Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fndmi | Structured version Visualization version GIF version |
Description: The domain of a function. (Contributed by Wolf Lammen, 1-Jun-2024.) |
Ref | Expression |
---|---|
fndmi.1 | ⊢ 𝐹 Fn 𝐴 |
Ref | Expression |
---|---|
fndmi | ⊢ dom 𝐹 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndmi.1 | . 2 ⊢ 𝐹 Fn 𝐴 | |
2 | fndm 6545 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐹 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 dom cdm 5590 Fn wfn 6432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-fn 6440 |
This theorem is referenced by: dmmpti 6586 dmmpo 7920 tfr2 8238 tz7.44-2 8247 rdgsuc 8264 tz7.48-2 8282 tz7.48-1 8283 tz7.48-3 8284 tz7.49 8285 brwitnlem 8346 om0x 8358 elpmi 8643 elmapex 8645 pmresg 8667 pmsspw 8674 r1suc 9537 r1ord 9547 r1ord3 9549 onwf 9597 r1val3 9605 r1pw 9612 rankr1b 9631 alephcard 9835 alephnbtwn 9836 alephgeom 9847 dfac12lem2 9909 alephsing 10041 hsmexlem6 10196 zorn2lem4 10264 alephadd 10342 alephreg 10347 pwcfsdom 10348 r1limwun 10501 r1wunlim 10502 rankcf 10542 inatsk 10543 r1tskina 10547 dmaddpi 10655 dmmulpi 10656 seqexw 13746 hashkf 14055 bpolylem 15767 0rest 17149 firest 17152 homfeqbas 17414 cidpropd 17428 2oppchomf 17444 fucbas 17686 fuchom 17687 fuchomOLD 17688 xpccofval 17908 oppchofcl 17987 oyoncl 17997 mulgfval 18711 gicer 18901 psgneldm 19120 psgneldm2 19121 psgnval 19124 psgnghm 20794 psgnghm2 20795 cldrcl 22186 iscldtop 22255 restrcl 22317 ssrest 22336 resstopn 22346 hmpher 22944 nghmfval 23895 isnghm 23896 cvmtop1 33231 cvmtop2 33232 naddcllem 33840 naddov2 33843 newval 34048 imageval 34241 filnetlem4 34579 ismrc 40530 dnnumch3lem 40878 dnnumch3 40879 aomclem4 40889 grur1cld 41857 |
Copyright terms: Public domain | W3C validator |