| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fndmi | Structured version Visualization version GIF version | ||
| Description: The domain of a function. (Contributed by Wolf Lammen, 1-Jun-2024.) |
| Ref | Expression |
|---|---|
| fndmi.1 | ⊢ 𝐹 Fn 𝐴 |
| Ref | Expression |
|---|---|
| fndmi | ⊢ dom 𝐹 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fndmi.1 | . 2 ⊢ 𝐹 Fn 𝐴 | |
| 2 | fndm 6621 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐹 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 dom cdm 5638 Fn wfn 6506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6514 |
| This theorem is referenced by: dmmpti 6662 dmmpo 8050 tfr2 8366 tz7.44-2 8375 rdgsuc 8392 tz7.48-2 8410 tz7.48-1 8411 tz7.48-3 8412 tz7.49 8413 brwitnlem 8471 om0x 8483 naddcllem 8640 naddov2 8643 naddasslem1 8658 naddasslem2 8659 elpmi 8819 elmapex 8821 pmresg 8843 pmsspw 8850 r1suc 9723 r1ord 9733 r1ord3 9735 onwf 9783 r1val3 9791 r1pw 9798 rankr1b 9817 alephcard 10023 alephnbtwn 10024 alephgeom 10035 dfac12lem2 10098 alephsing 10229 hsmexlem6 10384 zorn2lem4 10452 alephadd 10530 alephreg 10535 pwcfsdom 10536 r1limwun 10689 r1wunlim 10690 rankcf 10730 inatsk 10731 r1tskina 10735 dmaddpi 10843 dmmulpi 10844 seqexw 13982 hashkf 14297 bpolylem 16014 0rest 17392 firest 17395 homfeqbas 17657 cidpropd 17671 2oppchomf 17685 fucbas 17925 fuchom 17926 xpccofval 18143 oppchofcl 18221 oyoncl 18231 mulgfval 19001 gicer 19209 psgneldm 19433 psgneldm2 19434 psgnval 19437 psgnghm 21489 psgnghm2 21490 cldrcl 22913 iscldtop 22982 restrcl 23044 ssrest 23063 resstopn 23073 hmpher 23671 nghmfval 24610 isnghm 24611 newval 27763 negsproplem2 27935 cvmtop1 35247 cvmtop2 35248 imageval 35918 filnetlem4 36369 ismrc 42689 dnnumch3lem 43035 dnnumch3 43036 aomclem4 43046 grur1cld 44221 gricrel 47919 grlicrel 47998 fonex 48855 cicrcl2 49032 cic1st2nd 49036 oppfrcl 49117 eloppf 49122 initopropdlemlem 49228 initopropd 49232 termopropd 49233 zeroopropd 49234 reldmxpc 49235 reldmlan2 49606 reldmran2 49607 lanrcl 49610 ranrcl 49611 |
| Copyright terms: Public domain | W3C validator |