| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > termopropdlem | Structured version Visualization version GIF version | ||
| Description: Lemma for termopropd 48995. (Contributed by Zhi Wang, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| initopropd.1 | ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) |
| initopropd.2 | ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) |
| initopropdlem.1 | ⊢ (𝜑 → ¬ 𝐶 ∈ V) |
| Ref | Expression |
|---|---|
| termopropdlem | ⊢ (𝜑 → (TermO‘𝐶) = (TermO‘𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termofn 18005 | . 2 ⊢ TermO Fn Cat | |
| 2 | initopropdlem.1 | . 2 ⊢ (𝜑 → ¬ 𝐶 ∈ V) | |
| 3 | ssv 3988 | . 2 ⊢ Cat ⊆ V | |
| 4 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐷 ∈ Cat) → 𝐷 ∈ Cat) | |
| 5 | eqid 2734 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 6 | eqid 2734 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 7 | 4, 5, 6 | termoval 18011 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ∈ Cat) → (TermO‘𝐷) = {𝑎 ∈ (Base‘𝐷) ∣ ∀𝑏 ∈ (Base‘𝐷)∃!ℎ ℎ ∈ (𝑏(Hom ‘𝐷)𝑎)}) |
| 8 | initopropd.1 | . . . . . . . 8 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) | |
| 9 | fvprc 6878 | . . . . . . . . 9 ⊢ (¬ 𝐶 ∈ V → (Homf ‘𝐶) = ∅) | |
| 10 | 2, 9 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (Homf ‘𝐶) = ∅) |
| 11 | 8, 10 | eqtr3d 2771 | . . . . . . 7 ⊢ (𝜑 → (Homf ‘𝐷) = ∅) |
| 12 | homf0 48891 | . . . . . . 7 ⊢ ((Base‘𝐷) = ∅ ↔ (Homf ‘𝐷) = ∅) | |
| 13 | 11, 12 | sylibr 234 | . . . . . 6 ⊢ (𝜑 → (Base‘𝐷) = ∅) |
| 14 | 13 | rabeqdv 3435 | . . . . 5 ⊢ (𝜑 → {𝑎 ∈ (Base‘𝐷) ∣ ∀𝑏 ∈ (Base‘𝐷)∃!ℎ ℎ ∈ (𝑏(Hom ‘𝐷)𝑎)} = {𝑎 ∈ ∅ ∣ ∀𝑏 ∈ (Base‘𝐷)∃!ℎ ℎ ∈ (𝑏(Hom ‘𝐷)𝑎)}) |
| 15 | rab0 4366 | . . . . 5 ⊢ {𝑎 ∈ ∅ ∣ ∀𝑏 ∈ (Base‘𝐷)∃!ℎ ℎ ∈ (𝑏(Hom ‘𝐷)𝑎)} = ∅ | |
| 16 | 14, 15 | eqtrdi 2785 | . . . 4 ⊢ (𝜑 → {𝑎 ∈ (Base‘𝐷) ∣ ∀𝑏 ∈ (Base‘𝐷)∃!ℎ ℎ ∈ (𝑏(Hom ‘𝐷)𝑎)} = ∅) |
| 17 | 16 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ∈ Cat) → {𝑎 ∈ (Base‘𝐷) ∣ ∀𝑏 ∈ (Base‘𝐷)∃!ℎ ℎ ∈ (𝑏(Hom ‘𝐷)𝑎)} = ∅) |
| 18 | 7, 17 | eqtrd 2769 | . 2 ⊢ ((𝜑 ∧ 𝐷 ∈ Cat) → (TermO‘𝐷) = ∅) |
| 19 | 1, 2, 3, 18 | initopropdlemlem 48990 | 1 ⊢ (𝜑 → (TermO‘𝐶) = (TermO‘𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃!weu 2566 ∀wral 3050 {crab 3419 Vcvv 3463 ∅c0 4313 ‘cfv 6541 (class class class)co 7413 Basecbs 17230 Hom chom 17285 Catccat 17679 Homf chomf 17681 compfccomf 17682 TermOctermo 17999 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-homf 17685 df-termo 18002 |
| This theorem is referenced by: zeroopropdlem 48993 termopropd 48995 |
| Copyright terms: Public domain | W3C validator |