| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fndmi | Structured version Visualization version GIF version | ||
| Description: The domain of a function. (Contributed by Wolf Lammen, 1-Jun-2024.) |
| Ref | Expression |
|---|---|
| fndmi.1 | ⊢ 𝐹 Fn 𝐴 |
| Ref | Expression |
|---|---|
| fndmi | ⊢ dom 𝐹 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fndmi.1 | . 2 ⊢ 𝐹 Fn 𝐴 | |
| 2 | fndm 6624 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐹 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 dom cdm 5641 Fn wfn 6509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6517 |
| This theorem is referenced by: dmmpti 6665 dmmpo 8053 tfr2 8369 tz7.44-2 8378 rdgsuc 8395 tz7.48-2 8413 tz7.48-1 8414 tz7.48-3 8415 tz7.49 8416 brwitnlem 8474 om0x 8486 naddcllem 8643 naddov2 8646 naddasslem1 8661 naddasslem2 8662 elpmi 8822 elmapex 8824 pmresg 8846 pmsspw 8853 r1suc 9730 r1ord 9740 r1ord3 9742 onwf 9790 r1val3 9798 r1pw 9805 rankr1b 9824 alephcard 10030 alephnbtwn 10031 alephgeom 10042 dfac12lem2 10105 alephsing 10236 hsmexlem6 10391 zorn2lem4 10459 alephadd 10537 alephreg 10542 pwcfsdom 10543 r1limwun 10696 r1wunlim 10697 rankcf 10737 inatsk 10738 r1tskina 10742 dmaddpi 10850 dmmulpi 10851 seqexw 13989 hashkf 14304 bpolylem 16021 0rest 17399 firest 17402 homfeqbas 17664 cidpropd 17678 2oppchomf 17692 fucbas 17932 fuchom 17933 xpccofval 18150 oppchofcl 18228 oyoncl 18238 mulgfval 19008 gicer 19216 psgneldm 19440 psgneldm2 19441 psgnval 19444 psgnghm 21496 psgnghm2 21497 cldrcl 22920 iscldtop 22989 restrcl 23051 ssrest 23070 resstopn 23080 hmpher 23678 nghmfval 24617 isnghm 24618 newval 27770 negsproplem2 27942 cvmtop1 35254 cvmtop2 35255 imageval 35925 filnetlem4 36376 ismrc 42696 dnnumch3lem 43042 dnnumch3 43043 aomclem4 43053 grur1cld 44228 gricrel 47923 grlicrel 48002 fonex 48859 cicrcl2 49036 cic1st2nd 49040 oppfrcl 49121 eloppf 49126 initopropdlemlem 49232 initopropd 49236 termopropd 49237 zeroopropd 49238 reldmxpc 49239 reldmlan2 49610 reldmran2 49611 lanrcl 49614 ranrcl 49615 |
| Copyright terms: Public domain | W3C validator |