| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fndmi | Structured version Visualization version GIF version | ||
| Description: The domain of a function. (Contributed by Wolf Lammen, 1-Jun-2024.) |
| Ref | Expression |
|---|---|
| fndmi.1 | ⊢ 𝐹 Fn 𝐴 |
| Ref | Expression |
|---|---|
| fndmi | ⊢ dom 𝐹 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fndmi.1 | . 2 ⊢ 𝐹 Fn 𝐴 | |
| 2 | fndm 6641 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐹 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 dom cdm 5654 Fn wfn 6526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6534 |
| This theorem is referenced by: dmmpti 6682 dmmpo 8070 tfr2 8412 tz7.44-2 8421 rdgsuc 8438 tz7.48-2 8456 tz7.48-1 8457 tz7.48-3 8458 tz7.49 8459 brwitnlem 8519 om0x 8531 naddcllem 8688 naddov2 8691 naddasslem1 8706 naddasslem2 8707 elpmi 8860 elmapex 8862 pmresg 8884 pmsspw 8891 r1suc 9784 r1ord 9794 r1ord3 9796 onwf 9844 r1val3 9852 r1pw 9859 rankr1b 9878 alephcard 10084 alephnbtwn 10085 alephgeom 10096 dfac12lem2 10159 alephsing 10290 hsmexlem6 10445 zorn2lem4 10513 alephadd 10591 alephreg 10596 pwcfsdom 10597 r1limwun 10750 r1wunlim 10751 rankcf 10791 inatsk 10792 r1tskina 10796 dmaddpi 10904 dmmulpi 10905 seqexw 14035 hashkf 14350 bpolylem 16064 0rest 17443 firest 17446 homfeqbas 17708 cidpropd 17722 2oppchomf 17736 fucbas 17976 fuchom 17977 xpccofval 18194 oppchofcl 18272 oyoncl 18282 mulgfval 19052 gicer 19260 psgneldm 19484 psgneldm2 19485 psgnval 19488 psgnghm 21540 psgnghm2 21541 cldrcl 22964 iscldtop 23033 restrcl 23095 ssrest 23114 resstopn 23124 hmpher 23722 nghmfval 24661 isnghm 24662 newval 27815 negsproplem2 27987 cvmtop1 35282 cvmtop2 35283 imageval 35948 filnetlem4 36399 ismrc 42724 dnnumch3lem 43070 dnnumch3 43071 aomclem4 43081 grur1cld 44256 gricrel 47932 grlicrel 48011 fonex 48842 cicrcl2 49010 cic1st2nd 49014 initopropdlemlem 49156 initopropd 49160 termopropd 49161 zeroopropd 49162 reldmxpc 49163 reldmlan2 49492 reldmran2 49493 lanrcl 49496 ranrcl 49497 |
| Copyright terms: Public domain | W3C validator |