Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fndmi | Structured version Visualization version GIF version |
Description: The domain of a function. (Contributed by Wolf Lammen, 1-Jun-2024.) |
Ref | Expression |
---|---|
fndmi.1 | ⊢ 𝐹 Fn 𝐴 |
Ref | Expression |
---|---|
fndmi | ⊢ dom 𝐹 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndmi.1 | . 2 ⊢ 𝐹 Fn 𝐴 | |
2 | fndm 6538 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐹 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 dom cdm 5591 Fn wfn 6430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-fn 6438 |
This theorem is referenced by: dmmpti 6579 dmmpo 7911 tfr2 8227 tz7.44-2 8236 rdgsuc 8253 tz7.48-2 8271 tz7.48-1 8272 tz7.48-3 8273 tz7.49 8274 brwitnlem 8335 om0x 8347 elpmi 8632 elmapex 8634 pmresg 8656 pmsspw 8663 r1suc 9526 r1ord 9536 r1ord3 9538 onwf 9586 r1val3 9594 r1pw 9601 rankr1b 9620 alephcard 9824 alephnbtwn 9825 alephgeom 9836 dfac12lem2 9898 alephsing 10030 hsmexlem6 10185 zorn2lem4 10253 alephadd 10331 alephreg 10336 pwcfsdom 10337 r1limwun 10490 r1wunlim 10491 rankcf 10531 inatsk 10532 r1tskina 10536 dmaddpi 10644 dmmulpi 10645 seqexw 13735 hashkf 14044 bpolylem 15756 0rest 17138 firest 17141 homfeqbas 17403 cidpropd 17417 2oppchomf 17433 fucbas 17675 fuchom 17676 fuchomOLD 17677 xpccofval 17897 oppchofcl 17976 oyoncl 17986 mulgfval 18700 gicer 18890 psgneldm 19109 psgneldm2 19110 psgnval 19113 psgnghm 20783 psgnghm2 20784 cldrcl 22175 iscldtop 22244 restrcl 22306 ssrest 22325 resstopn 22335 hmpher 22933 nghmfval 23884 isnghm 23885 cvmtop1 33219 cvmtop2 33220 naddcllem 33828 naddov2 33831 newval 34036 imageval 34229 filnetlem4 34567 ismrc 40520 dnnumch3lem 40868 dnnumch3 40869 aomclem4 40879 grur1cld 41820 |
Copyright terms: Public domain | W3C validator |