| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fndmi | Structured version Visualization version GIF version | ||
| Description: The domain of a function. (Contributed by Wolf Lammen, 1-Jun-2024.) |
| Ref | Expression |
|---|---|
| fndmi.1 | ⊢ 𝐹 Fn 𝐴 |
| Ref | Expression |
|---|---|
| fndmi | ⊢ dom 𝐹 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fndmi.1 | . 2 ⊢ 𝐹 Fn 𝐴 | |
| 2 | fndm 6584 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐹 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 dom cdm 5616 Fn wfn 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6484 |
| This theorem is referenced by: dmmpti 6625 dmmpo 8003 tfr2 8317 tz7.44-2 8326 rdgsuc 8343 tz7.48-2 8361 tz7.48-1 8362 tz7.48-3 8363 tz7.49 8364 brwitnlem 8422 om0x 8434 naddcllem 8591 naddov2 8594 naddasslem1 8609 naddasslem2 8610 elpmi 8770 elmapex 8772 pmresg 8794 pmsspw 8801 r1suc 9660 r1ord 9670 r1ord3 9672 onwf 9720 r1val3 9728 r1pw 9735 rankr1b 9754 alephcard 9958 alephnbtwn 9959 alephgeom 9970 dfac12lem2 10033 alephsing 10164 hsmexlem6 10319 zorn2lem4 10387 alephadd 10465 alephreg 10470 pwcfsdom 10471 r1limwun 10624 r1wunlim 10625 rankcf 10665 inatsk 10666 r1tskina 10670 dmaddpi 10778 dmmulpi 10779 seqexw 13921 hashkf 14236 bpolylem 15952 0rest 17330 firest 17333 homfeqbas 17599 cidpropd 17613 2oppchomf 17627 fucbas 17867 fuchom 17868 xpccofval 18085 oppchofcl 18163 oyoncl 18173 ex-chn2 18541 mulgfval 18979 gicer 19187 psgneldm 19413 psgneldm2 19414 psgnval 19417 psgnghm 21515 psgnghm2 21516 cldrcl 22939 iscldtop 23008 restrcl 23070 ssrest 23089 resstopn 23099 hmpher 23697 nghmfval 24635 isnghm 24636 newval 27794 negsproplem2 27969 r1wf 35100 r1elcl 35102 cvmtop1 35292 cvmtop2 35293 imageval 35963 filnetlem4 36414 ismrc 42733 dnnumch3lem 43078 dnnumch3 43079 aomclem4 43089 grur1cld 44264 gricrel 47949 grlicrel 48036 fonex 48897 cicrcl2 49074 cic1st2nd 49078 oppfrcl 49159 eloppf 49164 initopropdlemlem 49270 initopropd 49274 termopropd 49275 zeroopropd 49276 reldmxpc 49277 reldmlan2 49648 reldmran2 49649 lanrcl 49652 ranrcl 49653 |
| Copyright terms: Public domain | W3C validator |