Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termopropdlem Structured version   Visualization version   GIF version

Theorem termopropdlem 49203
Description: Lemma for termopropd 49206. (Contributed by Zhi Wang, 26-Oct-2025.)
Hypotheses
Ref Expression
initopropd.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
initopropd.2 (𝜑 → (compf𝐶) = (compf𝐷))
initopropdlem.1 (𝜑 → ¬ 𝐶 ∈ V)
Assertion
Ref Expression
termopropdlem (𝜑 → (TermO‘𝐶) = (TermO‘𝐷))

Proof of Theorem termopropdlem
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 termofn 17926 . 2 TermO Fn Cat
2 initopropdlem.1 . 2 (𝜑 → ¬ 𝐶 ∈ V)
3 ssv 3968 . 2 Cat ⊆ V
4 simpr 484 . . . 4 ((𝜑𝐷 ∈ Cat) → 𝐷 ∈ Cat)
5 eqid 2729 . . . 4 (Base‘𝐷) = (Base‘𝐷)
6 eqid 2729 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
74, 5, 6termoval 17932 . . 3 ((𝜑𝐷 ∈ Cat) → (TermO‘𝐷) = {𝑎 ∈ (Base‘𝐷) ∣ ∀𝑏 ∈ (Base‘𝐷)∃! ∈ (𝑏(Hom ‘𝐷)𝑎)})
8 initopropd.1 . . . . . . . 8 (𝜑 → (Homf𝐶) = (Homf𝐷))
9 fvprc 6832 . . . . . . . . 9 𝐶 ∈ V → (Homf𝐶) = ∅)
102, 9syl 17 . . . . . . . 8 (𝜑 → (Homf𝐶) = ∅)
118, 10eqtr3d 2766 . . . . . . 7 (𝜑 → (Homf𝐷) = ∅)
12 homf0 48971 . . . . . . 7 ((Base‘𝐷) = ∅ ↔ (Homf𝐷) = ∅)
1311, 12sylibr 234 . . . . . 6 (𝜑 → (Base‘𝐷) = ∅)
1413rabeqdv 3418 . . . . 5 (𝜑 → {𝑎 ∈ (Base‘𝐷) ∣ ∀𝑏 ∈ (Base‘𝐷)∃! ∈ (𝑏(Hom ‘𝐷)𝑎)} = {𝑎 ∈ ∅ ∣ ∀𝑏 ∈ (Base‘𝐷)∃! ∈ (𝑏(Hom ‘𝐷)𝑎)})
15 rab0 4345 . . . . 5 {𝑎 ∈ ∅ ∣ ∀𝑏 ∈ (Base‘𝐷)∃! ∈ (𝑏(Hom ‘𝐷)𝑎)} = ∅
1614, 15eqtrdi 2780 . . . 4 (𝜑 → {𝑎 ∈ (Base‘𝐷) ∣ ∀𝑏 ∈ (Base‘𝐷)∃! ∈ (𝑏(Hom ‘𝐷)𝑎)} = ∅)
1716adantr 480 . . 3 ((𝜑𝐷 ∈ Cat) → {𝑎 ∈ (Base‘𝐷) ∣ ∀𝑏 ∈ (Base‘𝐷)∃! ∈ (𝑏(Hom ‘𝐷)𝑎)} = ∅)
187, 17eqtrd 2764 . 2 ((𝜑𝐷 ∈ Cat) → (TermO‘𝐷) = ∅)
191, 2, 3, 18initopropdlemlem 49201 1 (𝜑 → (TermO‘𝐶) = (TermO‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  ∃!weu 2561  wral 3044  {crab 3402  Vcvv 3444  c0 4292  cfv 6499  (class class class)co 7369  Basecbs 17155  Hom chom 17207  Catccat 17601  Homf chomf 17603  compfccomf 17604  TermOctermo 17920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-homf 17607  df-termo 17923
This theorem is referenced by:  zeroopropdlem  49204  termopropd  49206
  Copyright terms: Public domain W3C validator