| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > zeroopropdlem | Structured version Visualization version GIF version | ||
| Description: Lemma for zeroopropd 49207. (Contributed by Zhi Wang, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| initopropd.1 | ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) |
| initopropd.2 | ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) |
| initopropdlem.1 | ⊢ (𝜑 → ¬ 𝐶 ∈ V) |
| Ref | Expression |
|---|---|
| zeroopropdlem | ⊢ (𝜑 → (ZeroO‘𝐶) = (ZeroO‘𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zeroofn 17927 | . 2 ⊢ ZeroO Fn Cat | |
| 2 | initopropdlem.1 | . 2 ⊢ (𝜑 → ¬ 𝐶 ∈ V) | |
| 3 | ssv 3968 | . 2 ⊢ Cat ⊆ V | |
| 4 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐷 ∈ Cat) → 𝐷 ∈ Cat) | |
| 5 | eqid 2729 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 6 | eqid 2729 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 7 | 4, 5, 6 | zerooval 17933 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ∈ Cat) → (ZeroO‘𝐷) = ((InitO‘𝐷) ∩ (TermO‘𝐷))) |
| 8 | initopropd.1 | . . . . . . . 8 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) | |
| 9 | initopropd.2 | . . . . . . . 8 ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) | |
| 10 | 8, 9, 2 | initopropdlem 49202 | . . . . . . 7 ⊢ (𝜑 → (InitO‘𝐶) = (InitO‘𝐷)) |
| 11 | fvprc 6832 | . . . . . . . 8 ⊢ (¬ 𝐶 ∈ V → (InitO‘𝐶) = ∅) | |
| 12 | 2, 11 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (InitO‘𝐶) = ∅) |
| 13 | 10, 12 | eqtr3d 2766 | . . . . . 6 ⊢ (𝜑 → (InitO‘𝐷) = ∅) |
| 14 | 13 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐷 ∈ Cat) → (InitO‘𝐷) = ∅) |
| 15 | 8, 9, 2 | termopropdlem 49203 | . . . . . . 7 ⊢ (𝜑 → (TermO‘𝐶) = (TermO‘𝐷)) |
| 16 | fvprc 6832 | . . . . . . . 8 ⊢ (¬ 𝐶 ∈ V → (TermO‘𝐶) = ∅) | |
| 17 | 2, 16 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (TermO‘𝐶) = ∅) |
| 18 | 15, 17 | eqtr3d 2766 | . . . . . 6 ⊢ (𝜑 → (TermO‘𝐷) = ∅) |
| 19 | 18 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐷 ∈ Cat) → (TermO‘𝐷) = ∅) |
| 20 | 14, 19 | ineq12d 4180 | . . . 4 ⊢ ((𝜑 ∧ 𝐷 ∈ Cat) → ((InitO‘𝐷) ∩ (TermO‘𝐷)) = (∅ ∩ ∅)) |
| 21 | inidm 4186 | . . . 4 ⊢ (∅ ∩ ∅) = ∅ | |
| 22 | 20, 21 | eqtrdi 2780 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ∈ Cat) → ((InitO‘𝐷) ∩ (TermO‘𝐷)) = ∅) |
| 23 | 7, 22 | eqtrd 2764 | . 2 ⊢ ((𝜑 ∧ 𝐷 ∈ Cat) → (ZeroO‘𝐷) = ∅) |
| 24 | 1, 2, 3, 23 | initopropdlemlem 49201 | 1 ⊢ (𝜑 → (ZeroO‘𝐶) = (ZeroO‘𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∩ cin 3910 ∅c0 4292 ‘cfv 6499 Basecbs 17155 Hom chom 17207 Catccat 17601 Homf chomf 17603 compfccomf 17604 InitOcinito 17919 TermOctermo 17920 ZeroOczeroo 17921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-homf 17607 df-inito 17922 df-termo 17923 df-zeroo 17924 |
| This theorem is referenced by: zeroopropd 49207 |
| Copyright terms: Public domain | W3C validator |