| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > initopropdlemlem | Structured version Visualization version GIF version | ||
| Description: Lemma for initopropdlem 49211, termopropdlem 49212, and zeroopropdlem 49213. (Contributed by Zhi Wang, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| initopropdlemlem.1 | ⊢ 𝐹 Fn 𝑋 |
| initopropdlemlem.2 | ⊢ (𝜑 → ¬ 𝐴 ∈ 𝑌) |
| initopropdlemlem.3 | ⊢ 𝑋 ⊆ 𝑌 |
| initopropdlemlem.4 | ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑋) → (𝐹‘𝐵) = ∅) |
| Ref | Expression |
|---|---|
| initopropdlemlem | ⊢ (𝜑 → (𝐹‘𝐴) = (𝐹‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | initopropdlemlem.2 | . . . . . 6 ⊢ (𝜑 → ¬ 𝐴 ∈ 𝑌) | |
| 2 | initopropdlemlem.3 | . . . . . . 7 ⊢ 𝑋 ⊆ 𝑌 | |
| 3 | 2 | sseli 3944 | . . . . . 6 ⊢ (𝐴 ∈ 𝑋 → 𝐴 ∈ 𝑌) |
| 4 | 1, 3 | nsyl 140 | . . . . 5 ⊢ (𝜑 → ¬ 𝐴 ∈ 𝑋) |
| 5 | initopropdlemlem.1 | . . . . . . . 8 ⊢ 𝐹 Fn 𝑋 | |
| 6 | 5 | fndmi 6624 | . . . . . . 7 ⊢ dom 𝐹 = 𝑋 |
| 7 | 6 | eleq2i 2821 | . . . . . 6 ⊢ (𝐴 ∈ dom 𝐹 ↔ 𝐴 ∈ 𝑋) |
| 8 | ndmfv 6895 | . . . . . 6 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) | |
| 9 | 7, 8 | sylnbir 331 | . . . . 5 ⊢ (¬ 𝐴 ∈ 𝑋 → (𝐹‘𝐴) = ∅) |
| 10 | 4, 9 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐴) = ∅) |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑋) → (𝐹‘𝐴) = ∅) |
| 12 | initopropdlemlem.4 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑋) → (𝐹‘𝐵) = ∅) | |
| 13 | 11, 12 | eqtr4d 2768 | . 2 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑋) → (𝐹‘𝐴) = (𝐹‘𝐵)) |
| 14 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐵 ∈ 𝑋) → (𝐹‘𝐴) = ∅) |
| 15 | 6 | eleq2i 2821 | . . . . 5 ⊢ (𝐵 ∈ dom 𝐹 ↔ 𝐵 ∈ 𝑋) |
| 16 | ndmfv 6895 | . . . . 5 ⊢ (¬ 𝐵 ∈ dom 𝐹 → (𝐹‘𝐵) = ∅) | |
| 17 | 15, 16 | sylnbir 331 | . . . 4 ⊢ (¬ 𝐵 ∈ 𝑋 → (𝐹‘𝐵) = ∅) |
| 18 | 17 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐵 ∈ 𝑋) → (𝐹‘𝐵) = ∅) |
| 19 | 14, 18 | eqtr4d 2768 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐵 ∈ 𝑋) → (𝐹‘𝐴) = (𝐹‘𝐵)) |
| 20 | 13, 19 | pm2.61dan 812 | 1 ⊢ (𝜑 → (𝐹‘𝐴) = (𝐹‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3916 ∅c0 4298 dom cdm 5640 Fn wfn 6508 ‘cfv 6513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-dm 5650 df-iota 6466 df-fn 6516 df-fv 6521 |
| This theorem is referenced by: initopropdlem 49211 termopropdlem 49212 zeroopropdlem 49213 |
| Copyright terms: Public domain | W3C validator |