| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > zeroopropdlem | Structured version Visualization version GIF version | ||
| Description: Lemma for zeroopropd 49277. (Contributed by Zhi Wang, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| initopropd.1 | ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) |
| initopropd.2 | ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) |
| initopropdlem.1 | ⊢ (𝜑 → ¬ 𝐶 ∈ V) |
| Ref | Expression |
|---|---|
| zeroopropdlem | ⊢ (𝜑 → (ZeroO‘𝐶) = (ZeroO‘𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zeroofn 17891 | . 2 ⊢ ZeroO Fn Cat | |
| 2 | initopropdlem.1 | . 2 ⊢ (𝜑 → ¬ 𝐶 ∈ V) | |
| 3 | ssv 3954 | . 2 ⊢ Cat ⊆ V | |
| 4 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐷 ∈ Cat) → 𝐷 ∈ Cat) | |
| 5 | eqid 2731 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 6 | eqid 2731 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 7 | 4, 5, 6 | zerooval 17897 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ∈ Cat) → (ZeroO‘𝐷) = ((InitO‘𝐷) ∩ (TermO‘𝐷))) |
| 8 | initopropd.1 | . . . . . . . 8 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) | |
| 9 | initopropd.2 | . . . . . . . 8 ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) | |
| 10 | 8, 9, 2 | initopropdlem 49272 | . . . . . . 7 ⊢ (𝜑 → (InitO‘𝐶) = (InitO‘𝐷)) |
| 11 | fvprc 6809 | . . . . . . . 8 ⊢ (¬ 𝐶 ∈ V → (InitO‘𝐶) = ∅) | |
| 12 | 2, 11 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (InitO‘𝐶) = ∅) |
| 13 | 10, 12 | eqtr3d 2768 | . . . . . 6 ⊢ (𝜑 → (InitO‘𝐷) = ∅) |
| 14 | 13 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐷 ∈ Cat) → (InitO‘𝐷) = ∅) |
| 15 | 8, 9, 2 | termopropdlem 49273 | . . . . . . 7 ⊢ (𝜑 → (TermO‘𝐶) = (TermO‘𝐷)) |
| 16 | fvprc 6809 | . . . . . . . 8 ⊢ (¬ 𝐶 ∈ V → (TermO‘𝐶) = ∅) | |
| 17 | 2, 16 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (TermO‘𝐶) = ∅) |
| 18 | 15, 17 | eqtr3d 2768 | . . . . . 6 ⊢ (𝜑 → (TermO‘𝐷) = ∅) |
| 19 | 18 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐷 ∈ Cat) → (TermO‘𝐷) = ∅) |
| 20 | 14, 19 | ineq12d 4166 | . . . 4 ⊢ ((𝜑 ∧ 𝐷 ∈ Cat) → ((InitO‘𝐷) ∩ (TermO‘𝐷)) = (∅ ∩ ∅)) |
| 21 | inidm 4172 | . . . 4 ⊢ (∅ ∩ ∅) = ∅ | |
| 22 | 20, 21 | eqtrdi 2782 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ∈ Cat) → ((InitO‘𝐷) ∩ (TermO‘𝐷)) = ∅) |
| 23 | 7, 22 | eqtrd 2766 | . 2 ⊢ ((𝜑 ∧ 𝐷 ∈ Cat) → (ZeroO‘𝐷) = ∅) |
| 24 | 1, 2, 3, 23 | initopropdlemlem 49271 | 1 ⊢ (𝜑 → (ZeroO‘𝐶) = (ZeroO‘𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∩ cin 3896 ∅c0 4278 ‘cfv 6476 Basecbs 17115 Hom chom 17167 Catccat 17565 Homf chomf 17567 compfccomf 17568 InitOcinito 17883 TermOctermo 17884 ZeroOczeroo 17885 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-homf 17571 df-inito 17886 df-termo 17887 df-zeroo 17888 |
| This theorem is referenced by: zeroopropd 49277 |
| Copyright terms: Public domain | W3C validator |