| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fndmi | Structured version Visualization version GIF version | ||
| Description: The domain of a function. (Contributed by Wolf Lammen, 1-Jun-2024.) |
| Ref | Expression |
|---|---|
| fndmi.1 | ⊢ 𝐹 Fn 𝐴 |
| Ref | Expression |
|---|---|
| fndmi | ⊢ dom 𝐹 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fndmi.1 | . 2 ⊢ 𝐹 Fn 𝐴 | |
| 2 | fndm 6589 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐹 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 dom cdm 5623 Fn wfn 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6489 |
| This theorem is referenced by: dmmpti 6630 dmmpo 8013 tfr2 8327 tz7.44-2 8336 rdgsuc 8353 tz7.48-2 8371 tz7.48-1 8372 tz7.48-3 8373 tz7.49 8374 brwitnlem 8432 om0x 8444 naddcllem 8601 naddov2 8604 naddasslem1 8619 naddasslem2 8620 elpmi 8780 elmapex 8782 pmresg 8804 pmsspw 8811 r1suc 9685 r1ord 9695 r1ord3 9697 onwf 9745 r1val3 9753 r1pw 9760 rankr1b 9779 alephcard 9983 alephnbtwn 9984 alephgeom 9995 dfac12lem2 10058 alephsing 10189 hsmexlem6 10344 zorn2lem4 10412 alephadd 10490 alephreg 10495 pwcfsdom 10496 r1limwun 10649 r1wunlim 10650 rankcf 10690 inatsk 10691 r1tskina 10695 dmaddpi 10803 dmmulpi 10804 seqexw 13942 hashkf 14257 bpolylem 15973 0rest 17351 firest 17354 homfeqbas 17620 cidpropd 17634 2oppchomf 17648 fucbas 17888 fuchom 17889 xpccofval 18106 oppchofcl 18184 oyoncl 18194 mulgfval 18966 gicer 19174 psgneldm 19400 psgneldm2 19401 psgnval 19404 psgnghm 21505 psgnghm2 21506 cldrcl 22929 iscldtop 22998 restrcl 23060 ssrest 23079 resstopn 23089 hmpher 23687 nghmfval 24626 isnghm 24627 newval 27783 negsproplem2 27958 cvmtop1 35232 cvmtop2 35233 imageval 35903 filnetlem4 36354 ismrc 42674 dnnumch3lem 43019 dnnumch3 43020 aomclem4 43030 grur1cld 44205 gricrel 47904 grlicrel 47991 fonex 48852 cicrcl2 49029 cic1st2nd 49033 oppfrcl 49114 eloppf 49119 initopropdlemlem 49225 initopropd 49229 termopropd 49230 zeroopropd 49231 reldmxpc 49232 reldmlan2 49603 reldmran2 49604 lanrcl 49607 ranrcl 49608 |
| Copyright terms: Public domain | W3C validator |