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (◡𝐹 “ {𝑋})) → 𝐷 ∈ Cat) |
| 36 | 18, 34, 19, 35, 29 | catidcl 17681 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (◡𝐹 “ {𝑋})) → ((Id‘𝐷)‘𝑚) ∈ (𝑚𝐻𝑚)) |
| 37 | | eqid 2734 |
. . . . . . . . 9
⊢ (Hom
‘𝐸) = (Hom
‘𝐸) |
| 38 | 18, 34, 37, 22, 29, 29 | funcf2 17868 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (◡𝐹 “ {𝑋})) → (𝑚𝐺𝑚):(𝑚𝐻𝑚)⟶((𝐹‘𝑚)(Hom ‘𝐸)(𝐹‘𝑚))) |
| 39 | 38 | funfvima2d 7221 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ (◡𝐹 “ {𝑋})) ∧ ((Id‘𝐷)‘𝑚) ∈ (𝑚𝐻𝑚)) → ((𝑚𝐺𝑚)‘((Id‘𝐷)‘𝑚)) ∈ ((𝑚𝐺𝑚) “ (𝑚𝐻𝑚))) |
| 40 | 36, 39 | mpdan 687 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (◡𝐹 “ {𝑋})) → ((𝑚𝐺𝑚)‘((Id‘𝐷)‘𝑚)) ∈ ((𝑚𝐺𝑚) “ (𝑚𝐻𝑚))) |
| 41 | 33, 40 | eqeltrrd 2834 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ (◡𝐹 “ {𝑋})) → (𝐼‘𝑋) ∈ ((𝑚𝐺𝑚) “ (𝑚𝐻𝑚))) |
| 42 | 15, 17, 41 | rspcedvdw 3602 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ (◡𝐹 “ {𝑋})) → ∃𝑝 ∈ ((◡𝐹 “ {𝑋}) × (◡𝐹 “ {𝑋}))(𝐼‘𝑋) ∈ ((𝐺‘𝑝) “ (𝐻‘𝑝))) |
| 43 | 7, 42 | exlimddv 1934 |
. . 3
⊢ (𝜑 → ∃𝑝 ∈ ((◡𝐹 “ {𝑋}) × (◡𝐹 “ {𝑋}))(𝐼‘𝑋) ∈ ((𝐺‘𝑝) “ (𝐻‘𝑝))) |
| 44 | 43 | eliund 4972 |
. 2
⊢ (𝜑 → (𝐼‘𝑋) ∈ ∪
𝑝 ∈ ((◡𝐹 “ {𝑋}) × (◡𝐹 “ {𝑋}))((𝐺‘𝑝) “ (𝐻‘𝑝))) |
| 45 | | relfunc 17862 |
. . . . 5
⊢ Rel
(𝐷 Func 𝐸) |
| 46 | 45 | brrelex1i 5708 |
. . . 4
⊢ (𝐹(𝐷 Func 𝐸)𝐺 → 𝐹 ∈ V) |
| 47 | 21, 46 | syl 17 |
. . 3
⊢ (𝜑 → 𝐹 ∈ V) |
| 48 | | imasubc.k |
. . 3
⊢ 𝐾 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ ∪
𝑝 ∈ ((◡𝐹 “ {𝑥}) × (◡𝐹 “ {𝑦}))((𝐺‘𝑝) “ (𝐻‘𝑝))) |
| 49 | 47, 47, 1, 1, 48 | imasubclem3 48958 |
. 2
⊢ (𝜑 → (𝑋𝐾𝑋) = ∪
𝑝 ∈ ((◡𝐹 “ {𝑋}) × (◡𝐹 “ {𝑋}))((𝐺‘𝑝) “ (𝐻‘𝑝))) |
| 50 | 44, 49 | eleqtrrd 2836 |
1
⊢ (𝜑 → (𝐼‘𝑋) ∈ (𝑋𝐾𝑋)) |