| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fndmi | Structured version Visualization version GIF version | ||
| Description: The domain of a function. (Contributed by Wolf Lammen, 1-Jun-2024.) |
| Ref | Expression |
|---|---|
| fndmi.1 | ⊢ 𝐹 Fn 𝐴 |
| Ref | Expression |
|---|---|
| fndmi | ⊢ dom 𝐹 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fndmi.1 | . 2 ⊢ 𝐹 Fn 𝐴 | |
| 2 | fndm 6589 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐹 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 dom cdm 5619 Fn wfn 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6489 |
| This theorem is referenced by: dmmpti 6630 dmmpo 8009 tfr2 8323 tz7.44-2 8332 rdgsuc 8349 tz7.48-2 8367 tz7.48-1 8368 tz7.48-3 8369 tz7.49 8370 brwitnlem 8428 om0x 8440 naddcllem 8597 naddov2 8600 naddasslem1 8615 naddasslem2 8616 elpmi 8776 elmapex 8778 pmresg 8800 pmsspw 8807 r1suc 9670 r1ord 9680 r1ord3 9682 onwf 9730 r1val3 9738 r1pw 9745 rankr1b 9764 alephcard 9968 alephnbtwn 9969 alephgeom 9980 dfac12lem2 10043 alephsing 10174 hsmexlem6 10329 zorn2lem4 10397 alephadd 10475 alephreg 10480 pwcfsdom 10481 r1limwun 10634 r1wunlim 10635 rankcf 10675 inatsk 10676 r1tskina 10680 dmaddpi 10788 dmmulpi 10789 seqexw 13926 hashkf 14241 bpolylem 15957 0rest 17335 firest 17338 homfeqbas 17604 cidpropd 17618 2oppchomf 17632 fucbas 17872 fuchom 17873 xpccofval 18090 oppchofcl 18168 oyoncl 18178 ex-chn2 18546 mulgfval 18984 gicer 19191 psgneldm 19417 psgneldm2 19418 psgnval 19421 psgnghm 21519 psgnghm2 21520 cldrcl 22942 iscldtop 23011 restrcl 23073 ssrest 23092 resstopn 23102 hmpher 23700 nghmfval 24638 isnghm 24639 newval 27797 negsproplem2 27972 r1wf 35128 r1elcl 35130 cvmtop1 35325 cvmtop2 35326 imageval 35993 filnetlem4 36446 ismrc 42818 dnnumch3lem 43163 dnnumch3 43164 aomclem4 43174 grur1cld 44349 gricrel 48043 grlicrel 48130 fonex 48991 cicrcl2 49168 cic1st2nd 49172 oppfrcl 49253 eloppf 49258 initopropdlemlem 49364 initopropd 49368 termopropd 49369 zeroopropd 49370 reldmxpc 49371 reldmlan2 49742 reldmran2 49743 lanrcl 49746 ranrcl 49747 |
| Copyright terms: Public domain | W3C validator |