Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  initopropdlemlem Structured version   Visualization version   GIF version

Theorem initopropdlemlem 49210
Description: Lemma for initopropdlem 49211, termopropdlem 49212, and zeroopropdlem 49213. (Contributed by Zhi Wang, 26-Oct-2025.)
Hypotheses
Ref Expression
initopropdlemlem.1 𝐹 Fn 𝑋
initopropdlemlem.2 (𝜑 → ¬ 𝐴𝑌)
initopropdlemlem.3 𝑋𝑌
initopropdlemlem.4 ((𝜑𝐵𝑋) → (𝐹𝐵) = ∅)
Assertion
Ref Expression
initopropdlemlem (𝜑 → (𝐹𝐴) = (𝐹𝐵))

Proof of Theorem initopropdlemlem
StepHypRef Expression
1 initopropdlemlem.2 . . . . . 6 (𝜑 → ¬ 𝐴𝑌)
2 initopropdlemlem.3 . . . . . . 7 𝑋𝑌
32sseli 3944 . . . . . 6 (𝐴𝑋𝐴𝑌)
41, 3nsyl 140 . . . . 5 (𝜑 → ¬ 𝐴𝑋)
5 initopropdlemlem.1 . . . . . . . 8 𝐹 Fn 𝑋
65fndmi 6624 . . . . . . 7 dom 𝐹 = 𝑋
76eleq2i 2821 . . . . . 6 (𝐴 ∈ dom 𝐹𝐴𝑋)
8 ndmfv 6895 . . . . . 6 𝐴 ∈ dom 𝐹 → (𝐹𝐴) = ∅)
97, 8sylnbir 331 . . . . 5 𝐴𝑋 → (𝐹𝐴) = ∅)
104, 9syl 17 . . . 4 (𝜑 → (𝐹𝐴) = ∅)
1110adantr 480 . . 3 ((𝜑𝐵𝑋) → (𝐹𝐴) = ∅)
12 initopropdlemlem.4 . . 3 ((𝜑𝐵𝑋) → (𝐹𝐵) = ∅)
1311, 12eqtr4d 2768 . 2 ((𝜑𝐵𝑋) → (𝐹𝐴) = (𝐹𝐵))
1410adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐵𝑋) → (𝐹𝐴) = ∅)
156eleq2i 2821 . . . . 5 (𝐵 ∈ dom 𝐹𝐵𝑋)
16 ndmfv 6895 . . . . 5 𝐵 ∈ dom 𝐹 → (𝐹𝐵) = ∅)
1715, 16sylnbir 331 . . . 4 𝐵𝑋 → (𝐹𝐵) = ∅)
1817adantl 481 . . 3 ((𝜑 ∧ ¬ 𝐵𝑋) → (𝐹𝐵) = ∅)
1914, 18eqtr4d 2768 . 2 ((𝜑 ∧ ¬ 𝐵𝑋) → (𝐹𝐴) = (𝐹𝐵))
2013, 19pm2.61dan 812 1 (𝜑 → (𝐹𝐴) = (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3916  c0 4298  dom cdm 5640   Fn wfn 6508  cfv 6513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-dm 5650  df-iota 6466  df-fn 6516  df-fv 6521
This theorem is referenced by:  initopropdlem  49211  termopropdlem  49212  zeroopropdlem  49213
  Copyright terms: Public domain W3C validator