![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fndmi | Structured version Visualization version GIF version |
Description: The domain of a function. (Contributed by Wolf Lammen, 1-Jun-2024.) |
Ref | Expression |
---|---|
fndmi.1 | ⊢ 𝐹 Fn 𝐴 |
Ref | Expression |
---|---|
fndmi | ⊢ dom 𝐹 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndmi.1 | . 2 ⊢ 𝐹 Fn 𝐴 | |
2 | fndm 6672 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐹 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 dom cdm 5689 Fn wfn 6558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6566 |
This theorem is referenced by: dmmpti 6713 dmmpo 8095 tfr2 8437 tz7.44-2 8446 rdgsuc 8463 tz7.48-2 8481 tz7.48-1 8482 tz7.48-3 8483 tz7.49 8484 brwitnlem 8544 om0x 8556 naddcllem 8713 naddov2 8716 naddasslem1 8731 naddasslem2 8732 elpmi 8885 elmapex 8887 pmresg 8909 pmsspw 8916 r1suc 9808 r1ord 9818 r1ord3 9820 onwf 9868 r1val3 9876 r1pw 9883 rankr1b 9902 alephcard 10108 alephnbtwn 10109 alephgeom 10120 dfac12lem2 10183 alephsing 10314 hsmexlem6 10469 zorn2lem4 10537 alephadd 10615 alephreg 10620 pwcfsdom 10621 r1limwun 10774 r1wunlim 10775 rankcf 10815 inatsk 10816 r1tskina 10820 dmaddpi 10928 dmmulpi 10929 seqexw 14055 hashkf 14368 bpolylem 16081 0rest 17476 firest 17479 homfeqbas 17741 cidpropd 17755 2oppchomf 17771 fucbas 18016 fuchom 18017 fuchomOLD 18018 xpccofval 18238 oppchofcl 18317 oyoncl 18327 mulgfval 19100 gicer 19308 psgneldm 19536 psgneldm2 19537 psgnval 19540 psgnghm 21616 psgnghm2 21617 cldrcl 23050 iscldtop 23119 restrcl 23181 ssrest 23200 resstopn 23210 hmpher 23808 nghmfval 24759 isnghm 24760 newval 27909 negsproplem2 28076 cvmtop1 35245 cvmtop2 35246 imageval 35912 filnetlem4 36364 ismrc 42689 dnnumch3lem 43035 dnnumch3 43036 aomclem4 43046 grur1cld 44228 gricrel 47826 grlicrel 47902 |
Copyright terms: Public domain | W3C validator |