Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imaid Structured version   Visualization version   GIF version

Theorem imaid 49133
Description: An image of a functor preserves the identity morphism. (Contributed by Zhi Wang, 7-Nov-2025.)
Hypotheses
Ref Expression
imasubc.s 𝑆 = (𝐹𝐴)
imasubc.h 𝐻 = (Hom ‘𝐷)
imasubc.k 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
imassc.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
imaid.i 𝐼 = (Id‘𝐸)
imaid.x (𝜑𝑋𝑆)
Assertion
Ref Expression
imaid (𝜑 → (𝐼𝑋) ∈ (𝑋𝐾𝑋))
Distinct variable groups:   𝐹,𝑝,𝑥,𝑦   𝐺,𝑝,𝑥,𝑦   𝐻,𝑝,𝑥,𝑦   𝑥,𝑆,𝑦   𝐼,𝑝   𝑋,𝑝,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑝)   𝐴(𝑥,𝑦,𝑝)   𝐷(𝑥,𝑦,𝑝)   𝑆(𝑝)   𝐸(𝑥,𝑦,𝑝)   𝐼(𝑥,𝑦)   𝐾(𝑥,𝑦,𝑝)

Proof of Theorem imaid
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 imaid.x . . . . . . 7 (𝜑𝑋𝑆)
2 imasubc.s . . . . . . 7 𝑆 = (𝐹𝐴)
31, 2eleqtrdi 2839 . . . . . 6 (𝜑𝑋 ∈ (𝐹𝐴))
4 inisegn0a 48814 . . . . . 6 (𝑋 ∈ (𝐹𝐴) → (𝐹 “ {𝑋}) ≠ ∅)
53, 4syl 17 . . . . 5 (𝜑 → (𝐹 “ {𝑋}) ≠ ∅)
6 n0 4318 . . . . 5 ((𝐹 “ {𝑋}) ≠ ∅ ↔ ∃𝑚 𝑚 ∈ (𝐹 “ {𝑋}))
75, 6sylib 218 . . . 4 (𝜑 → ∃𝑚 𝑚 ∈ (𝐹 “ {𝑋}))
8 fveq2 6860 . . . . . . . 8 (𝑝 = ⟨𝑚, 𝑚⟩ → (𝐺𝑝) = (𝐺‘⟨𝑚, 𝑚⟩))
9 df-ov 7392 . . . . . . . 8 (𝑚𝐺𝑚) = (𝐺‘⟨𝑚, 𝑚⟩)
108, 9eqtr4di 2783 . . . . . . 7 (𝑝 = ⟨𝑚, 𝑚⟩ → (𝐺𝑝) = (𝑚𝐺𝑚))
11 fveq2 6860 . . . . . . . 8 (𝑝 = ⟨𝑚, 𝑚⟩ → (𝐻𝑝) = (𝐻‘⟨𝑚, 𝑚⟩))
12 df-ov 7392 . . . . . . . 8 (𝑚𝐻𝑚) = (𝐻‘⟨𝑚, 𝑚⟩)
1311, 12eqtr4di 2783 . . . . . . 7 (𝑝 = ⟨𝑚, 𝑚⟩ → (𝐻𝑝) = (𝑚𝐻𝑚))
1410, 13imaeq12d 6034 . . . . . 6 (𝑝 = ⟨𝑚, 𝑚⟩ → ((𝐺𝑝) “ (𝐻𝑝)) = ((𝑚𝐺𝑚) “ (𝑚𝐻𝑚)))
1514eleq2d 2815 . . . . 5 (𝑝 = ⟨𝑚, 𝑚⟩ → ((𝐼𝑋) ∈ ((𝐺𝑝) “ (𝐻𝑝)) ↔ (𝐼𝑋) ∈ ((𝑚𝐺𝑚) “ (𝑚𝐻𝑚))))
16 simpr 484 . . . . . 6 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → 𝑚 ∈ (𝐹 “ {𝑋}))
1716, 16opelxpd 5679 . . . . 5 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → ⟨𝑚, 𝑚⟩ ∈ ((𝐹 “ {𝑋}) × (𝐹 “ {𝑋})))
18 eqid 2730 . . . . . . . 8 (Base‘𝐷) = (Base‘𝐷)
19 eqid 2730 . . . . . . . 8 (Id‘𝐷) = (Id‘𝐷)
20 imaid.i . . . . . . . 8 𝐼 = (Id‘𝐸)
21 imassc.f . . . . . . . . 9 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
2221adantr 480 . . . . . . . 8 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → 𝐹(𝐷 Func 𝐸)𝐺)
23 eqid 2730 . . . . . . . . . . . . 13 (Base‘𝐸) = (Base‘𝐸)
2418, 23, 21funcf1 17834 . . . . . . . . . . . 12 (𝜑𝐹:(Base‘𝐷)⟶(Base‘𝐸))
2524ffnd 6691 . . . . . . . . . . 11 (𝜑𝐹 Fn (Base‘𝐷))
26 fniniseg 7034 . . . . . . . . . . 11 (𝐹 Fn (Base‘𝐷) → (𝑚 ∈ (𝐹 “ {𝑋}) ↔ (𝑚 ∈ (Base‘𝐷) ∧ (𝐹𝑚) = 𝑋)))
2725, 26syl 17 . . . . . . . . . 10 (𝜑 → (𝑚 ∈ (𝐹 “ {𝑋}) ↔ (𝑚 ∈ (Base‘𝐷) ∧ (𝐹𝑚) = 𝑋)))
2827biimpa 476 . . . . . . . . 9 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → (𝑚 ∈ (Base‘𝐷) ∧ (𝐹𝑚) = 𝑋))
2928simpld 494 . . . . . . . 8 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → 𝑚 ∈ (Base‘𝐷))
3018, 19, 20, 22, 29funcid 17838 . . . . . . 7 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → ((𝑚𝐺𝑚)‘((Id‘𝐷)‘𝑚)) = (𝐼‘(𝐹𝑚)))
3128simprd 495 . . . . . . . 8 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → (𝐹𝑚) = 𝑋)
3231fveq2d 6864 . . . . . . 7 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → (𝐼‘(𝐹𝑚)) = (𝐼𝑋))
3330, 32eqtrd 2765 . . . . . 6 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → ((𝑚𝐺𝑚)‘((Id‘𝐷)‘𝑚)) = (𝐼𝑋))
34 imasubc.h . . . . . . . 8 𝐻 = (Hom ‘𝐷)
3522funcrcl2 49058 . . . . . . . 8 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → 𝐷 ∈ Cat)
3618, 34, 19, 35, 29catidcl 17649 . . . . . . 7 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → ((Id‘𝐷)‘𝑚) ∈ (𝑚𝐻𝑚))
37 eqid 2730 . . . . . . . . 9 (Hom ‘𝐸) = (Hom ‘𝐸)
3818, 34, 37, 22, 29, 29funcf2 17836 . . . . . . . 8 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → (𝑚𝐺𝑚):(𝑚𝐻𝑚)⟶((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑚)))
3938funfvima2d 7208 . . . . . . 7 (((𝜑𝑚 ∈ (𝐹 “ {𝑋})) ∧ ((Id‘𝐷)‘𝑚) ∈ (𝑚𝐻𝑚)) → ((𝑚𝐺𝑚)‘((Id‘𝐷)‘𝑚)) ∈ ((𝑚𝐺𝑚) “ (𝑚𝐻𝑚)))
4036, 39mpdan 687 . . . . . 6 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → ((𝑚𝐺𝑚)‘((Id‘𝐷)‘𝑚)) ∈ ((𝑚𝐺𝑚) “ (𝑚𝐻𝑚)))
4133, 40eqeltrrd 2830 . . . . 5 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → (𝐼𝑋) ∈ ((𝑚𝐺𝑚) “ (𝑚𝐻𝑚)))
4215, 17, 41rspcedvdw 3594 . . . 4 ((𝜑𝑚 ∈ (𝐹 “ {𝑋})) → ∃𝑝 ∈ ((𝐹 “ {𝑋}) × (𝐹 “ {𝑋}))(𝐼𝑋) ∈ ((𝐺𝑝) “ (𝐻𝑝)))
437, 42exlimddv 1935 . . 3 (𝜑 → ∃𝑝 ∈ ((𝐹 “ {𝑋}) × (𝐹 “ {𝑋}))(𝐼𝑋) ∈ ((𝐺𝑝) “ (𝐻𝑝)))
4443eliund 4964 . 2 (𝜑 → (𝐼𝑋) ∈ 𝑝 ∈ ((𝐹 “ {𝑋}) × (𝐹 “ {𝑋}))((𝐺𝑝) “ (𝐻𝑝)))
45 relfunc 17830 . . . . 5 Rel (𝐷 Func 𝐸)
4645brrelex1i 5696 . . . 4 (𝐹(𝐷 Func 𝐸)𝐺𝐹 ∈ V)
4721, 46syl 17 . . 3 (𝜑𝐹 ∈ V)
48 imasubc.k . . 3 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
4947, 47, 1, 1, 48imasubclem3 49085 . 2 (𝜑 → (𝑋𝐾𝑋) = 𝑝 ∈ ((𝐹 “ {𝑋}) × (𝐹 “ {𝑋}))((𝐺𝑝) “ (𝐻𝑝)))
5044, 49eleqtrrd 2832 1 (𝜑 → (𝐼𝑋) ∈ (𝑋𝐾𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2926  wrex 3054  Vcvv 3450  c0 4298  {csn 4591  cop 4597   ciun 4957   class class class wbr 5109   × cxp 5638  ccnv 5639  cima 5643   Fn wfn 6508  cfv 6513  (class class class)co 7389  cmpo 7391  Basecbs 17185  Hom chom 17237  Idccid 17632   Func cfunc 17822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-map 8803  df-ixp 8873  df-cat 17635  df-cid 17636  df-func 17826
This theorem is referenced by:  imasubc3  49135
  Copyright terms: Public domain W3C validator