![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fndmi | Structured version Visualization version GIF version |
Description: The domain of a function. (Contributed by Wolf Lammen, 1-Jun-2024.) |
Ref | Expression |
---|---|
fndmi.1 | ⊢ 𝐹 Fn 𝐴 |
Ref | Expression |
---|---|
fndmi | ⊢ dom 𝐹 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndmi.1 | . 2 ⊢ 𝐹 Fn 𝐴 | |
2 | fndm 6682 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐹 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 dom cdm 5700 Fn wfn 6568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6576 |
This theorem is referenced by: dmmpti 6724 dmmpo 8112 tfr2 8454 tz7.44-2 8463 rdgsuc 8480 tz7.48-2 8498 tz7.48-1 8499 tz7.48-3 8500 tz7.49 8501 brwitnlem 8563 om0x 8575 naddcllem 8732 naddov2 8735 naddasslem1 8750 naddasslem2 8751 elpmi 8904 elmapex 8906 pmresg 8928 pmsspw 8935 r1suc 9839 r1ord 9849 r1ord3 9851 onwf 9899 r1val3 9907 r1pw 9914 rankr1b 9933 alephcard 10139 alephnbtwn 10140 alephgeom 10151 dfac12lem2 10214 alephsing 10345 hsmexlem6 10500 zorn2lem4 10568 alephadd 10646 alephreg 10651 pwcfsdom 10652 r1limwun 10805 r1wunlim 10806 rankcf 10846 inatsk 10847 r1tskina 10851 dmaddpi 10959 dmmulpi 10960 seqexw 14068 hashkf 14381 bpolylem 16096 0rest 17489 firest 17492 homfeqbas 17754 cidpropd 17768 2oppchomf 17784 fucbas 18029 fuchom 18030 fuchomOLD 18031 xpccofval 18251 oppchofcl 18330 oyoncl 18340 mulgfval 19109 gicer 19317 psgneldm 19545 psgneldm2 19546 psgnval 19549 psgnghm 21621 psgnghm2 21622 cldrcl 23055 iscldtop 23124 restrcl 23186 ssrest 23205 resstopn 23215 hmpher 23813 nghmfval 24764 isnghm 24765 newval 27912 negsproplem2 28079 cvmtop1 35228 cvmtop2 35229 imageval 35894 filnetlem4 36347 ismrc 42657 dnnumch3lem 43003 dnnumch3 43004 aomclem4 43014 grur1cld 44201 gricrel 47772 grlicrel 47823 |
Copyright terms: Public domain | W3C validator |