Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zeroopropdlem Structured version   Visualization version   GIF version

Theorem zeroopropdlem 49213
Description: Lemma for zeroopropd 49216. (Contributed by Zhi Wang, 26-Oct-2025.)
Hypotheses
Ref Expression
initopropd.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
initopropd.2 (𝜑 → (compf𝐶) = (compf𝐷))
initopropdlem.1 (𝜑 → ¬ 𝐶 ∈ V)
Assertion
Ref Expression
zeroopropdlem (𝜑 → (ZeroO‘𝐶) = (ZeroO‘𝐷))

Proof of Theorem zeroopropdlem
StepHypRef Expression
1 zeroofn 17957 . 2 ZeroO Fn Cat
2 initopropdlem.1 . 2 (𝜑 → ¬ 𝐶 ∈ V)
3 ssv 3973 . 2 Cat ⊆ V
4 simpr 484 . . . 4 ((𝜑𝐷 ∈ Cat) → 𝐷 ∈ Cat)
5 eqid 2730 . . . 4 (Base‘𝐷) = (Base‘𝐷)
6 eqid 2730 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
74, 5, 6zerooval 17963 . . 3 ((𝜑𝐷 ∈ Cat) → (ZeroO‘𝐷) = ((InitO‘𝐷) ∩ (TermO‘𝐷)))
8 initopropd.1 . . . . . . . 8 (𝜑 → (Homf𝐶) = (Homf𝐷))
9 initopropd.2 . . . . . . . 8 (𝜑 → (compf𝐶) = (compf𝐷))
108, 9, 2initopropdlem 49211 . . . . . . 7 (𝜑 → (InitO‘𝐶) = (InitO‘𝐷))
11 fvprc 6852 . . . . . . . 8 𝐶 ∈ V → (InitO‘𝐶) = ∅)
122, 11syl 17 . . . . . . 7 (𝜑 → (InitO‘𝐶) = ∅)
1310, 12eqtr3d 2767 . . . . . 6 (𝜑 → (InitO‘𝐷) = ∅)
1413adantr 480 . . . . 5 ((𝜑𝐷 ∈ Cat) → (InitO‘𝐷) = ∅)
158, 9, 2termopropdlem 49212 . . . . . . 7 (𝜑 → (TermO‘𝐶) = (TermO‘𝐷))
16 fvprc 6852 . . . . . . . 8 𝐶 ∈ V → (TermO‘𝐶) = ∅)
172, 16syl 17 . . . . . . 7 (𝜑 → (TermO‘𝐶) = ∅)
1815, 17eqtr3d 2767 . . . . . 6 (𝜑 → (TermO‘𝐷) = ∅)
1918adantr 480 . . . . 5 ((𝜑𝐷 ∈ Cat) → (TermO‘𝐷) = ∅)
2014, 19ineq12d 4186 . . . 4 ((𝜑𝐷 ∈ Cat) → ((InitO‘𝐷) ∩ (TermO‘𝐷)) = (∅ ∩ ∅))
21 inidm 4192 . . . 4 (∅ ∩ ∅) = ∅
2220, 21eqtrdi 2781 . . 3 ((𝜑𝐷 ∈ Cat) → ((InitO‘𝐷) ∩ (TermO‘𝐷)) = ∅)
237, 22eqtrd 2765 . 2 ((𝜑𝐷 ∈ Cat) → (ZeroO‘𝐷) = ∅)
241, 2, 3, 23initopropdlemlem 49210 1 (𝜑 → (ZeroO‘𝐶) = (ZeroO‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cin 3915  c0 4298  cfv 6513  Basecbs 17185  Hom chom 17237  Catccat 17631  Homf chomf 17633  compfccomf 17634  InitOcinito 17949  TermOctermo 17950  ZeroOczeroo 17951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-homf 17637  df-inito 17952  df-termo 17953  df-zeroo 17954
This theorem is referenced by:  zeroopropd  49216
  Copyright terms: Public domain W3C validator