![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fndmi | Structured version Visualization version GIF version |
Description: The domain of a function. (Contributed by Wolf Lammen, 1-Jun-2024.) |
Ref | Expression |
---|---|
fndmi.1 | ⊢ 𝐹 Fn 𝐴 |
Ref | Expression |
---|---|
fndmi | ⊢ dom 𝐹 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndmi.1 | . 2 ⊢ 𝐹 Fn 𝐴 | |
2 | fndm 6658 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐹 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 dom cdm 5678 Fn wfn 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 df-fn 6552 |
This theorem is referenced by: dmmpti 6700 dmmpo 8076 tfr2 8419 tz7.44-2 8428 rdgsuc 8445 tz7.48-2 8463 tz7.48-1 8464 tz7.48-3 8465 tz7.49 8466 brwitnlem 8528 om0x 8540 naddcllem 8697 naddov2 8700 naddasslem1 8715 naddasslem2 8716 elpmi 8865 elmapex 8867 pmresg 8889 pmsspw 8896 r1suc 9795 r1ord 9805 r1ord3 9807 onwf 9855 r1val3 9863 r1pw 9870 rankr1b 9889 alephcard 10095 alephnbtwn 10096 alephgeom 10107 dfac12lem2 10169 alephsing 10301 hsmexlem6 10456 zorn2lem4 10524 alephadd 10602 alephreg 10607 pwcfsdom 10608 r1limwun 10761 r1wunlim 10762 rankcf 10802 inatsk 10803 r1tskina 10807 dmaddpi 10915 dmmulpi 10916 seqexw 14018 hashkf 14327 bpolylem 16028 0rest 17414 firest 17417 homfeqbas 17679 cidpropd 17693 2oppchomf 17709 fucbas 17954 fuchom 17955 fuchomOLD 17956 xpccofval 18176 oppchofcl 18255 oyoncl 18265 mulgfval 19033 gicer 19240 psgneldm 19470 psgneldm2 19471 psgnval 19474 psgnghm 21529 psgnghm2 21530 cldrcl 22974 iscldtop 23043 restrcl 23105 ssrest 23124 resstopn 23134 hmpher 23732 nghmfval 24683 isnghm 24684 newval 27828 negsproplem2 27987 cvmtop1 34998 cvmtop2 34999 imageval 35654 filnetlem4 35993 ismrc 42260 dnnumch3lem 42609 dnnumch3 42610 aomclem4 42620 grur1cld 43808 gricrel 47368 |
Copyright terms: Public domain | W3C validator |