Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  initopropdlemlem Structured version   Visualization version   GIF version

Theorem initopropdlemlem 49271
Description: Lemma for initopropdlem 49272, termopropdlem 49273, and zeroopropdlem 49274. (Contributed by Zhi Wang, 26-Oct-2025.)
Hypotheses
Ref Expression
initopropdlemlem.1 𝐹 Fn 𝑋
initopropdlemlem.2 (𝜑 → ¬ 𝐴𝑌)
initopropdlemlem.3 𝑋𝑌
initopropdlemlem.4 ((𝜑𝐵𝑋) → (𝐹𝐵) = ∅)
Assertion
Ref Expression
initopropdlemlem (𝜑 → (𝐹𝐴) = (𝐹𝐵))

Proof of Theorem initopropdlemlem
StepHypRef Expression
1 initopropdlemlem.2 . . . . . 6 (𝜑 → ¬ 𝐴𝑌)
2 initopropdlemlem.3 . . . . . . 7 𝑋𝑌
32sseli 3925 . . . . . 6 (𝐴𝑋𝐴𝑌)
41, 3nsyl 140 . . . . 5 (𝜑 → ¬ 𝐴𝑋)
5 initopropdlemlem.1 . . . . . . . 8 𝐹 Fn 𝑋
65fndmi 6580 . . . . . . 7 dom 𝐹 = 𝑋
76eleq2i 2823 . . . . . 6 (𝐴 ∈ dom 𝐹𝐴𝑋)
8 ndmfv 6849 . . . . . 6 𝐴 ∈ dom 𝐹 → (𝐹𝐴) = ∅)
97, 8sylnbir 331 . . . . 5 𝐴𝑋 → (𝐹𝐴) = ∅)
104, 9syl 17 . . . 4 (𝜑 → (𝐹𝐴) = ∅)
1110adantr 480 . . 3 ((𝜑𝐵𝑋) → (𝐹𝐴) = ∅)
12 initopropdlemlem.4 . . 3 ((𝜑𝐵𝑋) → (𝐹𝐵) = ∅)
1311, 12eqtr4d 2769 . 2 ((𝜑𝐵𝑋) → (𝐹𝐴) = (𝐹𝐵))
1410adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐵𝑋) → (𝐹𝐴) = ∅)
156eleq2i 2823 . . . . 5 (𝐵 ∈ dom 𝐹𝐵𝑋)
16 ndmfv 6849 . . . . 5 𝐵 ∈ dom 𝐹 → (𝐹𝐵) = ∅)
1715, 16sylnbir 331 . . . 4 𝐵𝑋 → (𝐹𝐵) = ∅)
1817adantl 481 . . 3 ((𝜑 ∧ ¬ 𝐵𝑋) → (𝐹𝐵) = ∅)
1914, 18eqtr4d 2769 . 2 ((𝜑 ∧ ¬ 𝐵𝑋) → (𝐹𝐴) = (𝐹𝐵))
2013, 19pm2.61dan 812 1 (𝜑 → (𝐹𝐴) = (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wss 3897  c0 4278  dom cdm 5611   Fn wfn 6471  cfv 6476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-dm 5621  df-iota 6432  df-fn 6479  df-fv 6484
This theorem is referenced by:  initopropdlem  49272  termopropdlem  49273  zeroopropdlem  49274
  Copyright terms: Public domain W3C validator