Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fndmi | Structured version Visualization version GIF version |
Description: The domain of a function. (Contributed by Wolf Lammen, 1-Jun-2024.) |
Ref | Expression |
---|---|
fndmi.1 | ⊢ 𝐹 Fn 𝐴 |
Ref | Expression |
---|---|
fndmi | ⊢ dom 𝐹 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndmi.1 | . 2 ⊢ 𝐹 Fn 𝐴 | |
2 | fndm 6520 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐹 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 dom cdm 5580 Fn wfn 6413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-fn 6421 |
This theorem is referenced by: dmmpti 6561 dmmpo 7884 tfr2 8200 tz7.44-2 8209 rdgsuc 8226 tz7.48-2 8243 tz7.48-1 8244 tz7.48-3 8245 tz7.49 8246 brwitnlem 8299 om0x 8311 elpmi 8592 elmapex 8594 pmresg 8616 pmsspw 8623 r1suc 9459 r1ord 9469 r1ord3 9471 onwf 9519 r1val3 9527 r1pw 9534 rankr1b 9553 alephcard 9757 alephnbtwn 9758 alephgeom 9769 dfac12lem2 9831 alephsing 9963 hsmexlem6 10118 zorn2lem4 10186 alephadd 10264 alephreg 10269 pwcfsdom 10270 r1limwun 10423 r1wunlim 10424 rankcf 10464 inatsk 10465 r1tskina 10469 dmaddpi 10577 dmmulpi 10578 seqexw 13665 hashkf 13974 bpolylem 15686 0rest 17057 firest 17060 homfeqbas 17322 cidpropd 17336 2oppchomf 17352 fucbas 17593 fuchom 17594 fuchomOLD 17595 xpccofval 17815 oppchofcl 17894 oyoncl 17904 mulgfval 18617 gicer 18807 psgneldm 19026 psgneldm2 19027 psgnval 19030 psgnghm 20697 psgnghm2 20698 cldrcl 22085 iscldtop 22154 restrcl 22216 ssrest 22235 resstopn 22245 hmpher 22843 nghmfval 23792 isnghm 23793 cvmtop1 33122 cvmtop2 33123 naddcllem 33758 naddov2 33761 newval 33966 imageval 34159 filnetlem4 34497 ismrc 40439 dnnumch3lem 40787 dnnumch3 40788 aomclem4 40798 grur1cld 41739 |
Copyright terms: Public domain | W3C validator |